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TOEPLITZ OPERATORS ON THE BALL WITH
PIECEWISE CONTINUOUS SYMBOL

BY

GERARD McDONALD

1. Introduction

Let B denote the open unit ball in C and let AZ(B) denote the Bergman
space of square-integrable holomorphic functions on B. The Toeplitz
operator with symbol q, T, is defined by T,f=P(qf), f AE(B), where q is
in L=(B), and P is the orthogonal projection of LE(B) onto AE(B). Let E be
a (2n-D-dimensional real hyperplane in C intersecting B. The set B \E
then consists of two components, which we will label B+ and B_. We define

HC(B) {q L=(B) q IB+, ql B_ are uniformly continuous}.

The main purpose of this paper is to compute the essential spectrum of T
for ( in HC(B), and to show, in particular, that it is connected.
Note that HC(B) is a closed subalgebra of L=(B), and that we can write

He(B) {(f, g)" f e C(B+), g C(B_)}..

Our interest in HC(B) stems from the fact that in many ways it seems like a
reasonable analogue of the algebra PC on the unit circle T. Recall that PC
is the closed subalgebra of L(T) consisting of piecewise continuous func-
tions on T, and that q# is the curve obtained by joining left- and right-hand
limits of q by a line segment at points of discontinuity. For details, and a
proof of the following, see [3, pp. 20-23].

PROPOSITION 1.1. If q and d are in PC, then"
(i) T,T,-T,T, is compact.
(ii) T is Fredholm if and only if q# does not pass through the origin.

Here T denotes the Toeplitz operator acting on the Hardy space HE on the
circle.

We will show that this proposition remains essentially true for q and k in
HC(B). We point out that 1.10) depends on the fact that we can approach a
point of discontinuity of a function from only two directions on T. This
property is retained by the functions in HC(B). For suppose h is in E and
q =(f, g) is in HC(B). If we approach through B/, then lim q(z) =f(),
and if we approach through B_, then lim q(z)= g(X).
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Although everything we do is true for any hyperplane, we will assume

E {(Zl z,) C"" zl is real}

to simplify notation and some of the constructions. We will also assume
n -> 2, the case n 1 being much like the situation for PC on the circle. Let

B+--{(Zl,...,z,)B" Imzl>0}, B_={(z,...,z,)B" Imz<0}.

Denote E fq OB by
Let (A2) denote the set of bounded linear operators on A2(B), and 9t

denote the ideal of compact operators in (A2). Recall that the operator S
in (A) is said to be Fredholm if the element S +t is invertible in the
quotient algebra (AZ)/. If S is Fredholm then dim ker S and dim ker S*
are finite, and the index of S, ](S), is defined by

](S) =dim ker S-dim ker S*.

The essential spectrum of S, ess r(S), is the set of all h in C such that S"
is not Fredholm. The norm of S +t in (A)/t will be denoted by
The following proposition summarizes the basic properties of Toeplitz

operators which we will need in this paper.

PROPOSITION 1.2.

(0
(ii)
(iii)
(iv)
(v)
(vi)
(vii)

If q, q L(B and a C, then"

T+, T,+T,, Te =( T,)*, aT= T,.
T is the identity operator.

I1% / t11-<lim_ supl>lzl>
For in C(B), TT,-T,t.

If q C(B), ess r(T) qg(0B), the range of q restricted to the boun-
dary of B.

Proof. The first three statements follow easily from the definition of a
Toeplitz operator. Proofs of (iv) and (v) can be found in [4]. Statement (vi)
follows from (v). For a proof of (vii), see [1] or [5]. (These last two papers
are basic, and should be consulted, as should [2] for the corresponding
results on the circle.)

,2. Main theorems

Let dV be the usual Lebesgue measure on B,

V(B) (r")(n

so that for f and g in B the inner-product is defined by (f, g)= [. f, dV, the
integral taken over B.

Let (C(/)) and 5E(HC(B)) be the closed subalgebras of (A:Z(B))
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generated, respectively, by

{T: o C(B)} and {T: o HC(B)}.

For A on OB we define x to be the closed ideal in (HC(B)) generated by
{T: e C(B),

LEMMA 2.1. (i) The algebra (C(/)) is irreducible and contains R.
(ii) (C(B))/R is *-isometrically isomorphic to C(OB) and hence has

maximal ideal space OB.
(iii) Each ideal x contains

Proof. See [1] for proofs of (i) and (ii). Since (C(B)) is irreducible and
is contained in (HC(B)), it follows that (HC(B)) is irreducible. Each
is a closed ideal in ,(HC(B)), and hence is irreducible. We must show
contains a non-zero compact operator. Let o be a non-negative continuous
function vanishing on a neighborhood of OB. It follows that T is compact [5,
p. 356]. Since

q IZI2 (TZl, zl),dV=

T is non-zero. We conclude that x contains all compact operators.
Denote the quotient algebra (HC(B))Ix by SEx, and the quotient map

from (HC(B)) onto SEx by x. The next proposition will be our basic tool,
and should be compared with [2, Theorem 7.49].

PROPOSrrION 2.2. Let dp be the *-homomorphism from (HC(B)) to
xoB) SEx defined by ,xo dPx.

(i) The sequence

(0) --> R ----> (HC(B)) ----> , )x
is exact at (HC(B)).

(ii) If q HC(B), then To is Fredholm if and only if dPx (T) is invertible in
x for all h in OB.

(iii) If q9 is continuous at , then x(T)= q().

Proof. Lemma 2.1(ii) implies that E(C(B))/ is contained in the center
of E(HC(B))/. We also know that the maximal ideal space of 5E(C(B))/
is B. Parts (i) and (ii) now follow from a general C*-algebra result [2, pp.
196-197]. Suppose (f, g) is in HC(B) and h OE. If is continuous at h
then f(h)= g(h), and we can unambiguously define (h) to be f()t) or g(h).
(From now on if h OB and we write (h), it will be understood that is
continuous at h.) To prove (iii) it is sufficient to assume (h)= 0. For e’> 0,
choose an open ball N(,k) about )t in B such that I1 N(h)lloo< e’. Let be a
continuous function on B such that q- 0 on a neighborhood of h contained
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in N(A), and q 1 on B \N(A). Let I and J be, respectively, the characteris-
tic functions of the sets N(h) and B \ N(A). By Proposition 1.2 we have

T, T,,+T,,j and

By Proposition 2.2(iii) we have x(T,j) x(r,o/)(I)x (Z,) 0, since tk e x.
Thus

since x contains . The proof is complete since

[IT**+II <- lim sup
e’---l l>lz {>s

Let r(qx(T,)) denote the spectrum of x(T,) in 5E. It follows from
Proposition 2.2 that for in HC(B),

ess cr(To) U cr(x (To))

EOREM 2.3. Let =(5 g) be in HC(B). e essential spectrum of T,
consists of {(): h OBOE} together with the closed line segments joining
f(h) to g(h), for each h in OE.

We postpone the proof of this theorem until the next section. 1 that
needs to be proved is that for h in OE, (x(T,)) is equal to the closed line
segment joining f(h) to g(h). The next theorem makes use of the fact that
each in HC(B) can be written as an ordered pair of continuous functions.
This should be compared with the proof of the corresponding result for PC
on the circle [3, p. 21].

THEOM 2.5. e algebra (HC(B))/ is commutative.

Proof. In view of Proposition 2.2, it is sucient to show that the algebra
x((HC(B))) is commutative for each h OB. If h OBOE then x is

evaluation at h, and the result is easy. Suppose h OE, and (f, fa) and
(g, g) HC(B). Further suppose that is chosen to be discontinuous

at . Then there exist constants a, , 0, such that a + is continuous
at h. us

a()+ () (a + O)(x),

and it follows that x((HC(B))) is generated by x(T,) and the identity.
Therefore x((HC(B))) is commutative. eorem 2.5 now follows im-
mediately.

COROLLARY 2.6. If and are in HC(B), then T,T,-T,T, is a compact
operator.
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3. The proof of Theorem 2.3

Let h be a point on dE, and suppose q (f, g) belongs to HC(B). We set
q =(f(h), g(h)). Thus q is constant on each half of the ball, and x(T)
x(T,), by Proposition 2.2(iii). The proof of Theorem 2.3 will be completed
by showing that the spectrum of x(T,) consists precisely of the line
segment joining f(h) and g(h). This is equivalent to the following lemma.

LEMMA 3.1. Let a, [3 C, and q (a, [3}. Then for X OE, x(T,) is
invertible if and only if the line segment joining a and [3 does not pass through
the origin.

We prove one half of the lemma immediately. Suppose the line segment
joining t and /3 does not pass throug[a the origin. Since aT,=T,, for a
constant a, we may assume a and/3 are both in the open right half-plane.
Thus there exists an e >0 such that lea- 11 < 1 and le/3-11 < 1, and hence
Ileq- 111o0 < 1. Since

the operator T, is invertible. Thus x(T,) is invertible.
Assume now that the line segment joining a and /3 passes through the

origin. We will now show that for each X on E, x(Tx) is non-invertible in
Ex. (Note that just showing T is non-Fredholm would only imply that there
exists some X on E such that x(T) is not invertible.) Let

Ap ={A=(A1,...,A,)eOE: Al=p},

and note that (_J Ap OE, the union taken over all p, -1--< p <--1. If p +1,
then of course Ap -{(p, 0,..., 0)}.

LEMMA 3.1. Let , Ix Ao, and let U be a unitary transformation of C
which leaves the z-coordinate fixed, and maps onto tx. There is a
*-isometric isomorphism W from dx ((HC(B))) onto d,(SE(HC(B))) such
that for q in HC(B),

W(x(T)) ,(T,) where q’ q U-.
Proof. The map D: -- qo U is an automorphism of HC(B), mapping, onto x. Considered as a linear operator on A2(B), D is unitary, and

To, D-TD. Standard arguments now yield the lemma.
The above isomorphism maps x(T,) onto ,(T). Thus if x(T) is

non-invertible for any in Ao, it is non-invertible for all in Ap. Nothing
like the above lemma holds if /z Ao, Ao,, and p p’. For this would
require a rotation of C" which maps )t to Ix, maps E onto itself (to preserve
HC(B)), and is unitary (to preserve A2(B)). No such map exists.

LEMMA 3.3. Given p, -1 <--p <--1, there exists a function f in HC(B) such
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that:

(ii)
(iii)

Tf is non-Fredholm.
(Tf) is invertible in , tx OB, : A.

(f q)(h) O,, e A,.
Rather than prove Lemma 3.3, we will state and prove an equivalent

lemma. First however let us see how Lemma 3.3 establishes the second half
of Lemma 3.1. It follows from Proposition 2.2(ii) that there exists )t’ in Ao
such that x,(Tf) is not invertible. By (iii) of the same proposition we have
x,(Tf) x,(T,). By the previous remarks, x(T,) is non-invertible for all
in Ao. Since OE [_J Ao, the second half of Lemma 3.1 is complete.

LEMMA 3.4. Given p, -1 <--p <--1, there exists a function f=(fl, fz) in
HC(B) such that:

(i) Tf is non-Fredholm.
(ii) f is non-zero on OB \E.
(iii) The line segment joining f(tz) and fz(tx) does not pass through O, for

I in OE\Ao.
(iv) fi(x) , fi(x) =/, x e A.
The equivalence of Lemma 3.3 and Lemma 3.4 is completely straightfor-

ward. We point out that the first part of Lemma 3.1 is needed here. It now
remains to construct a function f which satisfies Lemma 3.4. We will
consider the cases 1 < p < 1 and p +1 separately.
So let us assume -l<p<l and we may assume a and /3 are pure

imaginary with Im a > 0> Im/3. To simplify notation we will set p 0. It
should not be difficult to see what modifications have to be made in the
definition of f for other p. We define a map f* on T by

f*(ei) f*(O)

1 + 2-- (a- 1)0,

1 + 2a _2 (a + 1)0,

1+2(1-/3)0,
2

1+2/3+--(1+/3)0,

0_<0_<-
2’

<_0_<0,
2

We now define f= (fl, f2) in HC(B) by

fl(x + iya, z2 Zn) f*(COS-1 Xl),
for Im ya >-- O, and

f2(xl+ iyl, zz, z,) f*(-cos- Xx),

for Im Y -< 0. The range of both f* and f is the quadrilateral determined by
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the points 1, a, -1, and/3. Notice that for h in Ao, fl(h)=f*(cos-1 p) and
f2(h) f*(-cos-1 p), hence in particular for X in Ao, fl(X)= a, f2(X)=/3. It is
clear that f satisfies (ii), (iii), and (iv) of Lemma 3.4. We will now show that
T is not Fredholm.
Let A={(zl,..., z,)" Izl<l, z= z.-0}, define

L(A) {q L(B)" q is independent of z2,..., z,},

and let C(A) and HC(A) be the collections of functions in C(B) and HC(B),
respectively, which are independent of z2,..., z,. Note that f is in HC(A).
We will show that the adjoint of Tf has an infinite dimensional kernel.

Recall that an orthonormal basis for A2(B) is given by

ek =(’rr")-l/2[(n +ik’[)!] zk’

where k (k k,) is an n-tuple of non-negative integers,

Ikl=k+ ...+k., kl=kt.., k,t, z=zi z..
For each (n-1)-tuple k of non-negative integers we define A2(k) to be the
subspace of A2(B) generated by

{e,"/z (m, k), m 0, 1, 2,...}.

We have A2(B) A2(k), the sum taken over all k.

LEMMA 3.5. If q L(A) then"
(i) Each AE(k) is a reducing subspace for T.
(ii) If there exists e>0 such that q=-O for e<lzl<l, then each

T, A2(k) is a compact operator.
(iii) If q C(2x), then each T AE(k) is unitarily equivalent to a compact

perturbation of T, A2(O).

Proof. The application of Fubini’s Theorem to the integrals

(qe,, e,)= I qe., dV,

establishes (i). To prove (ii), let Ix =(m, k), u=(q, k) and write e. =c.z
and e c.z. If q is as in (ii), then a direct computation using Fubini’s
Theorem and polar coordinates leads to the inequality

I(T,e,, e,.,)l <- Ac,c,e"+’+2,
where A is a constant dependent on n, k and I1 11 , It follows that

I(Z,e., e)l<.
q

Therefore_TlA2(k) is Hilbert-Schmidt, and hence compact. To prove (iii),
let q C(A) and S, Z, A(O). For each non-negative integer m, identify
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rn and the n-tuple (rn, 0,..., 0), and let V be the unitary operator from
AZ(0) onto AZ(k) defined by V(em)=e, where /z =(rn, k). To show that
V-1T,V is a compact perturbation of S,, it is sufficient to assume q zl,

since polynomials in Zl and 1 are dense in C(A). We thus have

(V-TVe.,, e.,+O=(ze, e)

c(z, e)
cgc-l(ev, ev)

-1
CC

where (rn, k) and u (rn + 1, k). This last expression goes to 1 as rn goes
to . All other matrix entries of V-T,V are obviously O. Thus V-IT,V is a
compact perturbation of the unilateral shift. Since the above proof is valid if
k O, S, is also a compact perturbation of the unilateral shift. The proof of
(iii) is complete.

LEMMA 3.6.
pact for all k.

If qeHC(7) and q =-0 for’lzl--1, then TI A2(k) is corn-

Proof. Let I(r) be the characteristic function of the open ball of radius
1-1/r about the origin in C". Since q HC(zk), qI(r) converges in the sup
norm to 0. From

it follows that T,a)lA2(k) converges in norm to T,]A2(k). Since each of
the former operators is compact, we conclude T,[A2(k) is compact.

If belongs to C(), then ’(ei)=q(ei, 0,..., 0) belongs to C(T).
Minor modifications of the proof of Lemma 3.5(iii) show that T, A2(0) is
unitarily equivalent to a compact perturbation of T,, acting on Hz. Return-
ing to our function f we note that since p +1, f* is in C(T), and hence

g(re, zz, z,)= rf*(e)
is in C(A), although of course f is not, and g’= f*. By Lemma 3.5(i) we can
write Tf as a direct sum,

Tf=E Tfl AZ(k),

the sum taken over all (n- 1)-tuples k. It follows from Lemma 3.6 that

(,) T=Y. {T A2(k)+C}
where C is a compact operator on A2(k). Combining our previous remarks
with Lemma 3.5(iii), we see that for each k, TglA2(k)+C, is unitarily
equivalent to a compact perturbation of Tf. acting on H2. Now f* was
defined so as to have winding number 1 about the origin, hence j(Tf.)=-1
[2; p. 185]. It follows that j(TglA2(k)+Ck)=-I, and hence.

dim ker (Tgl A2(k) + C)*> 0.
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We conclude from (,) that ker T is infinite dimensional, and hence Tf is not
Fredholm. This completes the proof of Lemma 3.4. We should point out
here that Lemma 3.5(iii) is not true in general for p in HC(A), and in
particular is not true for q f.
We now consider the case p =-1. The proof for p 1 is analogous. As

before we construct a function f satisfying Lemma 3.4. Define f* on T by

(a-DO
"n" O<O<’n",f*(e’)=f*(O)=

(/3-1)0 -Tr<0 <_0,

and define f= (f, re) in HC(B) by

fl(X + iy, ze z,)= f*(cos- x)

for Im y --< 0, and

fa(x + iyl, Z2, Zn) f*(--COS-1 X)
for Im Y 0. It is dear that f satisfies (ii), (iii), and (iv) of Lemma 3.4.

For arbitrary q =(qg, q2) in HC(B), the previous work in this section
shows that the line segment joining q(A) and z(A) is contained in ess tr(T)
for in OE\(A tO A_). It is easy to see from the definition of f that the
interval (0,2) is contained in the union of these line segments. Since
ess tr(T) is closed, 0 is in ess tr(T). Therefore T is not Fredholm.
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