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THE FREE BOUNDARY FOR A FOURTH ORDER
VARIATIONAL INEQUALITY
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Luis A. CAFFARELLI, AVNER FRIEDMAN AND ALESSANDRO TORELLI

Abstract

Consider the variational inequality

(0.1) man [At]2- 2 fv [Au[ 2 2 fu, u K,
vK

where f is a bounded domain in R2 and

(0.2) /< {v _< Av < 0

This problem was studied by Brezis and Stampacchia [3] who proved that the
solution u belongs to Wgp () iff Lp (p > 2). In this paper we study the free
boundary for this problem. Particular attention will be given to the case
-a fl- 0. It will be shown, for a special choice off and fl, that u/fl w
where w is the solution of a variational inequality for the Laplace operator with
obstacle 1/2 d2 and d is the distance function to dfl.

1. Introduction

The problem (0.1) (for f in R2) has the physical interpretation of a horizon-
tal plate whose "linearized" mean curvature is restricted to lie between two
levels, and ft. The plate is clamped at the boundary and is pressured by a
vertical force of magnitude f.
Throughout this paper it is assumed that f is a bounded domain whose

boundary is piecewise C2 +6, for some 6 > 0, that is, dO consists of a finite
number of disjoints C2+ arcs S (1 < < m) with endpoints V,, V/+a where
V,,+ V. It is also assumed that there exists a function F such that

(1.1) FL2(fl), F=0onc3, AF=f;

the last two conditions are taken in the usual distribution sense. Thusfbelongs
to H- 2().
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FREE BOUNDARY FOR A VARIATIONAL INEQUALITY 403

The variational inequality (0.1), with K defined by (0.2), can also be written
in the form

Since the bilinear form on the left hand side is coercive, there exists a unique
solution u.
The following result is due to Brezis and Stampacchia [3].

THEOREM 1.1.

(1.3)
where r(t) is the truncation

The solution u satisfies
Au z(F + z)

ift<t,
(1.4) z(t)

and z is some function such that

(1.5) Az 0 in ), z L(f).
Thus if, in particular, f6 H-"P(f)(p > 2)then

(1.6) Au W(o’ (n), u

Actually Theorem 1.1 is proved only in case 0fl is sufficiently smooth. How-
ever the LX(fl) estimate on z is independent of the smoothness of Off. Approxi-
mating fl from inside by domains tim with smooth boundary and applying (1.3)
to each solution Um of (0.1), (0.2) in tim, we obtain the assertion (1.3) for u in
(We use here the easily verified fact that Um
Theorem 1.1, and in fact all the results of Sections 1-3, are valid (with the

same proofs) for n-dimensional domains fl (n _> 2). However the proofs of the
main results of this paper (Sections 4-6) definitely require that n 2.
A generalization of Theorem 1.1 to more generalized operators and convex

sets K is given by Torelli [11].
In Section 2 we derive some properties of the harmonic function z and study

the coincidence sets

(1.7)
i.e., the sets where Au fl and Au respectively.

In Section 3 we take a -fl, and denote the corresponding solution by u.
We make a preliminary study of the behavior of

1
(1.8) I+t and -ut, astir0.

P
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In Section 4 we study the second order variational inequality

(1.9)

where

Vw- w)a _> for all v K0; w K0,

(1.10)

(1.11)

Ko {v HoX(f); v(x)<_ 1/2 dZ(x)},

d(x) dist (x,

in the special case where f is a square. We find that the coincidence set 1
consists of four convex regions, each containing one of the sides of cf; write
A f\I for the non-coincidence set.

In Section 5 we study the following special case of (1.8)"

(1.12) f is a square with center 0 (0, 0) and f is the Dirac measure
supported at 0.

We prove that, as fl 0,

This statement is the main result of the paper;it is valid, with minor changes,
also in case f is a rectangle. It encourages one to ask the intriguing question:
for which pairs f,fdo the limits in (1.8) exist and how can they be identified in
terms of simpler free boundary problems. In Section 6 we answer this question
in another special case, where f is an equilateral triangle and f is the Dirac
function supported at its center. Some "negative" results on this question are
given in Section 7.

2. General properties of u and z

We assume the following throughout this paper, in addition to (1.1)"

(2.1) F(x) is continuous in
where F()= +

This means that either F(x)
The condition (2.1) is satisfied iff H- 1,p() where p > 2; it is also satisfied

in the case (of special interest to us later on) wherefis the Dirac function; here
f H-I’P() for any p < 2 but not for p >_ 2.

The condition (2.1) together with (1.3) imply that

(2.2) Au is continuous in ft.
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DEFINITION. The set Ii (defined in (1.7)) is called the upper coincidence set
and the set Is is called the lower coincidence set. The set

o Y\(I w I)
is called the non-coincidence set.

Since (2.1) holds, the sets Ia, Is are closed with respect to Y and the non-
coincidence set o is open. Further,

(2.3) flo is nonempty.

Indeed, if flo is empty then sgn (Au) is constant in ft. Since u 0 on Off, sgn u is
also constant in Q and the strong maximum principle gives Ou/Ov 4:0 along the
smooth part of. This contradicts the fact that u e Ho2().

THEOREM 2.1. The function z is uniquely determined.

Proof Suppose z1, z2 are two z functions. Then

(2.4) Au F + z F + Z2 in fo.
It follows that the harmonic function z- z 2 vanishes in the nonempty open
set fo. Hence z z2 --0 in f.
We shall assume from now on that

(2.5)

Let

(2.6)

is star-shaped with respect to the origin O.

LEMMA 2.2. We have

z 0).

(2.7) fn vz(F + z) dx O, v e Z.

Proof. Since z(F + z) Au, (2.7) follows by integration by parts provided
v C2()). For general v in Z notice, by (2.5), that the function

v,,,(x) v x (m > 1)
m+l

is harmonic and in C2(). Writing (2.7)for each v,, and taking rn o, the
assertion follows.

THEOREM 2.3. If

(2.8) fn "c(F + fl) dx < 0
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then

(2.9) I- intersects

Proof. Indeed otherwise there exists an fl-neighborhood N of c3 such that
F + z < fl in N. Hence z < fl in another (smaller)-neighborhood No of
The maximum principle then implies that z < fl in . Hence

z(F + z) < z(F + fl) in , z(F + z)< z(F + fl) near

Integrating over fl and using Lemma 2.2, we get

fo + > fo + 0,

contradicting (2.8).
Analogously to Theorem 2.3 we have"

(2.10) If n z(F + ) dx > 0 then [ intersects Off.

Let w Z, w > 0 in , and suppose y is a constant such thatTHEOREM 2.4.
Z and

(2.11) J’ wz(F + ) dx O.

Then there exist points x, yO on Of such that

(2.12) lim z(x) > ,
X--xO

(2.13) lim z(x) < .
x-yO

Proof It is enough to prove (2.12). If the assertion is not true then

lim z(x) for any x Off.

The stron maximum principle then ivcs z < ? in . Hence T(F + z)
(F + ) with strict inequality on the non-coincidence set o. Multiplyin this

inequality by and intcBratin ovc wc ct, after usin Lcmmn 2.2 with

which contradicts (2.11).

THEOREM 2.5.

(2.14)

0 < J’n w’c(F + ,) dx,

Iff < 0 in then

fn (fl- z) dx >_ O.
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Thus the set I/ Of cannot be "too large."

Proof By monotonicity of z,

(z(F + fl) z(F + z))(fl z) > 0

Integrating over f and using Lemma 2.2, we get

j" z(F + fl)(fl z) dx >_ O.

Since f < 0, F > 0 and, consequently, z(F + fl)= fl; (2.14) thereby follows.
Similarly"

(2.15) Iff > 0 in f then ( z)dx < O.

THEOREM 2.6. Let x be a point of Of c i (Of c ) such that Of is not
analytic in qny neiohborhood ofx. Then any (-neiohborhood ofx must intersect

fo w I, (o w Ia).

Proof Suppose the assertion is not true. Then, for definiteness, we may
assume that in an f-neighborhood N of x, z(F + z)= fl and

Thus

(2.16)

(2.17)

x e Int(ON c Of).

Au fl in N,

0u
u= =0 onONO

Ov

(assuming that x is not a vertex). Using the hodograph mapping as in
Kinderlehrer-Nirenberg [8] it follows that Of must be analytic in a neighbor-
hood of x; a contradiction. Finally, x cannot be a vertex; indeed, (2.16) and
(2.17) (away from x) imply that u > 0 in some f-neighborhood of x, so that,
by Caffarelli [4], Of must be C in a neighborhood of x.

3. Asymptotic behavior as -a fl - 0

We now take a -fl and write u u/, z z, z z/, K K. We also set

(3.1)
Thus

U Aua.

(3.2) U/ r/(F + zt).

LEMMA 3.1.

(3.3)

Let C 1 + 2 Fldx. Then
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Proof.

(3.4)

where

(3.5)

By [3; Lemma 3.2], Ut solves the variational inequality

K {V L2()), -fl _< V __<

Recalling, from Lemma 2.2, that Ut is orthogonal to z/, we get, from (3.4),

(F + z/- Ut)V <_ (F- U/)U <_ FU

Consequently,

and (3.3) follows.
Set

i.e., Ht(t)= z’(t/fl). Let

H(t)

-1 if t< -fl,
t/ i-<t<_,

1 ift > fl,

-1 if <0,
[-1,1] if t=0,

1 ift> 1,

be the Heaviside graph. Finally let

(3.6) fi ul/fl,
Thus 0t=Afi/, -1 < 0t_< l,and

+ z)(3.7) 0’ H, fl
Lemma 3.1 implies that from any sequence {fl*} converging to zero we can

extract a subsequence {fl’} such that

(3.8) z’ z uniformly on compact subsets of ,
(3.9) ’ o in the weak star topology of L(),
(3.10) fitr rio weakly in W2’’(1), p < ,

for any subdomain fll of whose boundary does not contain the vertices of
0; in special cases like a rectangle or an equilateral triangle, we can take

From (3.8)we deduce that

(3.11) z is harmonic in fk z Ll(f).
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(3.17)
(3.18)

Proofi
graph,

(3.19)

From (3.9) and Lemma 2.2 we obtain

(3.12) J’n v dx O, Z.

Taking 13 =/’-} 0 in (3.7) we obtain

(3.13) (jo H(F + z).
We wish to study the functions rio, o and the sets

(3.14) I+ {x ; (F + z)(x) > 0},
(3.15) I_ {x ; (F + z)(x) < 0},

(3.16) Fo {x n; (V + z)(x)= 0}.

DEFINITION. I + is called the upper set, I_ is called the lower set and Fo is
called the free boundary.

Notice that these sets, as well as rio, o, may depend in general on the
sequence {//’}.
Now take another sequence {//"} for which z" z*, fi" fi*, " * in the

sense of (3.8)-(3.10), and define I*+, I*_, F, analogously to I+, I_, Fo.
THEOREM 3.2. The followin9 relations hold:

I+ cI*+ w F,, I*+ cI+ w Fo
I_ cI*_ w F,, I*_ I_ w Fo.

It is enough to prove the first part of (3.17). Since H(t)is a monotone

[H(F + z) H(F + z*)][(F + z) (F + z*)] > 0.

On the other hand, from (3.12), (3.13) and its counterpart for * we get

[H(F + z) H(V + z*)][z z*] dx O.

Comparing with (3.19) we conclude that

[H(F + z) H(F + z*)][(F + z) -(F + z*)] 0 in )\(Fo w F,).
Thus, if (F + z)(x) > 0 then we cannot have (F + z*)(x) < 0. This proves
the assertion.

COROLLARY 3.3. Ify Fo and sgn (F + z) changes in any neighborhood of
yO, then yO F,.

Indeed, if yO q F, then (F + z*)(y) 0; suppose for definiteness that

(v + z*)(y) > o.
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Then there exists a neighborhood N of yo in which F + z* > 0, i.e., N c I*+.
Since, by assumption, N rn I_ :/: 0, we get I_ c I*+ :/: 0, which contradicts the
first relation in (3.18).

THEOREM 3.4. Let x be a point of 02 such that O is not analytic in any
neighborhood of x. Then x ’o.
The proof is similar to the proof of Theorem 2.6.
From now on we assume, in addition to (2.1), that

(3.20) F(x)is analytic for all x

Then F + z is also analytic if x :/: , and therefore Fo consists of piecewise
smooth curves (with branch points, in general).

THEOREM 3.5. meas I/ meas I_.

Proof Take v 1 in (3.12) and note that

-o 1 on I_ and meas Fo 0.(3.21) ,o 1 on I /,

THEOREM 3.6. Under the assumptions of Theorem 3.2,

(3.22) int [+ int +,
(3.23) int/-_ int I-(_.

This follows from Theorem 3.2 and the fact that Fo, F, consist of piecewise
smooth curves.

COROLLARY 3.7.

(3.24)
If F is harmonic for all x i, then

I+=I*+, I_=I*_, Fo=F,.

Proof If yO Fo then the harmonic function F + z must change sign in
any neighborhood of yO. Applying Corollary 3.3 we deduce that yO F,.
Similarly, if yOF, then yOFo. Thus Fo F,. The rest follows by
Theorem 3.6.

In Section 5 we shall determine the limits in (3.8)-(3.10) and the sets
(3.14)-(3.16) in the special case of (1.12). Some preliminary results needed in
that section are given in Section 4.

4. A second order variational inequality

In this section and in Section 5 we always assume that f is a square"

(4.1) f {X (X1, X2) --1 < xx < 1, -1 < x2 < 1}.
Let

(4.2) d(x) dist (x,



FREE BOUNDARY FOR A VARIATIONAL INEQUALITY 411

Consider the variational inequality

where

(4.4) g {v (3 H(f); v(x)<_ 1/2 dZ(x)}.
We recall that the variational inequality with constraint d(x) (instead of

1/2 dZ(x)) arises in the elastic-plastic torsion problem for a bar. Some of the
methods used for that problem [6] will be useful also here.

Taking v w+ in (4.3) we find that w >_ 0.

LEMMA 4.1. W (3 CI’I().

Proof Notice that

1/2 dE(x)= inf l(x)
1<i<4

where the l,(x) are linear functions (li(x) is distance from the ith side of
Consequently, for any direction ,

(in the distribution sense). The method of Brezis-Kinderlehrer [2] then gives
w Cg (f). The C’ ofw up to the boundary follows by first extending w into
a neighborhood of any vertex (by reflections) and then using [2].
We introduce the coincidence set

(4.5) I {x (3 n; w(x)= 1/2 d2(x)},
the non-coincidence set

(4.6) A n; w(x)< 1/2

and the free boundary

(4.7)

DEFINITION. A point x (3 is said to belong to the ridge R of if for any
neighborhood No of x the function dE(x)is not in Cx’X(No).
The method of [6] shows that R A; both the definition of the ridge and the

last relation are valid for general domains ft.

LEMMA 4.2.

(4.8) w,,(sgn x,) < 0 in f (i 1, 2).



412 L.A. CAFFARELLI, A. FRIEDMAN AND A. TORELLI

Proof It is enough to prove that Wx2 > 0 in f_ f c {x 2 < 0}. On
I c

_
we have wx2 (1/2 d2(x))x: > 0. Next, by symmetry, w2 0 on x2 0,

whereas on the remaining part of 0f_ Wx > 0; thus by the maximum principle,
in A f_, Wx > 0 in A c f_, and the proof is complete.

Set 0=(0, 0), A=(-1, -1), B--(1, -1), C=(-1, 1), D=(1, 1), and
introduce the triangle T with vertices 0, A, B.

LEMMA 4.3.

(4.9)
t3x2

(w 1/2 dE) _< 0 in T.

Proof We shall show that

(4.10) Z=Wx-(x2+l)<O inf,_.

Notice that z 0 on I T. On the remaining part of I f_, wx2 0 so that
z < 0. Also z(xl, O) wx(xl, 0) 1 1 < 0. Using the maximum principle
we deduce that z < 0 in A f_, and (4.10) follows.

LEMMA 4.4.

(4.11)

For any neighborhood N of any vertex of f,

N A4:0, NcI4=O.

Proof If N A 0 then w 1/2 d2 in N contradicting Lemma 4.1.
Suppose next that N I 0. Then Aw -1 in N f, and w w 0 on
N Of. Reflecting w across x -1 we conclude, by unique continuation,
that w(x)- -1/2(x2 / 1)2 which is impossible (since w > 0).
From Lemmas 4.2, 4.3 it follows that the coincidence set in T consists of a set

{(Xl, X2) --1 < x2 < b(x,), -a < xl < a}

where b(xl) is monotone increasing if a < x < 0 and b(- x 1) b(x x).
Lemma 4.4 implies that a 1. By a general result of Lewy and Stampacchia [9]
it follows that the free boundary has analytic parametrization. Since v < 0 in
A T, the method of Alt [1] shows that qb(xl)is Lipschitz; hence qb(xl)is
analytic.
The coincidence set in the other three triangles OAC, OCD, ODB has the

same form as in T. Thus I consists of the four shaded regions in Fig. 1, and the
free boundary F is analytic.

THEOREM 4.5. Each of the four components of the coincidence set is convex.

Thus, the function X2 --I)(X1) representing the free boundary in T is
concave.
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FIG.

Proof If the assertion is not true then b’(xl) has a local maximum at some
point 1 (-1, 0). Then the function

1
Wxlxl(Xl’ I)(X1))"--"

1 + ))’-"xl’’2

has a local minimum at 1. Consider the "inflection domain" G with vertex
(1, b(l)), i.e., a maximal connected component in A such that OG contains
(, b()) and

Wx < la in G; p wxl(l, t(l)).
The construction of G is given in Caffarelli and Friedman [5].
G cannot lie entirely in T since on one hand wxl =/ on tG A and, on the

other hand, wxlxl (w- 1/2 d2)xlxl (in T) cannot take a local maximum or a
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local minimum at any point of the free boundary F T, by a result of Fried-
man and Jensen [7].

It follows that dG must intersect some of the other components of F (not in
T). Using symmetry we can easily deduce that cG must in fact intersect F T
where T is the triangle OAC. But then G intersects the diagonal AD in some
segment 1; at least one endpoint o of lies in A.
We have

(4.12) Wxl wx2 on AD,

since w(zx)= w(x) where z is the reflection with respect to the diagonal AD.
Differentiating (4.12) along we find that Wxlx W2x. Since Aw 1 on l,

we get w, const -1/2 on I. But this is impossible, since wl < p in the
interior of and wx p at the endpoint (o of I.

5. The limit problem in case (1.12)
We now specialize to the case (1.12), that is, f is the square (4.1) andfis the

Dirac measure supported at 0. Thus

1 1
(5.1) -F log -r + h is the Green’s function for f with pole at 0;

h is harmonic in fl,

1 1
h

2
log -r on cfl,

r (x 2 -[-y2)1/2. Notice that F satisfies all the assumptions required in the
previous sections, namely, (1.1), (2.1) and (3.20).
We shall need later on a version of the Phragmen-Lindelof theorem, which

we now proceed to describe.
Let D be a domain in RE bounded by disjoint arcs 70, 71, 72 such that 71, 72

initiate at the origin 0, 70 lies on r 2, for some 2 0, D lies in the sector
0 < 0 < n/2, 0 < r < .

Let ( be a harmonic function in D such that

(5.2)

(5.3)

LEMMA 5.1.

(5.4)

Proof.

j is continuous in D\{0},
t=0on71 72,

Under the foregoin9 assumptions,

lim (x)=0.
D,x-.O

Introduce the region

={(r, 0);0<0<n/2, e<r<2} (>0)
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and the functions w. satisfying:

Aw. 0 in,

w,(r, O)- w.(r, rt/2) 0 if e

(5.5) w.(e, 0)= [(e, 0)1 if (, 0) D,

w,:(e, 0)- 0 if (e, 0) D,

w,:(2, 0)= C* if 0 < 0 < n/2,

where C* supt,0) o 1((2, 0)]. Then w, > 0 on 1 w 2 and, therefore, by the
maximum principle,

(5.6) w, >_ I1 on D, D

By repeated antireflections we can extend w, into the ring T,:" e < r < 2. The
extended function, say v., is harmonic in . We can write

(5.7) ,. + w,..
where , are both harmonic in and

tCv. on r 2,
W, I0 on r 2,

t0 on r e, toy,: on r e.

It is clear that

(5.8) I1 -< c*.

Introduce Green’s function in the exterior of the disc r < e:

1 e4 2e2rp cos (0 ) + r2p2

G(r, 0; p, )= log eE[p2 + rE 2rp cos (0 b)]"
By the maximum principle,

f (r, , )d.cOG
I/,0tl _< l./,l 0.,

It is easy to compute that G(2e, 0; e, )= O(1/e)as e 0. Hence

cf 4cf(5.9) I(2, 0) - el(e, )1 d -- el(e, )1 d

where the last integration is over the set fi {; (e, )e D}. Since L(D),
the function e ,: e l(e, ) d belongs to L. Hence

1(, )1 d < og 1/)
for a sequence e, 0. Using this in (5.9)and recalling (5.6)-(5.8), we see that

sup 1(2,, 0)1 o(1/) ( 0).
(2en,0) D
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This enables us to apply the usual Phragmen-Lindelof theorem [10] in order to
conclude (5.4).

In order to identify the sets I /, I_, Fo and the functions o, rio, we return to
the results of Section 4 and introduce Green’s function G for the non-
coincidence domain A, with a pole at 0. Thus

1 1
(5.10) G(x) log -r + in A, is harmonic in A, and G 0 on c3A.

Set A A c {X2 < 0} and I1 I T where T is the triangle OAB. The
function O(x)= x112

__
w_x2 is harmonic in A1. Therefore Oxl + iqx2 is

antianalytic in A1, and the mapping

(5.11)
is conformal; it is a special case of the mapping introduced by Lewy and
Stampachia [9].
We claim that

(5.12) r maps A1 onto 11 in a 1-1 way.

Indeed, on the common boundary of A1 and 11 (it belongs to F)we have

Wxl 0, w2-- x2 + 1, and thus

(5.13) ax x on

Next, on c3A1 {x2 0}, Wx 0 and thus a(xl, 0) {x2 1} and on the
remaining part of c3A1 (it lies on F)Wx2= (1/2d2)2=0, and again

{x: -1}.
Using these facts about a and applying the argument principle, we conclude

that a maps A1 onto 11 in a 1-1 way. Notice that a is the identity mapping on
cA1 c3l 1.

Define

G(x) if x A w (0A c 011),
(5.14) GI(X

-G(a-lx) ifx e 11.
This function is harmomc in A1 w 11 w (OAa c311); it has logarithmic singu-
larities at the boundary points (0, 0), (0, -1).

In the same way we can extend G as a harmonic function into the remaining
parts of I. Denote this extension by G. This function has the following
properties"

AG 0 in f\{0},
G has logarithmic singularity at 0 and at the points (+ 1, 0), (0, _+ 1),

(5.15) G_ 0 on the free boundary F
G_>0inA,
G<0inI,
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and

(5.17)

(5.16) Aw H(-G) where H is the Heaviside graph.

LEMMA 5.2. The function z is 9iven by

z - F.

Proof For any harmonic function v in

(5.18) fn v Aw dx O,

by integration by parts. By approximation (cf. the proof of Lemma 2.2)we find
that (5.18) holds for any v Z. Defining a function r/by -G F + r/ (q is
harmonic in f, r/ Ll(f))and recalling (5.16), we obtain from (5.18)

(5.19) fn vH(F + ) dx O, v Z.

By the monotonicity of H we have

[n(r + )- n(r + z)][(F + r/)- (r + z)] _> 0.

Using this fact, (5.19) and Lemma 2.2, we can proceed as in Theorem 3.2 (with
z* replaced by r/) and conclude that sgn (F + r/) sgn (F + z). Since F + r/=
G 0 on F, it follows that F + z 0 on F, and thus r/= z on F.
Applying Lemma 5.1 in A to the harmonic function t/- z, we deduce that

q(x) z(x) 0 if x tends to a vertex of Off. Hence, by the maximum principle,
r/- z 0 in A; therefore also in fl, and (5.17) is proved.

Remark. Lemma 5.2 implies that any possible limit function z is uniquely
determined. Hence the entire one-parameter family z is convergent to z
uniformly on compact subsets of fl).

COROLLARY 5.3.

(5.20)
and hence

0 Aw in ,
(5.21) I_ A, I+ I, Fo F.

Indeed, (5.20)follows from Lemma 5.2 and from (3.13), (5.16).
We can now give additional information on the free boundary F.

THEOREM 5.4. (a) The two arcs of F initiating at each vertex of have
tangents (at the vertex) which divide the angle ofO into three angles ofequal size
rr/6.

(b) The area of A is equal to the area of I.
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(5.22)

Proof

that is,

Proof Extend G by reflection into a neighborhood N of the vertex.
Then the two arcs of F in N are two of the (say n) arcs (initiating at the vertex)
on which G 0. Their tangents at the vertex divide 2t into n equal angles of
size 2rt/n. This gives (a). The assertion (b)is a consequence of Theorem 3.5 and
(5.21).
The final result of this section is the following"

THEOREM 5.5. As fl O,
fd w in W2’p(f) (2<p< ).

Since fit and w belong to Ho2(), it suffices to show that

0// 0 in LP(),

.I’ H/(F + z/i)- H(F + z)lp dx O.

But this follows from the Lebesgue bounded convergence theorem.

Remark. Theorem 5.5 is valid also in casefis constant, sayf_ 1. To prove
it we only need to exhibit a function (7 in L (f) such that At7 1 in f, (7 < 0 in
A, G > 0 in i. Define

a(x, y) D,[w (1/2)(1 + y)2].
Then Aa 0 in A, a < 0 in A1, 0 on OA I . Denote by its harmonic
continuation by means of the antireflection (5.11). Then & > 0 in 1. Let

A(x, y)= ( (x,t) dt.

"(x)

Notice that AA -2 in A and

y
consequently AA -2 also in I. Also A 0 on OA dI, A < 0 in I.
Define G by AG 1 in A, G 0 on dA and let F G + A. Then AF 0 in A ,
F < 0 in A, F 0 on dA dI x. Denote by ff the continuation of F by means
of the antireflection (5.11); Aft 0 and > 0 in I . Then G A satisfies
all the required properties in A w I w (dA OI 1); the extension of d to the
remaining I is similar.

Remark 2. All the results of Sections 4 and 5 (except for Theorem 4.5)
extend with minor changes to the case where is a rectangle (andfis the Dirac
measure supported at the center). One can further show (using "inflection
domains") that each of the four sections of the free boundary is a graph, and for
a graph x:= 4(x)(--a < x < a), 4’(x) has at most one inflection point in
the interval a < x < 0.
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6. The case of an equilateral triangle

The results of Sections 4 and 5 can be extended to the case where

(6.1) is an equilateral triangle andfis the Dirac measure supported at the
center of .

Take A (-1, 0), B (1, 0), C (0, 43)to be the vertices of . Then
D (0, l/x/3 is the center. As before, denote by w the solution of the varia-
tional inequality (4.3), (4.4).
The ridge of consists of the line segments AD, BD, CD.
The proof of Theorem 4.1 also gives, in this case,

(6.2) w e CX’X();
near a vertex we employ several antireflections in order to extend w into a
whole neighborhood of the vertex.

Next,

(6.3) (sgn x,)w, < 0;

the proof is by the same method as in Lemma 4.2. Also,

(6.4) Wx > 0 in the triangle ADB.

In proving (6.4)we use the fact that (since w(,x)= w(x), " the reflection with
respect to the line containing A, D)
(6.5) w,, x/3Wx on AD,

and therefore, in view of (6.3), w >_ 0 on AD.
Introduce the function fv(x)= w(x)- 1/2x. Then

(6.6) fv,, < 0 in the triangle T ABD.

Indeed, on AD we have, by (6.5), -fv,, + 43v  x/3x . Applying the tangen-
tial derivative (to AD) x/3 c3/c3x + O/Oxz to both sides and using the equation
Afv + 2 0, we discover the relation

-It- 43 X2)-" --43 on AD,

that is, Ofv,,2/c3v < 0 where O/Ova is some exterior derivative (to T) at the
boundary points of AD. Similarly, c3fv,,/Ov2 < 0 on BD with another exterior
derivative c3/c3v2. The rest of the proof of (6.6) now follows by applying the
maximum principle to in T c A (A is defined by (4.6)).
The proof of Lemma 4.4 also extends to the present case with obvious

changes. We can now conclude that the coincidence set I consists of the three
shaded regions in Fig. 2. In T, the free boundary F has the form x2 qS(x 1)
(- 1 < x, < 1) where b(x) is monotone increasing if 1 < x < 0, 4)(- x)
b(x a), and 4) is analytic.
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FIG. 2

We next introduce Green’s function G in A with pole at D. We wish to extend
it into g by a conformal mapping. It will be enough to carry out the extension
into I1 I m T. To do it, denote by E the intersection of F with the ray BD
and by F the intersection of F with the ray AD.

Consider the subset A ofA bounded by the three arcs of F from A to E, from
B to F and from A to B, and by the two line segments DE, DF. We now
introduce the conformal mapping x --, rx (xx + wxl, wx2). Clearly

(6.7) o’x x on cAa m cIx.
On DE (cf. (6.5)), wxl + x/3w,,. 0 and, since w, > 0, we get wx2 < 0.

Similarly Wx,<O on /. On the arc of F from A to E we have
w, (1/2 d2(x))x: < O. The same holds on the part of F between B and F. Thus,
altogether, Wx < 0 on cOA \t311, i.e., ax {x2 < 0} if x e OA1 \1. Recalling
(6.7) and using the argument principle, it follows that tr maps A in a 1-1 way
onto a domain containing I1.
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We can now repeat the remaining analysis of Section 5 and obtain the
corresponding result for the present case of a triangle. Thus, setting ;(x)=
-G(tr-ax) if x 1, etc., we can state"

TOR 6.1. The assertions (5.17), (5.20), (5.21)and (5.22) hold.
Notice that two arcs of F initiating at the same vertex divide the angle at the

vertex into three equal angles of size /9.

7. Miscellaneous remarks

Consider the case where ) is the square ABCD as in Sections 5, 6 and let

E1 {x; -1 < X2 < I(X1), --1 < xl < 1}
where (xl) is any function such that ff l(x 1) > 1 and E does not intersect
the ridge R of . Define E2, E3, E4 in a similar way, using (arbitrary) functions
2, 3, 4, and set 1, = Ei, A, \[,. For example, the sets 1, A are a
special case of I,, A,.

Consider the variational inequality (0.1), (0.2)with a general functionfand
with the above square. We ask the following question" can the relations

(7.1) I_ =A,, I+ =I,
hold for some f?
LEMMA 7.1. If (7.1) holds then rio w where w is the solution of(4.3), (4.4);

consequently, A, A and I, I.

-o is harmonic in A, By uniqueness forProof Suppose (7.1) holds. Then uy
the Cauchy problem, rio d2/2 in I,, hence oUx2 < X2 + 1 on 0A, {x 2 < 0}.
Also ux: =0 on x2= -1. Applying the maximum principle we get
~0u < x2 + 1 in A, {x2 < 0}. It follows that rio <

_
d2 in A,. Finally since

Aft 1 in A,, rio is a solution of the same variational inequality as w; hence
fi w.

Suppose now that

(7.2) f(x) Z ai 6(x i) (ai > O, m > 1)
i=1

where 6(x) is the Dirac measure supported at (0, 0) and

(7.3) o 4: (0, 0) for at least one io.

THEOREM 7.2. Let be a square with center (0, O) and letf be 9iven by (7.2),
(7.3). Then (7.1) cannot hold.

Proof Suppose (7.1) holds. Then, by Lemma 7.1, rio _= w, A, A, l, I. It
follows that Aw- Aft o, so that Aw e H(F + z), by (3.13). We conclude
that F + z vanishes on the four arcs of F. Notice that the points i must all
belong to I_, hence to A. Suppose now, for simplicity, that i0 lies in A
(defined following (5.10)). Then the Lewy-Stampacchia type extension of
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F + z given by means of tr (cf. (5.11)), which we shall denote by (, has logarith-
mic singularity at the point aio of I1. By unique continuation, F + z must
coincide with ( on 11. Consequently z must also have a logarithmic singularity
at ao, a contradiction.

Remark 1. Lemma 7.1 and Theorem 7.2 extend to the case where f is an
equilateral triangle. The proofs are similar.

Remark 2. Consider the problem (0.1), (0.2)where -fl, fl is fixed andf
depends on a parameter e" F,: 9/e (e 0). Denote the corresponding solution
by u,: and define fi. eu,:. Then fi,: solves the variational inequality (0.1), (0.2)
withf 9 and with fl replaced by fie. Thus the problem forf, can be reduced to
the problem studied in this paper.

Remark 3. Consider the problem (0.1), (0.2)with t -fl when f depends
on a parameter e" f,: {x/e, x D} (e $ 0). Denote the solution by u. and define

f,:(x)=e4u,:(x/e), (x)=f(x/e).
Then for ,: we get a variational inequality in D withfreplaced byrd, and with/3
replaced by//e. This problem is similar to the one studied in this paper and
some of the results are applicable here.
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