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AUTOMORPHIC FUNCTIONS WITH
GAP POWER SERIES
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P. J. NICHOLLS AND L. R. SONS

1. Introduction

L. A. Rubel [1, p. 136] has raised the following question. "What kind of gaps
can the Taylor expansion of a non-constant automorphic function have ? For
example, can it have Hadamard gaps? (Presumably the sharp answer would
depend on the group concerned.) This is closely related to a theorem of C.
Renyi that a non-constant periodic entire function cannot have more than half
of its coefficients zero."

In this paper we prove some theorems which partially answer this question.
Throughout, G will denote a Fuchsian group acting in the unit disc
A- {z: [z < 1}. We will consider only groups which are of the first kind,
finitely generated and possess a parabolic element. These are precisely the
groups for which the quotient surface A/G is obtained from a compact
Riemann surface by deleting a finite, positive, number of points. Clearly we
must require A/G to be non-compact otherwise no non-constant analytic auto-
morphic function can exist.
We suppose f(z) is an analytic automorphic function with respect to a group

G as above and write

(1.1) f(z) Z Ck z’k where Ck 4: O.
k=O

We consider a function of the non-vanishing coefficients off defined by

(1.2) No(t)=max{k’nk<t} for anyt>O.

THEOREM 1. Let G be a Fuchsian 9roup as above and let f be an analytic
automorphic function for G which is of the form (1.1). Then

No(t) :/: o(log log t) as t

If we ask for some regularity of spacing in the gaps we can do better than
Theorem 1.
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THEOREM 2. Let G be a Fuchsian group as above and let f be an analytic
automorphic function for G which is of the form (1.1). Then

(rig+ rig)
log nk

nk
remains bounded as k
We note in particular that Hadamard gaps cannot occur. If we restrict the

growth of the function we may also obtain, using the method of proof of
Theorem 1, theorems of the following form:

THEOREM 3. Let G be a Fuchsian group as in Theorem 1 and let f be an
analytic automorphic function for G which is of the form (1.1). Let

lim sup
log M(r)

r-. -log (1 r)
where M(r) is the maximum modulus offon (I z r) and we assume that > 1.
Let O(n) be the number of non-vanishing7 coefficients off in the interval

(n"t3/t, n3/t) where a (/3 1)/4ft.
Then O(n) 4: o(log log n)as n o.
We shall omit the proof of Theorem 3.
With a similar restriction on the growth of the function it can be shown,

using the method of proof of Theorem 2, that an automorphic function cannot
have gaps of a type previously considered by the authors [4, Theorem 6].

In proving these theorems essential use is made of three properties of auto-
morphic functions. The first property is a lower bound for the growth of the
maximum modulus of such a function. Defining no(r, a) to be the cardinality of
the set {V e G: V(a)l < r} and n(r,f)to be the number of zeros of f in
{Izl < r}, we observe that n(r,f)> n(r, a)if f(a)= 0. Our bound on the
maximum modulus follows from a lower bound on n(r, a)obtained by Tsuji.
The second property used concerns the covering of circles {I z r} by group

images of a disc around the origin. For many values of r the images of such a
disc cover a fixed positive proportion of the circle {I z r}--this is a weak
form of a mixture property of geodesic flows on the quotient space and was
derived in this form by Tsuji. Thus our automorphic function will be bounded
by some constant k on a fixed positive proportion of a large number of circles.
This idea is the essential ingredient of Theorem 1.
To prove Theorem 2 we use a third propertynamely that an automorphic

function is bounded on any radius which ends at a hyperbolic fixed point of the
group. This is a trivial consequence of the fact that the axis of any hyperbolic
transform must lift to a closed loop on the quotient space. We then show that
the gap condition

rlk +
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satisfies the hypotheses of an earlier result of the authors’ [4, Theorem 5] and
functions with such gaps cannot be bounded on a radius.
We mention in conclusion that J. Lehner and T. Metzger have recently

obtained some results on gap series representations for certain classes of auto-
morphic forms (personal communication to the authors).
The authors thank the referee for the proof of Lemma 4 given here which is

simpler than the original proof of the authors.

2. Proof of Theorem 1

Let G be a Fuchsian group as described in Section 1. If A A is a disc
containing the origin we define

/z(r,A)={ei:rei z and V(z) 6 A for some V6G}.
We say that 2ztl(r, A) is the euclidean linear measure of the set #(r, A). Then for
e > 0 we write

a(e) {r, 0 <r < 1: l(r, A)>_ }.

LEMMA 1. For some e >0, dependin9 on A and G, Ao:)dr/(1- r)is
unbounded.

Proof
depending on A and G,

From a result of Tsuji [5, p. 555] we note that for some 6 > 0,

l(r, A) dr 6 log
1-r 1-R

for R > Ro say.

We choose e 6/2 and note that

fo f f l(r’A) dr
R l(r, A)

dr l(r, A) dr +1 r tO,R] A(t:) 1 r [O,R]\A0:) 1 r

dr
< + e log

0,R] A0:) 1 r 1-R

Thus, for R > R0,

> log
0,R] A(c) 1 r 1 R

and the result follows.

LEMMA 2. Let G, f be 9iven as in the statement of Theorem 1 and let M(r)
denote the maximum modulus off on the circle {[ z r}. There exist positive
constants , K so that

log M(r)(i) -log (1 r) >- fort > ro say;
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and, outside a set Eo of r such that Eo dr r) < K we have
(ii) M(r + (1 r)/eM(r)1/) < 2M(r)and
(iii) Enk>_M(r)3/[Cklrnk< 1.

Proof Without loss of generality we may assume that we can find an a A
so that f(a)= 0. Clearly n(r, f) > n(r, a) for all r, 0 < r < 1. Tsuji has shown
[5, p. 518] that there is a positive constant A, depending on G and a, so that

n(r, a)>_ A/(1 r) for r _> r say.

Thus n(r, f)>_ A/(1 r) for r _> rl and part (i) follows trivially from this.
Inequality (ii)is a result of Hayman [3, p. 38] applied to the function M(r)/.

To prove (iii), for each r for which (i)and (ii)are valid, let

? r + (1 r)[eM(r)/]-and for zl r let

R(z) Ck]Z"
where the summation is taken over all n such that n >_ M(r)3/. From
Cauchy’s estimate we have, for each k,

and so

I1 r"k <- M(’)(rfi’)",

R(r) <_ ()(r/)’’’( )-.
For zl r we have

log IR(z)l _< log M(f)+ M(r)3/ log (r/f)+ log(f -r)"
Using (i), (ii) and the definition of f we see that

M(r)3/o I(z)l _< ( + /)og ()+c-()-/

for all admissible r close enough to 1 where C is a constant. Thus, for such r,

log IR(z) < 0

and the proof is complete.

Our next lemma is due to Gaier [2].

LEMMA 3. Let 7 be a closed subset of c3A of measure 2n where 0 </3 < 1. If
P is a polynomial with N terms then

max le(z) exp (2//-u) max le(z) l.
ze?A z7
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We now prove Theorem 1. Choose a disc A as in Lemma 1, let e > 0 and A()
be as in Lemma 1. Note that f is bounded on A and, since it is automorphic
with respect to G, we have, for some Q,

(2.1) [f(z)[ < Q for all z in G(A).
By Lemma 1 we find a sequence of numbers s approaching 1 from below

which lie in the set A(e) and outside the set Eo of Lemma 2. We write, for

(2.2) f(z)= CkZnk- Ck Znk
nk M (s)3/ nk >_ M (s)3/

Ps(z)+ 9(z).
Note, from Lemma 2, that

(2.3) ]g(z)l <_ 1

for all s in our sequence and zl s. We now apply Lemma 3 to the polyno-
mial P(sz)taking y to be the set (s, A). Thus

(2.4) max [P,(z) <_ exp {2-No*’’’,} max
Izl

where No(t) is defined in (1.2) and 2 {z" I1 =r and V(z) A for some
V G}. From (2.2), (2.3)and (2.4)it follows that

For some constant k, and for all s in our sequence,

from which

If No(t)= o(log log t) then, for s large enough on our sequence,

u0(()3/) < o o 3/) w
For such s it follows from (2.5) that

and we have a contradiction.

3. Proof of Theorem 2

We need two lemmas.

LEMMA 4. Let rlk be an increasing sequence of positive integers satisfying

(nk+l nk)
log nk oz as k oz.

lrlk

Then k-1/2 log rlk oz as k -- oz.
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Proof
such that

exp {Xk+l Xk} > y/xk

Hence there is an integer p such that

x+ x >_ y/(2x)
Thus

and so, for k >_ p,

Let xk log r/k. Then for each large number y, there is an integer m

for k > m.

for k >_ p.

x+>x2+y fork>p,

2x, > (k- p)y + xp.

Since y can be chosen arbitrarily large, the result follows.

LEMMA 5.

Then

Let nk be an increasin9 sequence of positive integers satisfyin9

(nk+ nk)
log nk

Hk

Z r/ o((log np)2)
k= 0 (nk no)2

asp.

Proof We write

h(p) min
(n+x n)log n

ni nt,/ 2 rii

and note that h(p)--, as p-, oe. For k > p we have

,, ( _,)+ (-,
_

)+... + (,,+, ,,)

Thus

rip>_ h(p)(k p)
log n,

2 (log no)2t/p(3.7) (nk- tp)2- (k- p)2h(p)2
Now we consider k < p and observe that if no_ no/2 then

(3.8)

and so

(3.9)

(n. rip-k)-’ < h(p)- rip_ k + q- rip_

log np_ k log n,_,

4(log rip)2
(riP-- F/p-k) -2 2 2 2"k h(p)np

-1



AUTOMORPHIC FUNCTIONS WITH GAP POWER SERIES 389

If n,-k < p/2 then

(3.10) (n,- n,,_a) < 4/n.
Combining (3.9) and (3.10)we see that

ix 4(lo8 n,)2 1 (log rip)2 1no <4(p-l)+ )2 - + )z k2(rlk n,)z h(p k= h(p k=

which, in view of lemma 4 and the fact that h(p) ---, oe as p -, oe, completes the
proof of Lemma 5.
To prove Theorem 2 we suppose that G, f are as given in the theorem and

(nk+ nk)
log nk c as k--, o.

nk

In view of Lemma 5 we may deduce from a result of the authors’ [4, p. 106] that
for any 0 in [0, 2r] there is a sequence of numbers s tending to 1 for which

(3.11) log supto ft  e’)l >- log

We take ei to be a hyperbolic fixed point for G and, sincefis automorphic, the
left hand side of (3.11) remains bounded as s ---, 1. This contradiction completes
the proof of Theorem 2.
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