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MEASURABLE SUBBUNDLES IN LINEAR
SKEW-PRODUCT FLOWS

BY

RUSSELL A. JOHNSON

Introduction

The main purpose of this paper is to construct and discuss two ODEs and
one real flow. Our work is based on techniques of topological dynamics
developed by Furstenberg in [5]. These techniques also allow a discussion of
certain other topics, namely Bohr’s theorem, and a type of quasi-periodic
function considered by Sell in [16] (see also Brezin, Ellis, and Shapiro [2]).
To avoid confusion due to the number of topics considered, we give here

an outline of the paper, as well as an indication of why one might be
interested in the ODEs and the flow. In 1, we prove Bohr’s theorem using
Furstenberg’s techniques. In 2, we consider a certain irrational (Kronecker)
flow (K2,1) on the 2-torus K2. Let to. represent the position of to K2

after time under this flow. We construct a non-continuous function
R L2(K2, m) (m is Lebesgue measure on K2) and an analytic function b on
K2 such that "R is an antiderivative of b along orbits"; i.e.,

b(to s) ds R(to tot)-R(to) (toK2, tR).

The function b has mean value zero, but .’o b(to s) ds is not almost-periodic
(a.p.). the functions R and b are of fundamental importance in constructing
our three examples. In 2, we also consider Sell’s results.

In 3, 4, and 5, we treat the examples.
(3) Consider the analytic differential equations E:

1[ 0 -b(to t)]= b(to’t) 0
x (o e K, x R).

We view this collection of ODEs as "generated" by some one quasiperiodic
ODE E,, (too a fixed element of K2). The equations E induce a "linear
skew-product flow", or LSPF [13], [14], [15] on K2xR2. This LSPF has
interesting structure" the vector bundle K2xR2 foliates into measurable,
non-continuous, invariant, one-dimensional subbundles (3.3). Now, by Flo-
quet theory, non-continuous subbundles cannot occur for periodic ODE’s
(3.4). The point we wish to make with this example is that, if one is to
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184 RUSSELL A. JOHNSON

classify linear a.p. ODEs (i.e., "extend Floquet theory" to this case), then
the possibility of measurable subbundles must be taken into account.
(4) We construct a real flow (K3, R) (Ka is a 3-torus) which extends the

flow (K2, R) mentioned in 2. The flow (K3, R) is strictly ergodic (4.1, 4.7).
However, there are times tk-- 0 such that, if Tk is the time t map, then
(K, T) has uncountably many ergodic measures. In fact there is an analytic
function f: K3-- C such that the Cesaro means

1 fo(Tk)’(to, O)

diverge for a residual set of (to, p) K3, for all k >- 1 (4.8). Compare this with
the fact that, by strict ergodicity and [11, Chapter 6, proof of Theorem
9.05],

lim
1 Io f((0, o)" s)

t---oo

exists (uniformly in (to, p) in fact). Thus "existence of integral means does
not imply existence of Cesaro means".
(5) This example is closely related to the flow of 4. Consider the

ODEs Eo, given by

1[ 0 -l-b(to t)]= Al+b(to.t) 0
x (toK2, xR2),

where A is a certain real number (see 4.2). The equations induce an LSPF
on K2xR2. It turns out that the LSPF (K2xR2, R) admits no invariant,
one-dimensional subbundles. However, the integer flows (K2x R2, T) (Tk is
a time-t map, t as in 4) do have measurable, T-invariant, non-
continuous, one-dimensional subbundles, and these foliate K2x R2. Thus, if
one studies only the real flow (K2x R2, R), and none of the corresponding
integer flows, some of the complexity of the flow is not observed.
The author would like to thank the referee for many valuable suggestions

and criticisms concerning the organization of this paper.

1. A proof of Bohr’s theorem

1.1. DEFINITION. Let 1) be a compact Hausdorff space, and let T be a
topological group (we will consider only cases where T-R or T Z). A
flow (1), T) is defined by a continuous map : l’lxT- 1): (to, t)- to.

satisfying (i) to idy to; (ii) to (tlt2) (to tl)- t2 (to lI; t, t, t2 T). A set
S c fl is invariant if S S. {to. t[to S} for all T. The flow (1), T) is
minimal if the only nonempty closed invariant subset of 1) if 1) itself.

Let g" R-R be an almost-periodic (a.p.) function with mean value bo;
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lim
1-- (s) ds bo.

Bohr’s theorem states that o/(s) ds-bot is bounded iff /(s) ds is a.p.
[11].
We will state and prove a slight generalization of this result. Let be the

hull of b; i.e., the uniform closure in C(R) of the set of all translates
,(t)=b(t+r)). Define a flow on by translation; i.e., o r =o, (o e, re
R). Consider the function b" --+ R: b(o)= o(0) (evaluate o at 0 R). Let
Oo denote the function/. Then b(oo t)=/(t). Thus, if R is mapped into
via t--Oo.t, then b may be thought of as an extension of b to .
Moreover, it turns out that may be given the structure of a compact,
metric abelian topological group such that (i) --+ o, maps R onto a dense
subgroup of ; (ii) the map (o, t)-+ o. is group multiplication [11, p.
394]. Let m be normalized Haar measure on . It is well known that the
mean value bo of/ equals 5ab(o)dm(o) [11, p. 510].
The following result implies Bohr’s theorem.

1.2. THEOREM. The following are equivalent.
(a) There exists tOo e f such that I’o b(too" s)ds- bot is bounded.
(b) There is a continuous function S" R such that

S(to t)- S(to) b(to s) ds bot (o ).

We need only prove (a) (b). The proof will use 1.3 and 1.4. We can and
will assume that bo 0. Choose a real ho> 0 so that

(A) Xo b(too" d) ds <27r.

1.3. Let E=IS1; we denote points of E by (o, p). Fix (o, p), with
p e. Define a flow (E, R) (which depends on ho) by

( >(w, p)" exp rp + ho b(o s) ds

Then (to, p)- t=(to t, g,(to) p), where gt(to) =exp (iXoIo b(to. s) ds). The
flow (E, R) is an example of a real cocycle flow (e.g., [12]).
The next lemma applies to any cocycle flow. See also [3, Lemma 1.9].

1.4. LEMMA. The flow (,, R) is minimal if and only if the equation

or(to, t)
[g,(o)]" (t R, o a)

has no continuous solution tr, Itr(to)l a non-zero constant, ]’or any n7 O.
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Proof. If [g,(to)]" =tr(to. t)ltr(to) for all t, to and some n#0, then it is
easily seen that f(o,p)=r(o)t9" is a continuous, non-constam function
which is invariant: ((, ). t)=(, ). Hence (E, R) is not minimal. Sup-
pose (E, R) is not minimal, and let F# K be a non-empty dosed invariam
set. Let XF be its characteristic function. Expand Xr in a partial Fourier
series: X,#o()-". Since X is not constant, there exists n#0 such
that ()#0 v-a.e. Since XF((,p)" t)=XF(,p), we obtain
a,(- t)[g,()]-" () T-a.e. for each ed t. e proof that () is a
non-zero constant T-a.e. and that is equal to a continuous function T-a.e.
mi the argument in [3, pp. 17-18], and is omitted. Let be continuous
with v-a.e.

1.5. Proof of 1.2. The flow (E, R) is minimal iff eve orbit {(w, p).
R} is dense in E. By (A), no orbit of the form {(o, O)" t[ R} can be dense
in . By 1.4, then, there is a continuous function on fl and an integer
k 0 such that

( Io(*) exp ihok b(. s) ds =g(" t)
( , R).

()

F, and let Q={.t[tR}. Define f:RRand s:QR
by

f(t) ( t)l(), s(. t)= o b( s)ds.

We need oNy show that s is uniformly continuous on , since then the
continuous extension S of s to satisfies 1.2(b).

So, let O<e< be given. Choose eo>O so that le-el<e0 and
Ix-yl< imply that Ix-yl<. Let d be a metric on . Since is
continuous, there exists > 0 such that

d(& t2, tS t)<,3= lf(t2+t)-f(h+t)l<eo forall tR.

Then s(go. (t2+t))-s(tS. (tl+t))=2rL +nl(t), where L is an integer and
Irll(t)l<e <Tr for all teR. Let t,+=n(t2-h)+h (n=2,3,...). By induc-
tion,

Is(" t+x)- s(. tl)l n(27r ILl- ) if L# 0.

But then s is unbounded, a contradiction. So L =0, and s is uniformly
continuous.

2. The function R

The construction is a simple modification of one due to Furstenberg [5, p.
585]. Let a Y,= 2-ok, where vl 1, Vk+l 2ok + Vk + 1. Then a is irrational
(its binary expansion is non-repeating). Let nk 2"; then

nta [na] 2"-"’<2"2"-"+1=2-%
=k+l
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Let m =-[na], and let n_k nk, m_ m. Then

(a) [nka + mkl < (x/)-I"kl-I"kt (k Z-{0}).

For 0--< 01, 02< 1, define a square-integrable function R by

1
R(01, 02)" - exp (2wi(nk01 + ink02)).

k#0

Then R is real; extend R to the plane so as to be 1-periodic in 01 and Oz.
2.1. PROPOSmON. There is no continuous function R" [0, 1][0, 1]--* R

such that R R a.e.

Here "a.e." refers to Lebesgue measure on [0, 1]x f0, 1]. We do not
require that R have a doubly-l-periodic, continuous extension to the plane.

Proof. Suppose R R a.e. where R is continuous on [0, 1] [0, 1]. For
fixed 02, consider the function R02(O0=-R(01, 02). We claim that the Fourier
series of R02 is

102 kO
e2rim

ik
e2irko.

To see this, let

Note that

aj(02) R(01, 02)e-2=ijl dO.

a(Oz)e-2" dO2 /(01, 02)e-a=’l+t) dO1 dO2

1
if ] nk and mk for some k

otherwise

Thus
(

(02) t] e2=’= if ] n, for some k

o otherwise

Here 8.. 0 if j # n, and 8,. 1 if ] n. Now Roqe2ii’, where

--2ii0x 1
e2imkO2q Roe dO ai(02)

This proves the claim.
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Now let 02 0: the function Ro is continuous on [0, 1] with Fourier series

1
e2rin01.

This is a contradiction because the Cesaro sums of this series diverge at

0 0 (see [17, Chapter III, Equation 2.22]).

2.2. DEFINITION. For each li, let

Gt(01, 02)=R(Ol+Ott, 02+t)-R(01, 02) (-00<01, 02(00).

2.3. PROPOSrroN. For each ER, the function G,(01, 02) is equal a.e. to
an analytic function which is 1-periodic in 01 and 02.

Proof. Consider the Fourier series

k’o "i [e2i(n+m)t_l]e

of GT. By (B) and the uniform continuity of x -- e2i’, there exists M M(t)
such that, for large Ikl,

1
[e:i(""+")- 1]_< M(x/)-I"l-I"

Hence [1, Chapter I, 25] the Fourier series is that of an analytic function.
Clearly G, is 1-periodic in 01 and 0.
We write G, for the analytic function in 2.3, as well as the function of 2.2.
Let

G,(01, 0)
b(01, 02) lim

-0

1
mk)e2’rri (nO +mkO2)

An argument like that of 2.3 proves

2.4. PROPOSIO. b is analytic and 1-periodic in O and 02.
Obsee now that R, Gt, and b all define functions on K2, e.g. if

(e2i, e

the mapping R(O, 02) is well defined. We denote the functions induced
on K2 by R, G,, and b, also. Define an iational flow (K2, R) by

0 (e2i(O+at), e2i(+t)),

where is as above. Let m be Lebesgue measure on K2. Obsee that, if we
fix and compute the Fourier series of the function b(. s)ds
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(using-term-by-term integration), we obtain the Fourier series of R(to. t)-
R(to). Hence, for each t,

R(to" t)-R(to) b(to s) ds (= Gt(to))

2.5. PROPOSITION. The function b is analytic on K2 and has mean value
zero, but o b(to. s)ds is unbounded (i.e., is not a.p.) for all to K2.

Proof. Write (t. R)(to) R(to t) (to K2, R). Then t. R -R is equal
to the function

Gt" to b(to s) ds

in L2(K2, m). Let bo be the mean value of b. Then

lim
1 Io b(to" s) ds bo

Itl
uniformly in to.

Hence bo limltl__,oo G,/t liml,loo (t. R-R)/t in L2(K2, m). But then, letting
I1 refer to the norm in L2(K2, m), we have IIRIh-IIt" RIh>-lbotl/2-11RIl

for large [tl, a contradiction unless bo 0. So b has mean value zero.
Next, suppose ’o b(too" s) ds is bounded for some too. Then (1.2) there is a

continuous S such that (t. S)(to)-S(to)=$’ob(to" s)ds. It follows that
It. (R-S)]-[R-S]=O m-a.e. Hence R-S is a measurable function on
K2 which is invariant with respect to the irrational flow (K2, R). So R-S is
constant m-a.e. [11, p. 468], [6, p. 25]. This contradicts 2.1.

We now give another proof that [.’o b(to s) ds is unbounded for all to K2.
This proof yields a little additional information (2.10(a)) about R. The proof
will use 2.6-2.8. assume for contradiction that, for some tool),
’o b(too s) ds is bounded.

2.6. PROPOSITION. Let A ={h Rlthe function r(to)= eixR(’) is not equal
m-a.e, to a continuous function}. Then A is residual in R.

Proof. By 2.1, there is no continuous function/ on Ka such that/ R
m-a.e. Hence we may apply word for word the proof of Proposition A1, p.
83 of [3], except that "the interval [0, 1]" must be replaced by "the square
[0, 1]x[0, 1]".

2.7. Let A,={eRle"x() is not equal m-a.e, to a continuous
function} (n an integer). Then, by 2.6, A, is residual in R for all n:0.
Therefore, we can choose Xo e ,o A, such that Io o b(too" s) dsl<2r for
all e R.

Define g," K2-- S by

( )g, (to) exp iho b (to s) ds (to K2, R).
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Let r(to)= e’xa(’). Since R(to. t)-R(to)= b(to. s)ds m-a.e., one has

gt(to) r(to t)/r(to) m-a.e. (tR).

Let K3"- K2 S1. Define a flow (K3, 1) by

(to, p). t=(to" t, gt(to)" p) (toK2, pS,tR).

2.8. PROPOSITION. The flow (K3, R) is minimal.

Proof. We use Lemma 1.4. We must show that the equation

[g,(to)]" o’(to t)ltr(to)

has no continuous solution o- for any n 0. Suppose tr is a continuous
solution for some n0. Then r"(to)/tr(to)= r"(to, t)/tr(to, t) m-a.e, for each

R. But then r"/tr is a measurable invariant function for the irrational flow
(K2, R); hence r"/tr is constant m-a.e. This contradicts the fact that )toe
f"l,oA,, (see 2.7).

2.9. Second proof that ’o b(to s) ds is unbounded (to K2). We chose o
so that

.o b(too" s) ds <2 for all R.

But then no orbit {(too, 0)" tit R} of the flow (K3, R) could be dense in
K3. This contradicts 2.8.

2.10. Remarks. (a) We can now improve 2.7 by showing that there is
no :0 for which eixR(’) is equal m-a.e, to a continuous function. For,
suppose h : 0, and suppose eixR(’ is equal m-a.e, to a continuous function

rx (to). Then

(Iorx (to t)/rx (to) exp iA b(to s) ds for all to, t.

Fix t K2. By [4, Lemma 6.7], we see that . (.’o b( s) ds ct + B(t), where
B(t) is a.p. However, by 2.7, the mean value of b is zero. Hence c =0, and
*o b(ff, s)ds is bounded. This contradicts 2.7.

(b) The function R cannot be essentially bounded. To see this, let O be a
strong lifting of L(K2, m) which commutes with translations [7]. Let R
p(R); then R(to. t)-R(to)= b(to. s)ds for all to, (the proof of this uses
properties of O listed on p. 64 of [7]). From the definition of strong lifting, R
is bounded, hence o b(to. s)ds is bounded. This contradicts 2.5.

Let us now consider how our functions R and b are related to Sell’s
examples [16]. He constructs functions /, / on K2 and an irrational flow
(K2, R) such that

(i) R is in C2(K2) but not C3(K2);
(ii) / is in C4(K:Z);
(iii) R (to. t)-R(to) ’o b(to s) ds.
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In other words, "integration leads to loss of derivatives". In 2.11 below, we
will show that our R may be altered on a set of measure zero so that
R(to t)-R(to)= o b(to s) ds for all to, t. Our functions, then, represent an
extreme case of loss of derivatives: b is analytic, while R is not even C.

2.11. PROPOSITION. We may assume that the equation

R(to" t)- R(to) b(to" s) ds

holds ]’or all to K and R.

Proof. We appeal to [8]. First, [8, 3.8(b)] and the argument in the
"(a) => (b)" part of [8, 3.9] may be used to show that there is some
m-measurable/ satisfying (to t)- (to)= ’o b(to s) ds for all to, t. Hence

[t-(/-R)]-[/-R]=0 m-a.e.,

so/-R is constant m-a.e. [11, p. 468] and [6, p. 25]. Clearly, we may take
the constant to be zero.

2.12. Remark. Observe that the vector (a, 1) satisfies no inequality of
the form

I(, 1)- (n, re)l--In + ml >- (Inl + Iml) for /, r > 0.

For, if it did, $o b(to. s)ds would be a.p. [10, pp. 148-149]. Hence a is in
none of the sets Bk of [16].

3. An analytic ODE

We construct a linear skew-product flow which foliates into measurable,
non-continuous, invariant subbundles. Let b, Gt, R be as in 2. We may and
will suppose that R(to. t)-R(to)=$ b(to. s)ds for all took2, R (2.11).

3.1. DEFINrrIONS. Let V be a vector bundle with base 1), projection r,
and fibers of constant finite dimension. (See [13]; we will consider only the
case V K2 x R2, lI K2, and 7r: K2 R2 K2: (to, x) to.) A (real) linear
skew-product flow (LSPF) on V is a pair of flows (V, R) and (II, R) such that

(i) 7r(v- t)= 7r(v) t(v V, e R);
(ii) each map to,: r-(to) 7r-(to t) is linear (t

A continuous k-dimensional subbundle of V is a closed subset of V which
intersects each fiber 7r-t(to) in a k-dimensional subspace. See [13], [14],
[5].

3.2. DEFINrrION. Let V K2xR2. Let S be the unit circle in
be projective one-space {l" is a line through the origin in R2}. Note that
p1 S and that K2 x p1 Ka, a 3-torus. Let 1:K2 x (R2-{0}) K2 x pl:
(to, x)-- (to, l), be the natural map (i.e., is the line through the origin
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containing x). A measurable one-dimensional subbundle of V is a subset Q
of V such that (i) Q intersects each fiber {to} x R2 in a line through the origin
and (ii) rl(Q) is/x-measurable, where /x is Lebesgue measure on K2 p1.

Consider the set of analytic, 2-dimensional ODE’s E"

1[ 0 -b(to t)]= b(to’t) 0
x (tooKE,x

In polar coordinates (r, 0), E., is given by

=0, } 1/2b (to t).

These equations define an LSPF on KExRE in the following way:

(to, Xo) t= (to" t, x(t)),

where x(t) satisfies E and the initial condition x(0)= Xo. We may paramet-
rize P1 with 0- e2i (view P as S with antipodal points identified). By (ii)
of 3.1, the LSPF (K2R2, R) induces a flow on K3=KEPt. This flow is
given by

(to, 0)" (to’t, gt(to)" P),

where gt" K2 - p1, to

__
exp (i .[o b(to s) ds). Here g(to) 0 is the product,

in the topological group P, of the elements gt(to) and 0.

3.3. We show that KExRE "foliates" into a collection {Sfo I/3 e P1}
of measurable, one-dimensional, invariant subbundles (i.e., K2xR2=
U0sp t#0). Let r(to) eiR(’); then r(to. t)/r(to) gt(to). Hence, if/3 P, then
each set

S0 {(to, 0) to KE, p =/3" r(to)}

is invariant. Here /3. r(to) is the product of the elements/3 and r(to) of p1.
For each to s KE, consider the line in {to} x RE which is defined by /3 r(to)
p1. The union Sf of all such lines is a measurable, invariant subbundle of
KExRE. Also, SF is not a continuous subbundle. For, if it were, then the set
S0 would be closed, which would imply that r is continuous. That would
contradict 2.10(a). The collection {S0 [/3 P} of subbundles clearly foliates
K2 R2.

3.4. We elaborate briefly on the remark in the Introduction concerning
nonexistence of measurable, invariant subbundles for periodic ODEs. For
simplicity, we consider only the two-dimensional case, though the discussion
can be generalized to dimension n.

Let

(*) :i a,j(t))x

be a 2-dimensional ODE such that each %(t) has period p. Let (t)= P(t)e
be the Floquet representation of a fundamental matrix (t) for (.). Assume
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(0) =/. The ODE (.) generates an LSPF on K R2, where in this case the
base K is a circle [14], [15]. The LSPF (KxR2, R) induces a flow on
K p1 K2. It may be shown that this flow (K P1, R) is independent of

trace (a,i(t))= aaa(t)+ a22(t);
we assume axl(t) + a22(t) 0.

Consider the period matrix (p). There is a real matrix A such that
A(p)A- take one of the following four forms:

cos 2r0 sin 2r0] where 0 is irrational;(1)
-sin 27r0 cos 2r0/

( cos 27r0 sin 2r0 where 0 is rational;(2)
k-sin 27r0 cos 2r0/

(3) where A : 0;

(4) ()to) where=+1.

Now, invariant one-dimensional subbundles of K 112 correspond natur-
ally to subsets of K x P1 which are invariant with respect to (K P, R), and
which intersect each fiber {to} P in exactly one point (call such a subset an
"invariant section"). In case (1), the flow (K x P, R) is conjugate to an
irrational (Kronecker) flow on K2-K P, and the conjugacy preserves
Lebesgue measure. But an irrational flow admits no measurable invariant
section (if there were such a section, one could use it to define a measure on
K2 invariant under the irrational flow, but unequal to Lebesgue measure).
So there are no measurable, invariant, one-dimensional subbundles in case
(1). In cases (3) and (4), there may be shown to be, respectively, 2 and 1
measurable invariant sections; these are all homeomorphs of S 1, hence
correspond to continuous subbundles. Finally, consider case (2). If 0 =0,
there are infinitely many measurable invariant sections, all of which are
continuous. If 07 0, there are no measurable invariant sections; instead,
K p1 foliates into a union of torus knots.

4. A strictly ergodic flow (Ka, R)
4.1. DEFINITIONS. Let (, R) be a flow, with compact Hausdorff. A

measure tx on is invariant if /x(f)= 1 and /x(B-t)= ix(B) for all Borel
sets B c f (t R). It is ergodic if, in addition, tx(Bt A B)- 0 (t R) implies
/x(B) 0 or /z(B)= 1. The flow (f, R) is uniquely ergodic (u.e.) if it has a
unique invariant measure (which is then necessarily ergodic; see [11, Chap-
ter 6, 9.05 and 9.20]. If (f, R) is u.e. and minimal, then it is strictly ergodic
(s.c.).
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Let a, R, G,, and b be as in 2. Let

(ior(to) =eiR’, gt(to)=exp b(to. s) d

Choose a real number Xl such that nl27r(ap+q) for all n,p,qZ
(n : 0). Define a flow (K3, R) as follows: (to, p). t= (to. t, eXli’gt(to) p) (here
to K2, p S 1). If R, let T, denote the homeomorphism (to, p) - (to, p). t.
We will first show that some integer flow (Ka, T) is s.e. This implies that
(Ka, R) is s.e. We then find times tk-- 0 such that (K3, Tk) is not u.e.
Finally, we find an analytic function f such that the Cesaro sums of f with
respect to Tk diverge on a residual set for all k-> 1.

4.2. PROPOSITION. Let R, and consider the integer flow (Ka, T) where

T,(to, p) (to" t, h(to)p)

with h(to)= eXlg(to). Then (Ka, Tt) is u.e. if and only if the equation

(C) h"(to) s( t)/s(to) m-a.e. (t ); Is(o )l non-zero constant,

has no m-measurable solution s [or any integer n O. In any case, normalized
Haar measure I on K3 is’ invariant with respect to (K3, Tt).

For the proof of a more general result, see [5, Lemma 2.1] (Furstenberg’s
"s.e." is the same as our "u.e."). Note that the flow (K2, t), t(to)= to" t, is
u.e. (and s.e.); m is the unique invariant measure.

4.3. PROPOSITION. The flow (K3, T) of 4.2 is minimal if and only if (C)
has no continuous solution s for any n O.

For the proof of a more general statement, see [5, Theorem 1]. See also
the proof of Lemma 1.4.

4.4. PROPOSITION. There exists a time such that (K3, T) is s.e.

Proof. We must show that some (K3, T) is u.e. and minimal. We first
seek to apply 4.2. Fix t: 0, and let/3 exi. Then

T,(to, p)= (to" t,/3g(to)p).

Suppose

/3"[g,(to)]" s(to t)/s(to) (, O)

for some measurable s. Since [g,(to)]" r"(to, t)/r"(to) (2.11), we have

/3" =[s(to. t)/r"(to, t)]. [r"(to)/s(to)].

Let u(to)= s(to)/r"(to); then u(to. t)=/3"u(to). Comparing coefficients in the
Fourier expansions of u(to. t) and/3"u(to), we see that there are integers p,
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q such that einxlt= [3n= e2rit(op+q). Hence

(D)
n,l

(ap + q)t (mod 1).
2r

By choice of A, we can find a for which there are no n, p, q such that
(D) holds. By 4.2, (K3, ) is u.e. TO see that (K3, ) is minimal, obsee
that equation (C) has no measurable solution, hence no continuous solution,
and apply 4.3.

4.5. PROPOSION. If

)t=
/k2

P--q (/,n,p,qZ;n0,10),

then (K3, Z) is not u.e.

Proo[. Obsee that we obtain the above equalities by solving (D) for t.
Let

Tpq(O) e2i(p0+q0:) where (e2ix, e).

Let c(, p)=()-r"() p-". Then c is -invariant, i.e.,

c(Z(, 0)) c(, 0)(, 0) K).

To see this, note that r(. t)= r()gt(). So

c(Z(,

e,.+.e%o.()r"()e-"’0-"
c(, p) (use the formula for t).

Now, by 4.2, Haar measure on K3 is invariant for (K, T,). But we have
just found a function c which is -measurable, T-invariant, and not
constant -a.e. Hence [11, p. 468] is not the oy invariant mease for
(K, Z).

4.6. Remarks. (a) Let be as in 4.5. Then (K3, ) is minimal. We will
prove this by using 4.3. First, let s()= %() r"(). Then (C) holds; i.e.,

h"() s( t)/s().

Note that s is not equal m-a.e, to a continuous function for any integer
j0, because r" is not (2.10(a)). Now, suppose hi()=q( t)/q() for
some continuous function q and some ] 0. Then

q"(. t)/si( t)=q"()/s() m-a.e.

This implies that q"()/si() is constant m-a.e. [11, p. 468] and [6, p. 25].
This means that si() is a continuous function m-a.e., which contradicts the
statement about s made above.

(b) Let be as in 4.5. We show that (K3, ) has uncountably many
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ergodic measures. For each/3 S1, let ha(to)=/3, s(to)(s(to) %q(to). r"(to)).
Define

Ix (f) Jrc f(to’ ha (to)) dm() (f e C(K3)).

It is easy to see that each/za is (K3, T,)-ergodic.

4.7. PROPOSITION. (K3, R) is s.e.; Haar measure I is the unique invariant
measure.

Proof. The first statement follows from 4.4, the second from 4.2.

Thus (K3, R) is s.e., but there exist times such that (K3, Tt) is minimal
and has uncountably many ergodic measures.

4.8. PROPOSITION. There exist times tk--0 and an analytic function
f(to, p) such that:

(a) If Tk is the time-tk map, then (K3, Tk) is not u.e.
(b) For each k, the Cesaro sums

f(T)i(to, O)

diverge for a residual set V of (to, p) K3.

Proof. Referring to 4.5, let

(k_> 1).

By 4.5, (K3, Tg) is not u.e. It may be verified that, if /3k =eixlt, then
/3gt(to) sk(to), where s (to)= g(to). Let e: K2 -- R be an analytic function
such that

fro2 e(to)sk(to) dm(to) O

for all k-> 1 (such a function deafly exists). Let f(to, O) e(to)O. Then for
fixed k, the sums

f(T)(to, p)
i=1

do not all converge; the proof is line for line that given on p. 584 of [5], and
is hence omitted. By [9, Remark 4.4(2)], the sums diverge for residual set V
of (to, p) K. Let V f-]= V.

We have shown that (K3, R) has all the properties stated in the
Introduction.
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5. The second ODE

5.1. Consider the collection of ODEs (hi as in 4) E,, given by

1[ 0 -hl-b(o.t)]= X+b(o.t) 0
x (oK2, xR2).

In polar coordinates (r, 0), Eo is given by

0, O 1/2(h + b(o. t)).

As in 3, equations E,o define an LSPF on K2x 112, which then induces a
flow on K2xP--K3. As in 3, we coordinatize Pa with O =e2i. It then
turns out that the flow (K2x p1, R) is exactly the flow (K3, R) considered in
4.

5.2. PROPOSrrIoN. The flow (K2xR2, R) has no measurable, invariant,
one-dimensional subbundles.

Proof. Suppose 5Co is measurable, invariant, one-dimensional subbundle.
Let So be the subset of K2x P1 induced by So (more precisely,

So rl (So (K2 x {0})),

where rl is the map of 3.3). Let h(o) be the point of intersection of $o and
{o} x P1 c K2 x P. We can then define a (K2 x p1, R)-invariant measure
by

tXo(/) i f(to, X(to)) dm(to)(fe C(K2 P)).

Since /Xo is not equal to Lebesgue measure, 4.7 is contradicted.

5.3. PROPOSITION. Let k be any number of the form

1/( ap + q)(p, q e Z).

Let T be the time-tk map on K2P. ThenKR2 foliates into measurable,
non-continuous, T-invariant, one-dimensional subbundles.

Proof. Use the reasoning of 3.3, with the function r(o) in 3.3 replaced by

s(o) o(o) r(o).

One obtains subsets S {(o,/3 s(o)) o e K2} c K2 P (/3 e p1) which
foliate K p2. The subbundles S rl- (S) foliate K

4.4. Remark. Fix p and q in 4.3. Write /3-r(o)=e2i.(). Then the
intersection of S with the fiber {o} x 112 is a straight line which makes angle

q(o) +pO +qO

with the positive x-axis, where o (e21,
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