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REAL ZEROES OF EPSTEIN’S ZETA FUNCTION FOR
TERNARY POSITIVE DEFINITE QUADRATIC FORMS

1. Introduction

Let S be the n x n matrix of a positive definite (real) quadratic form, and
let 0 be a complex variable with Re 0 > n/2. Then Epsteins zeta function
Zn(S, 0) is defined by

Zn(S, 0)=1/2 S[a]-, (1.1)
Z-0

where the sum is over all column vectors with integral entries, not all of
which are zero. Here S[A]=tASA, with tA being the transpose of the
matrix A. We shall be concerned with the sign of Z3(S, 1). The value is, of
course, not obtained by substituting O 1 in formula (1.1), but by analytic
continuation using theta functions or using the Selberg-Chowla formula
generalizations in [7, p. 480].
Let us first recall the analogous result obtained for binary forms and

Zz(S, 1/2) by Bateman and Grosswald [2, p. 367]. We need to recall also what
Siegel [6, p. 29] calls the Jacobi transformation of a positive definite sym-
metric matrix S"

0)[1r 0]\s12 s22/ s2z 1 (1.2)

-1 2 This is releated to the Iwasawa decom-where r s-:slz and u Sll-szzsz.
position of SL(2, R). The reduction theory of binary positive definite
quadratic forms [6, p. 70] shows that for every matrix T of a binary positive
definite quadratic form, there exists a matrix U which has integer entries
and determinant +1, such that S T[U] has Jacobi transformation as in
(1.2) with

s2 <---}u, Irl <--1/2. (1.3)

Since Z:(S, 0) Z2(T, 0), if S and T are related as above by an integer
matrix of determinant +1, it follows that we may assume inequalities (1.3) in
discussing the sign of Zz(S, 0).
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Bateman and Grosswald [2, p. 367] prove that

> 0 if /__u_>_ 7.05Zz(S, 56,

Z(S, 1/2) < 0 if ---< -< 7.0554.
(.4)

The proof is carried out via the Selberg-Chowla formula [2, p. 366,
Theorem 1], which is essentially the calculation of the Fourier coefficients of
the non-analytic automorphic form Z2(S, o)--the result being a rapidly
convergent expansion involving Bessel functions.

Since Z,2(S, O) has a simple pole at O 1 with a positive residue, it follows
that if $ is such that /u/s22 >-7.0556 then Z2(S, O) must vanish or some O in
the interval (1/2, 1). It is perhaps surprising, given the well known relation
between the Epstein and Dedekind zeta functions of imaginary quadratic
fields, that this discovery of zeroes of Epstein’s zeta function does not lead
to zeroes of the Dedekind zeta function for imaginary quadratic fields. In
fact, Low [3] and Purdy [4] have used similar methods and a computer to
show that the Dedekind zeta function of any imaginary quadratic field with
discriminant between -3 and -800000 is negative throughout the interval
(0, 1)--with three discriminants for which the Dedekind zeta function is very
close to zero.
Our aim here is to prove a result similar to (1.4) for Z3(S, 1). Write the

Jacobi transformation of S as

S-$12 S22 S23/ W r 1

\S13 S23 S33/ 0 $33 /’2 r3

Then the three dimensional case of Raghunathan’s theorem [5, p. 160] says
that for any matrix T of a ternary positive definite form there exists a matrix
U with integer entries and determinant +1 such that S T[U] has Jacobi
transformation as in (1.5) with

S33W9fit and rl, r2, r3E[--1/2, 1/2]. (1.6)
Raghunathan’s assumption that the determinant of S be 1 is easily removed.
There are many versions of the reduction theory of positive definite quadra-
tic forms, but Raghunathan’s seems the most convenient for our purposes.
Again, it is no loss of generality to assume (1.6) since Z3(S, p)= Za(T, O) if S
and T are related as above by an integer matrix of determinant +1.
Our main result is"

Z3(S, 1)>0 if +log -> 1.9633 and (1.6) holds,

(1.7)

Z3(S, 1) < 0 if + log <- 1.9443 and (1.6) holds.
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The cut-off band here has a width of .019 which does not compare well with
the width of .002 in (1.4). It does not seem to be easy to narrow the band
appreciably in (1.7). Perhaps a computer could improve the situation. We
used only an HP-45 in the following calculations. The ALGOL programs
required for such calculations have been developed by R. Tetras, cf. [11].
The proof will be carried out via the generalization of the Selberg-Chowla

formula to be found in [7, p. 480]. Section 2 contains the preliminary
formulas and estimates. The strip where the sign of Z3(S, 0) is undetermined
is first established roughly (in Section 3) and then narrowed by use of better
estimates over the rough strip (in Section 4).

Since Z3(S, O) has a simple pole at O 3/2 with positive residue, it follows
from (1.7) that if S is such that

+ log > 1.9633,

then Z3(S, O) has a zero in the interval (1, 3/2). Consequences for the
Dedekind zeta function are yet to be considered.
One might ask whether similar results hold for n-ary quadratic forms. The

answer to this question is "yes". For example, we show in [10, Theorem 1]
that given p in the interval (0, n/2), there exist positive n-ary quadratic
forms S such that Z,(S, 0)>0. There are also S with Z,,(S, p)<0 or =0.
The results of [8] and [9] are more precise. They involve ms defined by
ms =min{S[a]la eZn-0}. For example, if det S= 1, 0e(0, n/2), and both

1 (r(0+ 1)) TM l(F(n/2-O+ 1))ms< and ms-l<--
7r 7r 2

then Zn(S, 0)>0. Such results are still weaker then (1.7) for n 3. But it
does not appear to be easy to generalize the proof of (1.7) to arbitrary n.
Again a computer might help for small n.

2. The Bessel series expansion of Epstein’s zeta function

Let us first recall some notation from [7, p. 479]. If S is a 3 x 3 positive
definite symmetric matrix, we write the block "Jacobi transformation"

Here

$12 52 ,] 52

,--(; 01),
$2 is a 2 x 2 positive definite symmetric matrix,

o (ql) s tS12 s11- Sl[tS12],
q2

(2.1)



4 A. TERRAS

And we write the Jacobi transformation of S2 as

0)I 01\s23 s33/ s33 P 1
(2.2)

with p ss23 and w s22-s-s3. Finally, the Jacobi transformation of S
is

S--Is12 s22 s23/ w ql 1 (2.3)
\S13 S23 $33] 0 S33 Pql + q2 P

It follows from (1.6) that, upon replacing S by S[U], with a suitable integer
matrix U of determinant +/-1, we may assume

$33-< 4w/3 <- 16t/9 and p, Pql+ q2, ql [-1/2, 1/2], (2.4)

without changing the value of Z3(S 1).
We can now recall the necessary results from [7]. Let (s) be the Riemann

zeta function, F(s) be the gamma function, Ko(s) be the modified Bessel
function of the second kind. Set

A(S, 0)= -F(o)Z(S, 0).

Then formulas (2.2) and (2.3) of [7, pages 479-480] yield

A3(S, 0)= A2($2, 0)+ IS21-1/2 Al(t, 0-1) + H1,2(5, 0), (2.6)

where IS21 denotes the determinant of S2 and

H1,2(S, 0) [S1/21 E exp [27ri(bql + cq2)a]
aZ2-0

(b,c) Z 0

(Staz-/2[]) gl- (27r[al /S
It is easy to see that the right-hand side of (2.6) has a removable singularity
at 0 1 and a simple pole at # 3/2. This is analogous to the situation for
Z2(T, 0) at 0 1/2 and 0 1 [2, p. 366].
The next step is the evaluation of the sum of the first two terms on the

right-hand side of (2.6) at 0 1. Suppose that f(o) is a meromorphic
function with a pole at 0 1. Define k(f(o)) to be the constant term in the
Laurent expansion of f(o) about 0- 1. Then by (2.6) we have

A3(S, 1)= 7r-IZ3(S, 1)
](A2(S2, o))-t-IS21-1/2 k(A(t, O-1))+na.a(S,1). (2.8)

And using [7, pages 479-480], one obtains

Az(S2, 0)= A1(s33, 0)+ s/2Al(w, O- 1/2)+ H1,1($2, 0).
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Thus we have

k(A2(S2, O))=(Trs-d)---+s 1/2))+H1 ($2, p),

where

H,,,(S, p)= s-/ (WS33) 1/4-0/2
aeZ-O
bZ--0

(ab-1)x/2-’ exp (2,tripab)Kl/2_o (2,rr f-3 [ab])
Using facts about ’(s) and F(s) to be found in Abramowitz and Stegun [1,
pages 258 and 807], one sees that since Al(W, O)=(’n’w)-F(O)K(2O), we
have

k(Aa(w, p- 1/2))= w-1/Z(v/2-1og (2x/Trw)),
where V is Euler’s constant. Therefore

k(A2(S:,p))=s,rr/6+lS2[-m[y/Z-log(Zx/--w)]+H,l(S2, 1). (2.9)

Again facts about zeta and gamma on the above-mentioned pages of [1]
show that

k (aa(t, p 1) V/2 + log (x//27r). (2.10)

Finally combining the last six formulas yields

r-’Z3(S, 1)= ISz]-/2 {v-log 47r

+g +log +H1,1($2, 1)+H1,2(S, 1). (2.11)

We have also used the fact that ISzl ws33.
Our goal is a result on the sign of Z3(S, 1) and the main tool used will be

(2.11). One has

V log 47r 1.953808582. (2.12)

It remains to estimate IS21112 HI,I(S2, 1) and IS2[ 1/2 H1,2(S 1). An estimate
for the former can be derived as in [2, p. 367, Theorem 3] or [3, p. 130,
Theorem 4]. We include a slightly different proof in this section for
completeness and as an introduction to the methods which will be used in
the next section to estimate [S211/2 H1,2(S 1). The estimates we use are
somewhat easier to obtain, involving only the Bessel function K/z(z), which
is essentially an exponential function, rather than the Bessel function Ko(z).

Proceeding with the estimates for IS21/2Ha,(S2,1), first note that



6 A. TERRAS

[1, p. 444, formula 10.2.17] gives

K1/2(z)-- z e-z"

Thus, by (2.9),

IS2] 1/z Ha,I(S2, 1)=2 ’. a-1 cos (2,n’pab)exp (-2r 3w3 ab).
a,b:

(2.14)

Then, using (2.4) and the formula for the sum of the geometric series,

IS=[/ IHa,(Sz, 1)1-<2 a-[exp (Trx/-a)- 1]-a.

Now

2 [exp (rx/a)- 1]- <2{1 +[exp (5-trx/)- 1]-1} exp
a---5

x [1 -exp (-’n’x/)]-1

2[exp (5,rrx/) 1]-a[1-exp (-,n’x/)]-x,
which is a negligible quantity. And the sum of the remaining four terms
yields the estimate

1S21m Ina,x(S2, 1)[ < .0087313. (2.15)

Using an idea of Low we can get an even better upper bound for
Is=l/ H,(S=, 1). One considers two cases separately. The first case is that in
which 1/4 -< Ipl-< 1/2. This implies cos (27rp) < 0.

Therefore

ISI/H.(S,I)<-2 Y. a-exp -27r ab +2 2 exp -27r
a2 b2
bl

Methods similar to the proceeding yield

11/2,,a,(Sz, 1)<.0000755 if 1/4<1p1<1/2 (2.a6)

The remaining case concerns p such that Ipl < 1/4. By (2.2), in this case
w > 15s33/16. Thus the methods used to obtain (2.15) give the better result

1521 /= n,(S=, )<.0045753. (2.17)

The last estimate holds for all p.



REAL ZEROES OF EPSTEIN’S ZETA FUNCTION 7

One has, in general,

]S2l 1/2 IH1,1($2, 1) --<2 Y a-1 exp (-2r 33 ab)
a,b>l

2 __>1 a-a [exp (27r 3w3 a) 1]-

It follows, for example, that

Is=l "= 1)1 < .0000070

This last estimate will be of use in Section 4.

(2.18)

if W/S33 --> 4. (2.19)

3. The estimate for H1,2(S, 1) and a weak version of the main theorem

It only remains to estimate IS21t/2IH,2(S, 1) I, in order to use (2.11) to
examine the sign of Z3(S, 1). From (2.6) it follows that

Now

so that

Thus

IS=lin IH,2(S, 1)[ _<2 ., Ko (2rtl/Za /S[]) (3.1)
(b,c)(o,o)

S.:( 0)[1 0]$33 19 1

sl--(W S;)[Io

c (3.2)
W $33

And it follows from the integral formula for the modified Bessel function of
the second kind [7, p. 478, formula (1.4)] that

Ko(z) < Kin(z) /-_. e for z positive. (3.3)
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Combining the above three results gives

l$1n IHI,(S, 1)1-<
(b,c)#(0,0)

a-m(f(b, c))-1/4 exp (-2.ira’,If(b, c)), (3.4)

where

f(b, c) t__ (b pc) + t_j_ c"
W $33

Ignoring the a -x/z and using the formula for the sum of the geometric series
yields

Is=l "= [HI,(S, 1)1-< (f(b,c))-l/4(exp (2"n’/f(b,c))- 1)-x (3.5)
(b,c)(0,o)

It might be worthwhile to retain a-/ in the estimate by using the actual first
few terms in the sum over a. However comparison of the first few terms of
the series (3.4) and our final result Proposition 1 convinces one that the
error made is negligible.
To estimate (3.5) we split the sum into four parts"

E Y E Y Y=2,
bO,cO 2 bO,c#O 3 b=O 4 c=O
Ib I/lc 17 Ib I/lc 1<7

To estimate -’,1, first note that the minimum of f(b, c) on the line segment

{(b, c)liZ b+c k, b>0, c>0}

$33
k +- (p+ 1)2

as is easily verified by freshman calculus. Using inequalities (2.4), it follows
that the minimum of f(b, c) on the line segment {(b, c) Rz b + c k, b > 0,
c>0} is >_3kZ/16. The same result holds for f(b,-c) on the same line
segment, upon replacing, p by -p.

It follows from the above considerations that

E 8(3)-114 Z k/2 exp
w

-1
k7

+ [ex. -1 } 5 ex.
since

k 1/2 __< 2k/7 +- <-- exp (2k/7).
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Thus

1<8e23-1/4 [exp (72x/)- 1]-l[X-exp (72- 7rx/)]-1<.0000003.
Next we estimate 2. First note that if b > c/2>0, then Ib-pcl >-b-c/2.

Thus, by (2.4), if b > c/2 > 0,

3
f(b, c) (b pc) + c > b- + c: b:

w s33 - -bc+c).

And if 0<b c/2, then [(b, c) 9c/16. Thus one obtains, upon calculation,

< .0192982.
2

We turn to the estimation of 3. This is much easier:

4(3)-/2 c-1/2[exp (c)- 1]-3 cl

which is negligible. One gets the estimate

< .0210669.
3

Only the estimation of e remains. Now

2 2 3-1/4 b-1/2[exp( b)- 1]-.
4 bl

Again the error made by considering only the first five terms is negligible.
And we thus obtain the estimate

< .0093823.
4

Adding the estimates (3.6) through (3.9) yields"

PROPOSITION 1. IS=l ’= In,=(S, 1)1< .0497476.

This proposition leads to a weak version of the main result (1.7).

PROPOSITION 2.

Z3(S, 1) < 0

Z3(S, 1) > 0

if S satisfies (2.4) and --d + log -< 1.899485.

if S satisfies (2.4) and - log >_ 2.012288.

(3.6)

(3.9)

(3.8)

(3.7)
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Proof. From (2.11), (2.12), (2.17) and Proposition 1, it ollows that

Z3(S, 1) < r IS21-1/2 -1.899485 +g +log

And it follows from (2.11), (2.12), (2.15) and Proposition 1 that

Z3(S, 1) > 7r ISz1-1/z -2.012288 +g +log

This concludes the proof.

It is possible to use methods similar to those preceding to obtain a much
simpler estimate for ISI 1/2 IH1.2(S, 1)1. Unfortunately this estimate seems to
be too far off for our purposes in this section and the next.

PROPOSITION 3.

IS2I 1/2 IH1,2(S, 1)1 < 4M-1/Z[exp (2rM)- 1]-111 -exp (-2rM)]-where M tl/(w + 9s33/4)-1/.

Proof. By the methods used to estimate Y’,I, we obtain

IS211/2 [Ha,z(S, 1) <--4M-1/z Y kl/Z[exp (27rMk)- 1]-1
k-i

< 4M-1/2{1 +[exp (2rM)- 1]-1} Y, k exp (-2rMk)
k_l

4M-1/a[exp (2rM)- 1]-1

x exp (2rM) exp (-2rM)[1 -exp (-2rM)]-2

by the formula for the derivative of the geometric series. This proves the
proposition.

We make one final comment on the estimates of this section. One might
question how big the error is due to replacing K0 by K1/ via (3.3)
Comparing values of the first few terms of series (3.1) and series (3.4) soon
convinces one that not too much is lost. However, the combination of this
error with that coming from ignoring the a-vz in (3.4) no doubt adds up.

4. Proof of the main result--formula (1.7)

We wish to improve Proposition 2 of the last section by narrowing the
band of indecision between 1.899485 and 2.012288. We expect the cut-off
point to be /-log 4r which is approximately 1.953808582. This was the case
for Z2(T, 1/2).
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Our first result is"

TI-IEORE 1. If S satisfies (2.4) and

+ log --> 1.9633,

then Z3(S, 1) > 0.

Proof. We shall consider two cases. The first is that in which S satisfies
the hypotheses of the theorem and w/s33 > 4. In this case we have a good
estimate (2.19), for [SI1/IHI,I(S, 1)1. We need a better estimate for
IS[v 1H1,2(S, 1)[, in the event that W/S33 4 and thus t/s33 3 (by 2.4)). One
proceeds as in Section 3, using (3.5) and breaking up the sum in (3.5) into
four parts:

b0,c#0 2 b#0,c#0 3 b=0 4 c=0
Ib I+[c I-->6 Ib I+[c [<6

Then, as in the proof of formula (3.6) one obtains

-<4 2(-) TM [ ( 12) ]-kv2 exp 2rk -1

<4
(25)1/4 [exp (12"n" 12) ]- [ ( )]-12

-1 ez 1-exp -27r
12

which is negligible.
Next we estimate z. This time, in analogy to the proof of (3.7), if

b > c/2 > 0, we have

f(b,c)= t--(b-pc)2+>- b- +3c2=(b2-b’c+c2).
W S33

And if O<b<_c/2, then f(b, c)>-3c. Upon calculation, one finds that
2< .000044.
The new estimate for Y3 is obtained similarly to (3.7):

E -< 2(3)-/4 2 c-X/2[exp (27r/c) 1]-x < .0000286.
3

The estimate for is still (3.9).
Adding up the estimates for through 4 yields

IS21 v2 IH1.2(S, 1)1 <.0094545 if w/s33 >- 4. (4.1)
It follows from (2.11), (2.12), (2.19), and (4.1) that

Z(S, 1)> ISI- -1.9632701+- +log

if 1,/S33 4. This proves the theorem in case 1.
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Next we consider the case that S satisfies the hypotheses of the theorem
and in addition w/s33 < 4. This implies that t/w >6.2472725.

In this case the only estimate we can use for ISal 1/z [HI,I(Sz, 1)1 is (2.15).
We get the estimate for ISaIin IHI.2(S, 1)1 in the usual way, using (3.5), and
breaking up the sum in (3.5) into four parts"

b#0,c#0 2 b0,c0 3 b=0 4 c=0
Ibl+lcl5 Ib1/1c1<5

The same reasoning that led to (3.6) gives

--<4 (1.561818)-1/4 Z kl/2 [exp (2"tr. k,/1.56188)- ]-,

which is negligible.
To estimate 2, note that if b > c/2> 0, then

c2f(b, c) (b pc) + >- (6.2472725)(bz- bc + c).
W $33

And if 0< b <-c/2, then f(b, c)->-](6.2472725)ca. It follows that in this case
22 < .0000004.
One finds that

Y --<2(1/4)-x/4(6.Z472725)-v4 Y c-m[exp (r/18.7418175c)- 1]-3 cml

< .0000017.
Also

_< 2(6.2472725)-x/4 Y c-1/a[exp (27r/6.272725c)- 1]-1 < .0000002.
4

Adding up the estimates for I through 4 gives"

(4.2) [Sal I/ [H,a(S, 1)I<.0000023 if S satisfies the hypotheses of the
theorem and w/s33 < 4.

It follows from (2.11), (2.12), (2.15) and (4.2) that

Z3(S, 1) > 7r ISaI-in -1.96255 +g +log

if S satisfies the hypotheses of the theorem and w/s33 < 4. This concludes the
proof of the theorem.
Our next problem is to consider the negativity question. We shall prove"

THEOREM 2. If S satisfies (2.4) and

6
+ log _< 1.9443,

then Z3(S, 1) < 0.
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Proof. As in the proof of Theorem 1, we consider two cases, the first
being that in which S satisfies the hypotheses of Theorem 2 and W/$33 4.
We also note that, by Proposition 2, it suffices to assume

+log

lies in the interval (1.899485, 1.9443).
In the case that w/s33-4 we can use (2.19) and (4.1) again. It follows

from these inequalities combined with (2.11) and (2.12) that

Z3(S, 1)< 7r IS21-1/2 -1.9443471 +- log if >_4.
$33

This completes the proof of Theorem 2 in case 1.
Next we consider the case w/$33 < 4 and now we need to use the added

assumption that

+ log > 1.899485.

This implies that t/w > 5.4990475.
In this case the only estimate we can use for IS211/2 H1.($2, 1) is (2.17).

We obtain the estimate for Is=l IHI,(S, 1)l in the usual way, as in the proof
of (4.2). The result is

IS2[ ,2 [H,2(S, 1)l < .0000056

if
w 7raW3<4 and g +log >1.899486. (4.3)
$33

It follows from (2.11), (2.12), (2.17) and (4.3) that

Z3(S, 1) < - ISI-2 -1.949227 +- +log

if
w 7raW3<4 and g +log > 1.899486.
$33

This completes the proof of Theorem 2.
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