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UNIVALENT FUNCTIONS MAXIMIZING Re (a3 + a2)

BY

JOHNNY E. BROWN

1. Introduction

Let S denote the class offunctionsf(z) z + a2 Z2 d-- a37,
3 -k- analytic and

univalent in the unit disk zl < 1. Let L be a continuous linear functional
defined on the space of functions analytic in zl < 1. We call f S a support
point for L if L is nonconstant on S and

(1) Re L(f) max Re L(9).
0eS

It is known [1], [5] that each support point of S maps the unit disk onto the
complement of an analytic arc with monotonic modulus, whose tangent vector
always makes an angle of less than zr/4 with the radius vector. The Koebe
function k(z)= z/(1 z)2 and its rotations are well-known support points of S.

In [2], we studied the point-evaluation functionals L(#)- 9(Zo) and gave
some new examples of support points and extreme points of S. We found
several geometric properties of the arcs omitted by these functions.
The purpose of the present paper is to investigate the support points for the

linear functionals

(2) L(9)=a3 + 2az, 2 C.

More precisely, we prove that the arcs omitted by these support points lie in
sectors and have monotonic arguments. We also show that only very special
values of 2 give rise to the Koebe function or a rotation as a support point for
(2). In addition, we prove that there are only four rotations of the Koebe
function arising as support points for (2). Finally we show that if 2 :/: 2 2 then
the associated support points are distinct unless they are the same rotation of
the Koebe function. Hence functionals of the form (2) generate a rich family of
support points of S.

2. Reductions

Z3Let F(z) z + A2 z
2 + A3 + be a support point for the functional (2)

and let F denote the arc omitted by F. Before stating and proving our main
results, we establish some reductions. These serve to simplify our statements
and proofs.
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In this investigation we require the Loewner representation and the Schiffer
method of interior variation, which we shall now describe.
Loewner [4] showed that if a function in S is a slit mapping then its

coefficients may be represented in terms of a control function x(t). Since F is
known to be a slit mapping we have

(3)

and

A 2 fo e-’x(t) dt

(4) A3 -2 fo e-Ztx(t)2 dt + Az,

where x(t)= e") and O(t) is a real-valued continuous function related to the
geometric structure of F.
One of the most powerful variations is due to Schiffer [7], [8], [9]. His method

of interior variation leads to a certain nonlinear differential equation which the
extremal function F must satisfy. For our particular problem, this differential
equation takes the form

IzV’(z)t 211 + BF(z)(5) IF(z) F(z)2 =R(z)’

where R(z)=z2+Bz+Bo+Bz- +z-2,B=2A2+2 and Bo=2A3+
2A2 > 0 (cf. Schaeffer and Spencer [6, pp. 211-214]). Equation (5)may be
integrated to obtain an implicit representation for F(z). However, we will not
make use of it here.

If we parameterize F by w(t)= F(e’), then (5) becomes

(6)
l + Bw (w’ )

2

--W2 W

where B 2A a + 2. This is the Schiffer differential equation for the omitted arc
F. in terms of quadratic differentials, it is

(7) Q(w) dw > 0 where O(w)= -(1 + Bw)/w’.
We shall now show that we can assume, with no loss of generality, that

Re B 0 and Im B 0. Indeed, suppose F is a support point for (2) and F is
parameterized by w(t) F(e"). Hence w(t) satisfies (6) with B 2Az + 2. If we
let w(t)=F(e"), where F(z)=-F(-z), then w(t)satisfies (6)with
B -(2Aa + 2). (Note that the functional (2) changes with 2 being replaced
by -2.) Hence we may assume Re B 0. If we now let w(t)= F(e"), where
F(z) F(), then w2(t)satisfies (6)with B= 22 + Z (In this case 2 is
replaced by in (2).) Thus, there is no loss in assuming Re B 0 and Im B 0.
The following preliminary theorem states that if F is not a rotation of the
Koebe function then Re B 0 and Im B 0.
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Z3 Z3THEOREM 1. Suppose F(z)= z + A2 + A3 +.’. is a support point for
(2) with Re B >_ 0 and Im B _< 0, where B 2A2 + . Then"

(a) B > 0/fand only if the Koebe function is the unique extremal function"
(b) iB > 0 if and only if- ik(iz) is the unique extremal function.

Proof. From (6), it is clear that if B 0 then the quadratic differential
Q(w) dw2 has a simple pole at infinity. (Pfluger [5] proved that the quadratic
differential associated with any support point has a simple pole at infinity.)
Thus, there is a unique trajectory terminating at infinity.
A brief calculation shows that if w(t) tei, > 1/4, 0 real, is a solution to

(6) then Be-i> 0 and e2i0"-" __+ 1. On the other hand, if Be-i> 0 and
e2 + 1 then for large positive values of t, w(t) -te satisfies (6). By the
remark above, w(t)= -te for > 1/4 is the solution. Hence w(t)= -t is a
solution to (6) if and only if B > 0; while w(t) it is a solution if and only if
iB > 0. The proof of the theorem is complete.
Thus ifF(z) z + A2 z

2 + is a support point for (2) and is not a rotation of
the Koebe function, we may assume that Re B > 0 and Im B < 0.

3. Main results

Let F(z)= z + A2 z2 + A3 z2 +... be a support point for (2) that is not a
rotation of the Koebe function. Then, we may assume, with no loss of genera-
lity, that Re B > 0 and Im B < 0, where B 2A 2 -- /" Let F denote the arc
omitted by F. Parameterize F by w w(t), with w’(t) v O, and let w(0) o and
w(T) be the finite tip of F. Set % arg (-B) and s0 arg w(T). Then we
prove:

THEOREM 2. O(t)--arg w(t) is a monotonic function of t. More precisely,
O’(t) < 0 for 0 < < T.

THEOREM 3. F lies entirely in the sector

{pei:Oo <_ 0 <_ "Co, 0 < p < ct}.
To prove these theorems we get information about F by focusing on the local

and global trajectory structure of the quadratic differential in (7). We then
represent F as the image under the Koebe function of a certain arc. By examin-
ing this arc, using the known properties of support points, and exploiting the
mapping properties of the Koebe function, we are able to deduce properties
about F. We used this technique with success in [2]. There we could determine
all parameters explicitly. This is not the case here, but we can still find some
general properties of F. Thus, our theorems may be viewed as qualitative
results about certain solutions to a one parameter family of differential
equations.

LEMMA 1. F lies in the sector f {pe: zt/2 < 0 <_ Zo, 0 < p < }.
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Proof Purely on the basis of (6) we can show that F has an asymptotic
direction at infinity. In order to prove this lemma we need the sharper result
due to Brickman and Wilken [1]. They showed that F is asymptotic to a certain
line near infinity. In our case, this line is given by

1: -Bt + I/3B, t>0.

Since B lies in the fourth quadrant, F must eventually lie in fa. If F does not lie
entirely in fa, it must enter by intersecting either the positive imaginary axis or
the line /’:-Bt, 0 < < . Thus one of the two points w(ta)= ira or
w(t2) r2 B (ta, 2 0 and r a, r2 > 0) must be a point of F. Since F has the
t/4-property, if w(ta) F then we must have

while if w(t2) 1"-’ then

t/2 _< arg w’(t1) -< re/4,

3rt/4 __< arg w’(t2)/B) <

From these we can conclude that either

Im {i w’(ta)
2

t W(tl)) >0 or Im w(t2) ]
<_ O.

Using (6) and the last two inequalities, we find that either Re B _< 0 or
Im {1/B2} _< 0. Both of these contradict the assumption that Re B > 0 and
Im B < 0. This proves Lemma 1.
We now integrate the Schiffer differential equation (6) for F and show that F

is the image under the Koebe function of a certain arc. Let us choose a parame-
trization w w(t), w’(t) :/= 0, w(0)= so that the right-hand side of (6)is the
constant 1/4. Then we may integrate the resulting differential equation to
obtain

w/1 + Bw- 1 2x//1 + Bw it
(8) logx//l+Bw+l- Bw +--B + C’ O < < T.

From Lemma 1, we see that Im (1 + Bw) > 0. Consequently we may choose
the principal branches of the square roots and logarithm in (8). If we let tend
to zero and recall that w(0) , then C 0. Also, since Im (1 + Bw) > 0, we
see that the left-hand side of (8) has positive imaginary part. Thus
Im + i/B} > 0 and because B lies in the fourth quadrant, we find that the plus
sign must be chosen in (8).
We can conclude (since Im Bw > 0) that there exists a unique arc : s s(t),

0 < < T, which satisfies

(9) Bw(t) 4k(s(t)), s(O)= 1,
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and which lies in the upper half of the unit disk. Next, using (9), we see that
x//1 + BW (1 + s)/(1 s) and from (8) we find that each point of 7 satisfies

(s2 1) it
(10) log s + 2--------- ’ 0 < < T,

where I (t) < 1, 1 and B 2A2 + 2.

LEMMA 2. Suppose s=s(t) satisfies (10) and 0<t<T. Then
Re {B log s} < 0.

Proof. Let u(t)= Re {B log s(t)}. Then u(t)is a bounded continuous func-
tion with u(0)= 0. From (10)and an easy computation we get

u’(t) Re {- 2ik(- s)} 2 Im {k(- s)}.
Using Im s(t)> 0 and the fact that the Koebe function preserves the lower
half-plane, we can conclude that u’(t) < 0. Thus, u(t) < O.

Proof of Theorem 2. Since w(t) 4k(s(t))/B, where s(t) satisfies (10), a brief
calculation shows that

d
{arg w(t)} Re tl 2s

o’(t)

Using the identity that Re(z)= zl 2 Re (l/z)and (10), we get

1 2s 12if(t) p Re {B log s} wherep- (l_s2)
>0.

Applying Lemma 2 yields the result.

Proof of Theorem 3. This theorem is an immediate consequence of Lemma
1 and Theorem 2.

We conclude this section by proving some results that will show that only
certain special values of 2 can allow a rotation of the Koebe function as a
support point for (2)

LEMMA 3. If F(z)= z/(1- xz)2, xl 1, is a support point for (2), then
x2= +1.

Proof. (cf. Schober [10, pp. 83-84]). Using two very elementary variations
[10], it can be shown that if 9 is a support point for an arbitrary continuous
linear functional L, then

Im {L(zg’(z)- 9(z))} 0

and

L((g(z)o"(O) g’(z) + 1) + L(.zg’(z)) O.
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If F(z)= z/(1- xz)z is a support point for the particular functional (2), the
above equations become

Im {3x z + 2x} 0 and -4x3 2X2 " 4 + ;[ 0.

This last equation implies that

4x2 + 2x 4;2 .:2 0

or

{x2 + (3x 2 + 2x)}- {22 + (322 + 22} 0.

Using the fact that 3xz + 2x is real, we can conclude that x2 1.

Z2 Z3LMMa 4. Let F(z)= z + A2 + A3 +’" be a support point for (2)and
let B 2A2 + 2. Then the followin9 statements hold"

(a) If Re 2 0 then Re B 0.
(b) If Re 2 O and O N 2 < 6 then Re B O.
() fe x 0 a.a 8 xl < then e O.

Proof (a) We first show that if Re 2 0 then (Re 2)(Re Az)2 0. If this
were false then (Re 2)(2 Re A z) < 0, and the identity

(e )(2 e A)= e {Z(A + )}
would imply Re (2A)< Re {2(-2)}. Define F* S by

V*(z) v(-) z z + z3 +....

Next, observe that

Re L(F)= Re {A 3 -}- ,A2}
Re {z3} q- Re {2A2}

< Re {,i3} + Re {2(-2)}
Re L(F*).

This contradicts the extremality of F. We now have our result because if
Re 2 > 0 then Re ,42 -> 0, while if Re 2 < 0 then Re ,42 -< 0. Both of these
imply, in particular, that Re B Re (2,4 2 + 2) :/= 0.

(b) Let 2--i I1, say, and suppose that Re B 0 for 0

_
121 < 6. Then

since B 2,42 + 2, Re ,42 0. Since 2 il2 I, the Loewner formulas (3) and
(4) allows us to conclude (after a calculation)that

(A 3 -}- 2A2)= 4 j e-2, cos2 O(t) dt + 4u2 q_ /(v),Re

where u + iv e-’K(t) dt and 9(v) 2121v 4v2. For convenience, let
M Re (A3 + 2A2). Observe first that we get the following elementary esti-
mate on M"

M 3 + 1212/6.
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Indeed, M > m(O) where re(O)= Re L(k0)and ko(z) e-ik(eiz). Maximizing
re(O) when 0 < 121 < 6 yields the estimate. By assumption, Re A2= 0 and
hence u 0 and

M < 1 + max 9().

-< + (11/)- / I1/.

M 1 + ()= 211 3.

Thus, if0 2} < 6 then

3+ llMmax/l+ I1,11-3.
This is clearly false. Hence Re A 2 4 0 and, consequently, Re B # 0. The case
2 i] 21 is treated similarly.

(c) Let 2 -il2[ with 8 < ]21 and suppose that Re A2 4 0. As in (b),

M=Re(A+2A)= 1-4 e- ’cos0(t) dt+4u+(v).

Let v 1 , 0 < e < 2. Then, using the fact that u + v _< 1, we find that

M < h(e) where h() {211 3} + {16 2121} 8.
It is easy to show that for 0 < < 2,

M < h(e)< h(0)= 21,1 3.

However, Re L(-ik(iz)) 21 3. A contradiction arises and hence
Re A 2 0. Moreover, iB > 0 and by Theorem 1, ik(iz) is the unique extremal
function. The case 2 i] 2] is treated similarly.
The above results can be summarized in the following theorem"

THEOREM 4. Let L(g) a3 + J,a2 and 2 C.

(a) If 2 > 0(2 < 0), then k(z)(-k(-z)) is the unique support point for L.
(b) If8 <_ IAI < and -- il,l (A- -11), then ik(-iz) (-ik(iz)) is the

unique support point for L.
(c) If Re 2#0 and Im 2#0, or if Re ),=0 and O< 12[ <6, then no

rotation of the Koebe function is extremal.

The case when 2 +i A[ and 6 _< 121 < 8 is undetermined at the present
time.
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4. Remarks

(a) Using the method of Schaeffer and Spencer [6, Lemma XXXI], we can
show that the functionals (2) generate a rich family of support points. Indeed,
we show below that if F S is a support point for LI() a3 / 2a and for
L(#) a3 + a, then 2 2 unless F is one of four rotations of the Koebe
function.
Assume that F is a support point for L and L . Then the arc omitted by F

satisfies two differential equations

W2 > 0,

where B. 2A2 + 2n, n 1, 2. If we divide the two differential equations then

l+Baw0<
l+B2w

If we now let w tend to infinity we conclude that Bx pB2, for some p > 0.
Consequently, we get

l+Bw0<
1 +pBw

Hence either p 1 or B w is real for all w e F. This proves that either 2 22
or F is a rotation of the Koebe function. In the latter case Lemma 3 shows F
must be one of the four rotations with xz + 1.

(b) In a sense, the problem of maximizing Re {a3 + 2a2} has long been
solved, since Schaeffer and Spencer [6] and recently Haario [3] described the
coefficient body V3. Among other things, they proved that each point on the
boundary of V3 that supports a hyperplane corresponds to one or more func-
tions in S which map the unit disk onto the complement of a single analytic arc.
Indeed, such boundary points (the set of which they call K3) correspond to
support points for the functionals L(9)= Aa3 + Ba2, A, B C. Our results
now,give additional qualitative results about functions corresponding to points
in K3. In particular, each point of K 3 corresponds to a unique function in S
whose omitted arc lies in a sector and has monotonic argument.
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