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ERGODIC MEASURES, ALMOST PERIODIC POINTS
AND DISCRETE ORBITS

BY
MicHEL TALAGRAND

Let K be a compact space, and p be a homeomorphism of K. Aset L < K is
said to be invariant if pL < L, and is said to be minimal if it is closed, invariant
and minimal with respect to these two properties.

A point w € K is said to be almost periodic if for each neighborhood V of w,
the set {i € N; p'w € V} is relatively dense in N. Denote by A” the set of all
almost periodic points. It is known that w € A4 if and only if the closure of
{p'(w); i = 0} is minimal.

A point w € K will be said to be recurrent if it is not almost periodic and if
each neighborhood V of w, the set {i € N; p/(w) € V} is infinite. Denote by R”
the set of recurrent points, and denote by D” the complement of R” U A4”, that
is the set of points whose orbit is discrete. The sets 4°, R®, D” are invariant.

Denote by M” the set of all p-invariant Radon probabilities on K. It is a
convex w*-compact set, and an invariant probability 4 on K is said to be
extremal if it is extremal in M”. For u € M* and X any subset of K, we denote
by u*(X) and u,(X) the outer and inner measure of X. If p is extremal and X
invariant, then for all X we have u*(X), u,(X) € {0, 1}.

Let us denote by t the map n—n+ 1 from N to N, and again by 7 the
restriction to BN\N of its canonical extension to the Stone-Cech
compactification SN of N.

In [1], very interesting results concerning A°, R, D are proved. Our aim is to
investigate, from a slightly different point of view, for an extremal u € M”, what
can be the inner and outer measure of A, R?, D*. If the support supp u is
minimal, it is contained in 4”. So we have to investigate only what happens if
this support is not minimal. Let

Ef ={pue M’: pu is extremal, supp u is not minimal}.

The following result shows that if u € E*, then A” is small for u.
THEOREM 1. Let p € E*. Then u*(A”) = 0.

Proof. Let F be the support of u. If F is not minimal, F contains an invar-
iant closed G such that G# F. Let U be an open set of K such that
UnF#¢, UnG=¢.Forallnlet V,=|)ic, p/(U) Since V,n G=¢, V,
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does not support p; hence u(V,) < 1. Let V = ( J, ¥,. Since (V) >0 and V is
invariant, u(V) = 1. For n e N let

B,={we 4°; VieN, t(w)e V,}

Then B, is invariant, and since B, = V,, u*(B,) < 1, and hence u*(B,) =0,
which shows that u*(| ), B,) =0. If o € 4° N V, then

H, ={p'(w); ie N}

is minimal. Since H, N V # ¢, and V is invariant, H,\V is invariant, and since

H,, is minimal, H,\V = ¢, i.e. H, = V. By compacity, there exists n such that

H, < V,.Hence 4° NV < | ) B,, which shows u*(4”) = 0 since u(V) = 1.
Q.E.D.

THEOREM 2. If i € E’ then py*(R*) = 1.

Proof. First let us notice that for each compact L with u(L) > 0, we have
#(Ji>p p~*(L)) = 1 since the complement of | ;5 , p~*(L) is invariant of meas-
ure less than 1. We have to show that if L = K is a compact such that u(L) > 0,
then L n R # J. Let us construct by induction a decreasing sequence T, of
compacts, with T, = L and a sequence k, of integers with k, > n, satisfying

i) wT)>0, (i) P! (Ts1)<= T

If T, and k, are constructed, since p(| )iz n+1 p~(T;)) = 1, there exists k,,, ; with
wp™**(T,) N T,) >0. Then T,,, = p **(T,) n T, satisfies (i) and (ii). It
follows now from [1, Prop. 3.1] that ﬂ,, T,, hence L, contains a recurrent point.

QED.

It follows from Theorem 1 and 2 that only two possibilities exist: p,(R”) =1
(and hence u*(D*)=0) or u,(R?)=0 (and hence p*(D”)=1). We are now
going to give two examples where K = SN\N and p =7 to show that both
possibilities can occur. (It is known that the first possibility can occur in a
metric space, for example in the shift of {0, 1}, but of course the second cannot
since R” is then Borel and hence measurable.)

Example 3. There exists u e E* such that u, (R*) = 1.
Proof. Let T = N be a set such that for all n and F < [0, n] the set
Nt PTn () T YN\T)

peF qel0,n}\F
is infinite. For example, T has this property if, for each n and F < [0, n], there
exists m € N with T n [m, n + m] = t™(F).
Let s be the shift of {0, 1}¥ = Y, given by s((a,)) = (a,+1), and T € €(BN) be
the extension to BN of the characteristic function of T. Let ¢: SN\N — Y given
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by ¢(w) = (T(z"(w)). This map is continuous, and ¢ - T = s > ¢. Moreover it is
onto, since if

NPT () t4N\T)e o,
peF q€([0,nF
then, for p < n, ¢(w)(p) =1if and only if p € F.

Let H be an invariant closed set of SN\N such that ¢(H) = Y, and which is
minimal with respect to these three properties. Let P be the set of invariant
probabilities v on H such that ¢(v) = 4, where 1 is the Haar measure on Y. The
set P is non-empty, since if # is any probability on H such that ¢(n) = 4, any
w*-cluster point of n™* Y7_, 7(n) belongs to P. Let u be an extreme point of P.
Then u is an extreme point of M*; since s is ergodic with respect to 4, and since
the support of u is closed, invariant and such that ¢(supp u) = Y, itisequal to
H by the minimality of H with respect to these properties. Moreover, H is not
minimal, since under s, Y is not minimal. This shows that u € E.

Let w € D' n H. Then there exist a neighborhood V of w such that for n > 1,
Tw ¢ V. Let G = H\| Ji»o t~'V. Since G is invariant and G # H, we have
¢(G) # Y. Hence there exists a clopen set B< Y such that ¢~ !(B) <
(Jiso T7'V. Hence

s(¢(w)) = ¢(t'(w)) ¢ B for I >0,

for, if not, we would have t(w)e | Jizo 7'V, ie. t(w)et™'V for i >0,
*w) e V, which is impossible. This shows that

# J |s(B)= 6

where the intersection is taken over all nonempty clopen B sets of Y. But for
each B, | ;5 o s~(B) is invariant, and of positive measure, and hence of measure
1. This shows that A*(¢(D")) = 0, hence u*(D*) = 0. Q.E.D.

This result points in the same direction as Section 3 of [1]: there are many
recurrent points in fN.

Example. There exists u € E* such that u,(R7) =0 (hence p*(D%) = 1).

Proof. This example is entirely based on the theory of [2], that we shall
explain briefly. For B = N, let B be the corresponding clopen set of fN. For a
Radon measure v on SN, consider the real function ¥ on P(N) given by
#(B) = v(A). Let A be the Haar measure of {0, 1}¥, which can be identified with
P(N). We say that v is measurable if the map 7 is A-measurable. It then turns out
that #(B) = 33(N) = ||| for i-almost all B. It is shown in [2] that:

(a) There exists u € M* which is measurable.
(b) If n is measurable, and v < #, then v is measurable.
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From the methods of [2, 1J] one can easily show that:

() If v is measurable, then #Bn 1 }(N\B)n - 1 ¥N\B))=
2771 v]| for A—almost all B € P(N).

Now, let us show that u*(D®) = 1, i.e. that for each compact L = SN\N with
u(L) > 0 we have L n D # ¢. Let v be the restriction of u to L. By (b), v is
measurable. By (c), there exists B = N such that

(BNt {(N\B) - n tN\B)) >0 for all k.

It means that for all p, BN 17 Y(B) n --- n t7%(B) n L # ¢, where B¢ is the
complement of B. Now let we L n B~ (\;5; (). For i > 1, t(w) ¢ B,
which shows that w € D". QE.D.

Remark. For a homeomorphism p of K, one could also consider the points
p~!(w) for w € K. One can define in this way left recurrent points. A slight
modification of the proof of Theorem 2 shows that for u € E® the outer measure
of the set of points which are both left and right recurrent is 1. It is also possible
to extend Prop. 23 of [1] in the following way: for each invariant closed set K,
then K\d” < K n D', where D' is the set of w € K such that the orbit {t'(w);
i € Z} is discrete.
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