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LOCAL FIXED POINT INDEX THEORY FOR
NON SIMPLY CONNECTED MANIFOLDS

BY

EDWARD FADELL AND SUFIAN HUSSEINI

1. Introduction

This paper is a sequel to [1]. There we associated to a globally defined map
f: M - M on a compact manifold an obstruction class o(f)G Hm(M; (f)),
m dim M, where (f) is an appropriate bundle of groups on M, with local
group isomorphic to Z[], I(M). We also identified o(f)with an element
a(f) G ZR[r, q], where R[rt, q] is the set of Reidemeister classes of t induced
by the homomorphism q9 =f," rt ft. a(f) had the form

(f) +- E I(p)p
per

where R R[rt, q] and I(p) is the index of the Nielsen class offcorresponding
to p. This gave us a specific relationship between the obstruction o(f) and the
Nielsen number n(f) off, or, more precisely, between o(f) and a 9eneralized
Lefschetz number (f) which played the role of a global index and which, in
turn, was expressible in terms the Nielsen classes off As a consequence, for
example, (f)= 0 forces o(f) 0 and one obtains the appropriate converse
of the Lefschetz Fixed Point Theorem for non-simply connected manifolds.
Our objective here is to carry out this program locally and thereby give a

generalized local index theory.
Section 2 is devoted to the local obstruction index. Starting with a smooth or

PL manifold M, dim M_> 3, the inclusion map M x M- A M x M is
replaced by a fiber map p" E - M x M and the bundle ’ of coefficients is the
local system Zm- I(F) on M x M, where F is the fiber of p. The group ,_ (F)is
identified in [1] as Z[], where (M) and the action of on Z[] is
given by the right action

o (a, z)= (sgn a)a-z.
Now, we suppose that we are given a mapf: U M, which is compactlyfixed
on U (i.e. Fixfis compact), U an open set in M. Let (f) denote the bundle of
groups on U induced from by x f: U -, M x M. The local obstruction index

o(f) o(f U) H’(C; (f))
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674 EDWARD FADELL AND SUFIAN HUSSEINI

is defined by first taking a compact m-manifold K with boundary t3K such that
K c U and Fix fcint K. Then, if E(f)is the induced fiber space (i f)*(E),
there is a natural partial section So(f): dK E(f) and, consequently, a pri-
mary obstruction

o(f, K) Hm(K, 3K; M(f, K))
with the property that f is deformable (rel dK) to a fixed point free map (into
M) if, and only if, o(f, K) 0. By letting C denote a slightly smaller copy of K,
o(f, K) determines an element of Hm(U, U C) and consequently the element

o(f) HT(U; (f))
called the local obstruction index off on U. Among others, it has the property
thatfcan be deformed by a compactly fixed homotopy to a fixed point free map
g if, and only if, o(f)--O.

In Section 3 we study local Nielsen numbers in a more general situation.
Here f: U X is a compactly fixed map and X is a Euclidean neighborhood
retract (ENR [2]). Given two points x and x. in Fixfwe say that x and x2 are
Nielsen equivalent if there is a path C in U from x to x 2 such that C and Cfare
homotopic in X, modulo endpoints. The resulting classes (finite in number)
are called Nielsen classes off in U. Such a Nielsen class N(f, U) is essential if
the local (numerical)index [2] is not zero on N(f, U). The local Nielsen
number n(f, U) on U is just the number of such essential classes. We also
express the local Nielsen classes in terms of the universal covers /v: 0 U,
r/: X. One takes lifts i: 0 , f: 0 ) of the inclusion and the mapf
and identifies rr and rr(U) with the covering groups of r/and r/v, respectively.
Then, a typical Nielsen class has the form

r/t:(Coin [fa, i]), a e n.

where Coin [-, .] is the coincidence set of two maps. Next, we employ the
notion of Reidemeister classes in the situation of two homomorphisms,

which induces the right ’-action on n by a*a p(a-)a,(a). The resulting set
of orbits (Reidemeister classes) is denoted by R[, p]. The relationship between
local Nielsen classes and Reidemeister classes is as follows: Let

denote the homomorphisms induced by the inclusion and the map f. The
correspondence F: [a]- r/v(Coin Ira, ’])takes R[iv, qv] bijectively to the set
of Nielsen classes off on U, if we ignore those Reidemeister classes for which
r/v(Coin Ira, ’])= b. Using the correspondence F the index I(p) of a
Reidemeister class p R[iv, qv] is defined to be the index of the corresponding
Nielsen class F(p).
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In order to calculate the local obstruction index o(f) when U is connected,
(Sections 4 and 5) we make use of a bilinear pairing of local systems

P: (f)(R) -(U) - (f)where -(U)is the orientation sheaf on U and (f)is the local system on U
with local group Z[n] and action

a*a qgv(a- )aiv(a).
Then, if/(U) Hem(U; -(U))is the twisted fundamental class on U we have a
cap product based on the above pairing and a Kronecker product

<’, #(U)>: Hy(U; M(f)) Ho(U; l(f)) ZR[iv,
We are now in a position to state the main theorem which expresses the local

obstruction index o(f)in terms of Reidcmeistcr (Nielsen)class off on U.

THEOREM. Let R R[iv, qgv]. Then

(o(f), /z(U)) (-1) I(p)p ZR[iv, qgv].
pR

COROLLARY. f’. U-- M is deformable via a compactly fixed homotopy to a

fixed point free map : U M if, and only if, the local Nielsen number
n(f, U) O.

2. The local obstruction

Let M denote a connected (not necessarily compact) manifold of dimension
m >_ 3, and A A M M the diagonal. Then, if we replace the inclusion
map i" M M A M M by a fiber map p" E M M, we recall [1] that

E M’ M"
where I is the interval [0, 1] and p(, fl)= ((1), fl(1)). Furthermore, if
b (x, y) M x M, the fiber

F p-(b)= {(cz, fl) E" a(1)= x, fl(1)= y}
is 1-connected, so that F is k-simple for every k and nm- (F) is a bundle (local
system) of groups on M x M. We denote this bundle by M N’(M x M). In
[1], we obtained a description of the structure of as follows" We fix a base
point b (x, y) e M x M A and let/ denote the constant path at b. Then we
identify n with n,(M, x)and n x n with n (M, x) x n (M, y), with x near, but
distinct from, y. Then, there is an isomorphism of local systems (on
MxM-A)

if" n(M M, M M A, b) nm-,(F, )
given by the exponential map and ff was employed to establish the following
theorem.
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THEOREM 2.1. There is an equivariant isomorphism

where the action oft x t on rtm_ (F, b-) is given by and the action ofr x rt on
Z[rt] is 9iven by the right action

go (r, z)= (sgn r)a-
r and z belong to t and sgn c is +_ 1 accordin9 as r preserves or reverses a local
orientation at x E M.

Remark 2.2. If r is identified with covering transformations of r/" r M,
the universal cover of M, then r-lzz is to be read as composition of functions
from left to right. In fact, we will, in general, write compositions of functions
from left to right. However, we will still write cz(x) for the value of the function g

at x and thus we will also write, for example,

In general group actions will be from the right and if acts on X, x may be
used for the action of r on x X as well as (x). In [1], we used the
corresponding left action

(a, z) z (sgn a)zza-1

reading composition of functions from right to left.
We review briefly this isomorphism in Theorem 2.1. is obtained by

establishing an isomorphism

V" Z[/t]-* ltm(M M, M M A, b)
and setting v. The structure of v is a bit involved and takes the following
form.

Again, let r/" hr ---} M denote the universal cover of M. Choose a base point
e r over x. We identify rt with the covering group of r/ and if we set

z, e t, then r/-(x)= {, rt}. The diagram

(1)

projl

projl

(MxM, xM-A)
where ( r/ x r/and the horizontal maps of (1) are fibered pair projections on
the first coordinate, gives rise to isomorphisms for each tr, z.

(2)

rt,,,(M, M x, y) g,,,(M x M, M x M- A, (x, y))
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where (M, M x) and r, r r/-l(x)) are the fiber pairs of the horizontal
maps in (1). In (2), , where lies over yand is chosen near :. Also,
the top horizontal isomorphism in (2) is induced by the fiber inclusion

given by O,,(u)= (5c,,, u). Applying the Hurewicz Isomorphism Theorem, we
have

(’__ .-(), )

Hm ]] ]1 rl- x

Oa #
/lm(J X ], X 2 -I(A), (a,

nm(ff/1 if fill -I(A)).
Now, choose a cell neighborhood V of x and corresponding neighborhoods 17,
of :,, evenly covering V so that ff 17. Choose a local orientation at x,
thereby determining a generator

and since

Hm ]l 11 rl- x , H,,,(17 17 x),

the correspondences a- 1 aF-01,(l a) give rise to the isomorphism v as the
following composition

Z[n] Z n,.(17, 17- ) Um(2l -nm(M x M, M x M A, b), Hm( x , x -(A).
This completes the sketch of the structure of . While does not depend on the
choice for over x, does depend on the orientation chosen at x and the
choice of the base point b (x, y).

There is also an alternative description of . Define a correspondence

by setting

,(, )= 0,( ).
We factor out the subgroup D of Z[n x ] generated by elements of the form

sgn (, )- (, ), , , .
Since [1], for every a e ,

01,1(a x a)= (sgn
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# induces

t" Z[t x t]/D H,(hr x/, r x/r- -I(A)).
Now, let co" Z[r x r] Z[r] be defined by

co(, fl)= (sgn 0)-1ft.
Then, co(D)= 0, and we have an induced isomorphism

6. z[ ]/- z[].
Thus, is also given by the following composition

z[]-. ,, z[, ,]/o /-/( , - -’(A))

rrm(M xM, M x M- A, b)
and b and t are equivalent with respect to the right actions of n x r given
respectively, when (tr, z)e r x t, by

(,, )= sgn -, ,
[(, p)](,,-, ,)= [(,,-, p)], (o,, p) , ,,

(, )= ( ),(), u( , - -(A)).
We now consider the following data.

2.3. The data (M, f, U).

(i) M is p smooth or PL manifold of dimension m _> 3.
(ii) U is an open subset of M.
(iii) f: U M is a map with compact fixed point set Fix fc U; i.e. f is

compactly fixed.

This data is accompanied by the following ingredients with notation as follows"

(iv) i: U M, inclusion map,
(v) (f) the bundle of coefficients (local system) on U induced by

x f: U - M x M from 9 9(M x M), i.e. 9(f)= (i x f)*((M x M)),
(vi) Pt:: E(f)- U, the fiber space over U induced from p: E - M x M by
x f, i.e., E(f)= (i x f)*(E).

Our objective is to define a local obstruction index o(f) n’(u, (f)). To
this end let K denote a triangulable compact m-manifold in U with boundary
t3K such that (Fix f) c 8K b. Define a partial section So(f)" t)K --, E(f)by

So(f)(x)= (Y, f(x))
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where fi denotes the constant path at u. Furthermore, let (f, K) denote the
restriction of (f)to K.

LEMMA 2.4. Let K be as above. Then,f K is deformable, relative to OK, to a
map 9" K M which isfixed pointfree on K, iff, So(f) admits an extension to a
section over K.

Proof The "only if" part is obvious. The "if" part requires a simple cover-
ing homotopy argument to adjust the section to have a constant path in the
first coordinate [1].

DEFINITION 2.5. Let o(f, K) Hm(K, OK; (f, K)) denote the primary
obstruction to extending So(f) to a section s(f) over K. o(f, K) will be called
the local obstruction index off on K c U.

General obstruction theory ([3]) implies the following proposition.

PROPOSITION 2.6. f K is deformable to befixed pointfree, relative to OK, iff
the local obstruction index off on K, o(f K), is 0.

Now let F(U) denote the compact subsets C of U directed by inclusion and
consider

H’(U; (f))= lim Hm(u, U C; (f))

where the direct limit is over F(U). Also suppose that Fix fcint K. The "exci-
sion" isomorphism,

Hm( U, U- Ko, (f)) , Hm(K, OK; (f K)),
where Ko is K minus a "collar" of OK, tells us that o(f K) determines an
element o(f) H’(U; 3(f)).

DEFINITION-PROPOSITION 2.7. o(f) is independent of K and is called the
local obstruction index off

Proof (of independence on K).
K w K’ K". The diagram

Given K and K’, choose K" such that

nm(v, U K;; (f))

Hm(K", OK"; .xK"))
Hm(u, U Ko; (f))

Hm(K/K;, ,(f K))

Hm(K", L; 3(f K"))
where L K" K, and the corresponding diagram where K’ replaces K, tells
that o(f, K) and o(f K’) coalesce in Hm(u, U K; (f)) and hence deter-
mine the same element in H’(U; (f)).
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PROPOSITION 2.8 (HOMOTOPY INVARIANCE). Suppose F: U x I M de-
notes a homotopy such that t Fix 1-’t is compact; i.e. the homotopy is compactly
fixed. Set l"o f and F g. The induced homotopy

ixfixg: UM xM

induces a bundle equivalence

which, in turn, establishes a (coefficient) isomorphism

F*: H’(U, (f, U)) H’(U; (g, U)).
Then

r*(o(f)) o().

Proof Let K denote a compact m-manifold with boundary OK such that, Fix F, int K, so that K may be used to determine both o(f)and o(g). The
remainder of the proof is standard.

THEOREM 2.9. Given f: U- M. Then there is a compactly fixed homotopy
F: U x I --. M such that Ho f and HI 9 is fixed point free iff the local
obstruction index

o(f) 0 H(U, (f U)).

Proof An immediate consequence of 2.7 and 2.8.

Remark 2.10. Sometimes we will display U in the notation for o(f), i.e.,
o(f)- o(f, u). Also, iff: M --, M is globally o(f, U)will denote o(flu).

In order to state the "addivity" property of the local index, we recall some
facts. Suppose Va, V2,..., Vk are mutually disjoint open subsets of the open set
U and Cz c V are compact subsets. Suppose furthermore, that ff is a local
system on U and ffz f V. Then, for each we have

nm(vl, Vl Cl; l) "(’ ’j era(U, V- Cl; (if) i? nm(u U- C; )

where il, jt are inclusions and C Cl. The homomorphism i- j induces a
homomorphism

: nT(; ff,) H(U; )
and consequently a homomorphism
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The proof of the following proposition is now a simple exercise.

PROPOSITION 2.10 (ADDITIVITY). Given f: U M (compactly fixed as in
2.3). Suppose V1, V are finitely many mutually disjoint open sets such that
Fix f Vl. Let f f V: V M. Then under the homomorphism

a: E H(V; M(f)) Hm(u; M(f))
we have

o(f,, v,))= o(f, u).

3. Local Nielsen numbers

In this section we consider compactly fixed maps f: U --. X, where U is an
open set in a Euclidean neighborhood retract (ENR [2]). In particular, then, X
may be manifold (possibly with boundary)or a locally finite polyhedron.
Notice that we do not require X to be compact, nor do we require the mapfro
be compact. The fact that Fix f is compact is what is essential. We recall also
that for ENR’s we have a local index theory with the usual properties [2] for
maps f: U -, X with compact fixed point set. I(f, U) will denote the index off
on U.
Our objective here is to take a compactly fixed f: U--, X and classify the

points of Fix finto local Nielsen classes and develop the necessary elementary
properties. Since there is a distinct parallel between the local theory and the
well-known global theory [4] we will often omit details.

DEFINITION 3.1. Let Xo and x denote fixed points off: U --, X. x0 and x
are Nielsen equivalent in U proved there is a path C in U from Xo to x such
that C and Cf are homotopic with endpoints fixed inX. (Recall that composi-
tion of functions is read from left to right.) The resulting equivalence classes are
called the local Nielsen classes off in U. I/(f, U) will denote the set of such
classes.

PROPOSITION 3.2. The local Nielsen classes off: U X are finite in number.

Proof Since X is an ANR, it is ULC [5] and this forces each Nielsen class
to be open in Fix (f). Since Fix f is compact the result follows.

Notation 3.3. We designate the local Nielsen classes off: U X by

W(f, U)= (N(f, U), N(f, V), ...}.
Furthermore, iff: X X is globally defined, we set N(f, U) N(flV, v); i.e.
a local Nielsen class off: X X on U is taken to be a local Nielsen class of
flv:v--,s.

DEFINITION 3.4. The index I(Ni(f, U)) of a Nielsen class Ni(f, U) is defined
to be I(f, V) where V is an open set in U such that V (Fix f) N(f U). If
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the index I(Ng(f, U))4= O, we recall Ng(f, U)an essential class. Finally, the
Nielsen number n(f, U) of f: U-+ X is defined to be the number (finite)of
essential Nielsen classes.

THEOREM 3.5. (HOMOTOPY INVARIANCE). Suppose H" U x I X is a com-
pactly fixed homotopy, i.e. there is a compact set K c U such that
K t Fix Ht, 0 < < 1. Then, n(Ho, U)= n(Ha, U).

Proof The proof proceeds in a manner parallel to the proof for compact
ANR’s in [4]. First, set f= Ho and 9 Ha and if C is a path in U set

(H, C)(t)= H(C(t), t)= H,(C(t)), 0 < < 1.

Thus, (H, C) is a path in X. Now, if Xo Fix f and X G Fix 9, we say that
Xo Hx (Xo is H-related to x a) provided there exists a C in U from xo to x with
C (H, C) (endpoint homotopic) in X. This relation H induces a one-one
correspondence/-} from a subset of I/(f, U)to a subset of I/(9, U)via the
relation between Nielsen classes

[N(f U)]H[N(9, U)]c>xoHxa, Xo N(f U), xa N(9, U)

(see [4, page 92]). Up to this point the fact that the homotopy is compactly
fixed is not used. It is used, however, at this point to show that/-} is bijective
from the essential Nielsen classes of f to the essential Nielsen classes of 9.
Because X is locally compact one can assume that the compact set K above
contains Fix Ht in its interior for all t, 0 < < 1. Now, open sets in the interior
of K may be used to compute indices of Ht and furthermore H" K x I-+ X
may be considered a path in Xs where the compact open topology on Xr

coincides with the uniform topology. Now, the proof in [4, pages 93-94] applies
to show

(a) [U(f U)]H[N(g, U)]=> I(U(f U))= I(U(g, U)),
(b) N(f, U)is not H-related to some N(9, U) I(f, U)= O.

This completes the sketch of the proof.

We will also find it useful to express local Nielsen classes in terms of univer-
sal covers after the manner of Jiang [6]. Givenf: U X, where X is an ENR,
the components of U are open and since Fix fis assumed compact, Fix flies in
a finite number of these components and each of these components produces
distinct local Nielsen classes. There is, therefore, no essential loss of generality if
we assume U and X are connected.

Let r/: X, r/t:: U denote the universal covers of X and U, respec-
tively and i: U X the inclusion map. Choose

Uo U, rio r/ a(Uo), YCo r/-a(i(uo)), 7Vo r/-a(f(uo)).
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These choices uniquely determine fixed lifts and f such that (fio)= o,
?(ao)

u

f

f
U X U X.

Furthermore, if we let z(U) and rt denote, respectively, the covering groups of
r/u and r/, andfinduce homomorphisms iu: rt(U)--+ rt and v: =(U) with
characterizing equations

We should also note that all the lifts offhave the forme, e e n and fl iff

Now, let Coin [, t] denote the coincidence set ofe and ; i.e.

Coin

 et. (Coin N et e. or e  tr.PROPOSITION 3.6.
Furthermore,

r/u(Coin [, ])= r/v(Coin [jr/3, ])

iff there is a a e T(U) such that- ?i,() ?
or, equivalently, for so a e v,

Proof (a) Suppose fi and belong to Coin [fa, ]. Then a path 0 in 0
from fi to 5 induces a path C from u qv(fi) to v qv(5) in U which does the job
for showing that u and v are Nielsen equivalent fixed points in U. Thus,

qv(Coin [fa, ])= some Nielsen class N(f V).
(b) Each fixed point u e U determines an a e n as follows. Choose

fie q(u), a is determined by the condition (fa)(fi)=(fi)so that
fi e Coin [fa, ] and hence

u e qv(Coin [a, i])
for some a e n. It is a simple matter to show that where u and v are Nielsen
equivalent in U, we may choose fi and above to yield exactly the same a e .
Thus, each local Nielsen class is contained in some qu(Coin [fa, ]). This
verifies the first part of Proposition 3.6.

(c) Now, suppose

qv(Coin [fa, i])= qv(Coin [ffl, i]).
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Then, we have fi, fil in 0 such that

()’)() (). ()’fl)(.)= (.). ()= .. (u).
Then

-’(?).() ?. (u).
Since this last equality is equivalent to ,(a- ’)aid(a) fl and also implies (as a
simple exercise)

,v(Coin [?a, i])= ,v(Coin [?fl, i]),
the proof is complete.

DEFINITION 3.7. Given homomorphisms (of groups) if: n’n and
: n’ n. We introduce the right action of n’ on n by

, (-,)(), ,, .
The resulting set of orbits R[, ] is called the set of Reidemeister classes, i.e.
each orbit is a Reidemeister class.

DEFINITION 3.8. Given a compactly fixed f: U - X and corresponding
homomorphisms its" rt(U) r, opts" rt(U) t (as above), we call R[it, qgt] the
set of local Reidemeister classes on U generated by f

PROPOSITION 3.9. The correspondence F" [a] qv(Coin [fa, i]) takes
Reidemeister classes to Nielsen classes bijectively provided we ignore those
Reidemeister classes [a] for which Coin Ira, i] .

Proof Immediate from Proposition 3.6.
Suppose we let denote the component of rl-(U)which contains

YCo rl-(i(uo)). Then, q 0" U is a covering map. It is easy to see that
rl(O, Xo) corresponds to the kernel of its" re(U) r and hence the covering
map r/I is regular and furthermore f: U X has a unique lift f: (, o)
(, Po) and hence a diagram

U U X

The following lemma is easy to prove, because f=f.
LEMMA 3.10. For n, i(Coin [fz, i’])and hence

qtj(Coin [fz, 7] r/I ’(Vix fa).
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We also have the following result. Let t(U) t(U)/ker iv and j: r(U) t(U)
the natural projection. We also have diagrams

iu iu

LEMMA 3.11. Since

qv(Cr- )iv(o) (ot:(j(cr)- )’t:(j(o))
the identity map id" rt rc induces a bijection

R[iv, :Pv] R[v,
Thus, Proposition 3.9 may be reformulated as follows"

PROPOSITION 3.12. The correspondence R[t:, (or:]--) ,4:(f, U)which takes

[]- r/I/(Fix
takes Reidemeister classes to Nielsen classes bijectively provided we ignore
Reidemeister classes [] for which Fix (f)= b.

Suppose U V X, where U and V are both open, connected subsets of X,
fv" V --, X is a given map, and/.7, 17, are the corresponding covering spaces.
Then, as before we have fixed lifts

where v and iv cover inclusions (which are not designated)and fv, fv coverfv
and fv fvlU, respectively. Choose the lift i’" i7 of the inclusion map
U V with the property that v v. Then, i" rt(U) rt(V)is uniquely
determined by the condition

tr i(r),
Now a simple argument shows that iu iW iv and q9 v i q9 v. Furthermore, the
identity map rt rt is equivalent with respect to the map i" rt(U) rt(V), thus
inducing

h:" R[iv, qgt:] R[iv, qgv].

Convention 3.13. If K X is an set and U int K, it is convenient to set

R[iK, qgK] R[iv, qgv], .4:(: K)= .4:’(: U).
Given a compactly fixedf: U X, it may be impossible to find a compact set

K in U such that the fundamental group t(K)"captures" all of t(U). Thus, the
natural map

h" R[iK, qgr] R[iv, tpv]
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need not be injective. However, the following result indicates that such a K
captures the essential information on Fix f in U.

PROPOSITION 3.14. Let f’. U - X denote a compactfixed map, where X is an
ENR. Then, there exists a compact set K U such that Fix fcint K and
W(f, U)= V’(f K).

Proof. First, using the fact that X is locally compact, choose a compact set
L such that Fixf int L. Each Nielsen class N(f, L) off lL lies in a unique
Nielsen class N(f, U), thus defining a surjective function : /(f, L)---,
’(f, U). If Ni and N.i are Nielsen classes in /(f, L)such that @(N,)= (Nj),
there is a path aij in U from N to N such that a f(ai). Only finitely many
such pairs N, N occur so that there is a compact set K U such that Fix f
int K and the paths aj are all in int K. Now, it is clear that the corresponding
map q/: V’(f, K)--. V(f U)is the identity.

COROLLARY 3.15. Letf: U --. M denote a compactlyfixed map, where U is an
open set in the manifold M. Then, there exists a manifold (with boundary) K U
such that the Nielsen classes in 4/(f, U) and r(f, K) correspond identically.
Furthermore, if U is connected we may choose K to be connected.

COROLLARY 3.16.
correspondence

If f: UX and K are as in Proposition 3.14, the

hr" R[ir, qgr]- R[iv,

is bijective provided (usin9 Proposition 3.9) we restrict ourselves to Reidemeister
classes which correspond to Nielsen classes.

4. Preliminaries to calculating o(f, U)
Let p: E M x M denote the fiber map (Section 2) replacing the inclusion

map

MxM-AMxM.

Ftu,v) will denote the fiber over (u, v). Given a tubular neighborhood T of the
diagonal A M x M, let To T- A. Then, given u M and a local orienta-
tion of M at/ we can assign an element

gu m-,(F(,,o)), (u, v) To

as follows" Let 7 denote the diagonal in r x ]r, with corresponding tubular
neighborhood . If 0 denotes the complement of the 0-section in , we have
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Hm(, o) Hm(2l x , x )

m( X . X -I(A). (. ))

xm(M,M-u, v) xm(M x M,M x M-A, (u, v))

.m-l(F(u.v). (. ))

where (5, ) 6 , (fi, b) (u, v), and u, v are constant paths at u and v, respec-
tively. The isomorphism

.(i, i , ).(i M, i i , (u, ))
is induced by the section M M x M given by y (u, y). If we choose a
Euclidean neighborhood W of u and an orientation of W, an imbedding

i." (nm, S ’, "o) W, W- , )
(which take 0 to u) determines an element of urn(M, i u, ) and hence (see
the diagram above) an element

.s_ ((,), (, )).
g, may be represented in

Hm( , - -())
as follows" Given fi over u, the imbedding i, lifts to an imbedding. (Dm, Sm-’, ao)--(, - , ),
where ff covers W. Define ." (nm, S ) (, O by y)= (5, iy)). [? ,]
generates Hm(T, To) and determines an element

Um( , -’(a)).
If fie fi , then it is easy to see that g a (sgn a)ga. The following lemma is
easy to prove.

LEMMA 4.1. t U denote a connected open set in M. If U is non-orientable,
any choice of local orientations leads to a function g" U with the property
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that for (x,y) and (u,v) e Toc (U x U), there exists a path (s, fl) in

To (U x U)from (x, y)to (u, v)such that

(s, fl)," r,._, (Ft,,,y)) r,._, (F(,))
takes 9x to g,. In the orientable case the result holds provided local orientations
are chosen compatibility.

Now, let (x, y), (u, v), (u’, v’) belong to To c (int L x int L)and consider
(x, y) as our base point with ,,(F(x,,))identified with Z[r], with 9x correspond-
ing to

LEMMA 4.2. Suppose (s, fl) is any path from (u, v) to (u’, v’). Supposefurther
that (So, flo), (sl, ill)are paths in To from (x, y) to (u, v) andfrom (x, y) to (u’, v’),
respectively, as in Lemma 4.1 (see Figure 1). Then, under the isomorphism oflocal
9roups

we have

(s, fl). r.,-1 (F(,,v)) --’ r,._ (F(,,,v,))

(s, fl),g. (sgn a)(sl, fll),(za-’)
where (So, flo)# 9x 9,, (s l, ill). gx g,, and a So ss-[ ’, flo flfl-[ 1.

Proof

FIG.
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Convention 4.3. If is a path from u to u’ and/3 is a path from v to v’ where u
is "close to" v and u’ is "close to" v’ in the sense that (u, v) w (u’, v’)c To, the
statement /3 (sod endpoints) will mean that there is a homotopy from 0 to

fl" H" I x I M such that H(0, t) and H(1, t) trace paths, with (u, H(0, t)),
(u’, H(1, t))in To. Alternatively, one may replace fl by a path fl’ from u to u’
with/3’ close to/3 and then fl (sod endpoints) mean fl’ with endpoints
fixed, as usual.

COROLLARY 4.4. If in Lemma 4.2, fl (sod endpoints), then

(a, fl)#(g)= (sgn a)g,

where a o.
Letf: U M denote a compactly fixed map with U connected and choose a

base point Xo Fix f The local group of M(f) at Xo is n_(F), where
b (xo, f(xo)), n_(F)is identified with Z[n] and the right action ofn(U)=
n(U, Xo) on Z[n] is given by

oa sgn aiv(a-)v(a), a n(U), n.

Define a new right action

(*) v(a-)i(a), a e x(U), e x.

Now, denote the twisting action of x(U) on Z by

no a=(sgna)n, an(U), nZ,

and consider the bilinear pairing Po" Z[x]@ZZ[x] defined by
nn-1.

LEMMA 4.5. Let o n(U). Then the pairing Po satisfies the condition

Po((ao a)(R) (no a))= Po(ao n), a

i.e. Po is equivariant.

Proof.
Po(0 a (R) no ) Po(sgn aiu(a- ’)(pu(o-) (R) (sgn )n)

Po(o n) * .
Let (U) denote the orientation sheaf of twisted integers over U. Then for

x U, the Hurewicz homomorphism
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DEFINITION 4.5.
m-cochain

induces a coefficient homomorphism h: @(U) --, 3-( U) where @(U) @(i)and
i: U--, M is inclusion. In particular, using as base point x0 e U, we may
identify

n-l(Fb) Z[r] with 0xo 1,

H(M, M x) Z with h(gxo) 1.

COROLLARY 4.6. t (f denote the local system on U induced by the action
(*). Then, no induces a bilinear pairing P: (f)(U)(f) so that over
every x U,

P(g h(gx)) 1.

Remark 4.7. Corollary 4.6 is valid for L a compact connected submanifold
with boundary L, L U. In particular we have a corresponding pairing

PL (f L) (L) (f L)
whr the loca systems( L), (L),( L) a stition om U to L.
Now, let L denote a compact, connected triangulated manifold with boun-

dary L such that L U. Assume also that L is triangulated so that adjacent
m-simplexes are contained in the same Euclidean neighborhood in U. L deter-
mines fundamental classes as follows:

If s is an oriented simplex of L and uis a point on s, then using Lemma 4.1,
the orientation of s determines an orientation around u and thereby an ele-
ment g,

_
(rb), b (u, v) and v is near u. Set g g.

DEFINITION 4.4. The m-chain g s, where the sum runs over a basis or
oriented m-simplexes of (L, L), determines the homology class g(L; )e
H(L, L; (L)), where (L)= (i)is induced from by x i: L x M,
which we call the twisted -fundamental homology class of (L, L) in M.

Let g(L) H(L, L; (L)) denote the classical twisted integral homology
as n (L, L)[]. Sin at th hain ,vl (L)h th om E h(3, on
sees that under the induced coecient homomorphism h,: H(L, OL; (L))
(L, L; (L)),

h.: .(L; ).(L).
The corresponding dual fundamental cohomology is defined as follows:

Let s denote an oriented m-simplex of (L, 8L). The

c(s’)--{ ifs’-Sifs,4:s
leads to a cohomology class/t(L; ) e H’(L, tL; ’(L)) called the twisted r-
fundamental cohomology class of (L, cL) in M.
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Remark 4.6. Using Lemma 4.2 one shows easily that (L; n) is independent
of s, i.e. for s 4: s’, cs and cs, are cohomologous. Also, if we let (L)
H"(L, OL; -(L))denote the classical twisted (over Z)cohomology class [7]
(L, n)maps to (L), via

h*: Hm(L, tOL; M(L))--, Hm(L, t3L; Y-(L)).

PROPOSITION 4.7. ((L, n),/(L)) [1] R[iv, iv].

Proof. Fix a simplex s and a base point us c3s. Then,

cs( h(gs,)s’} Fo(cs(s)(R) h(gs)) Fo(gs h(gs)).
S’

Therefore,

/t(L, n) /t(L)= [1" us] Ho(L; (i))
where the cap product is induced by the pairing

(R)

where ’(L)= N’(i). But, under the isomorphism Ho(L; (L))--ZR[iv, iv],
[1 us] corresponds to [1], the Reidemeister class in R[iv, iv] containing 1 e n.
Therefore,

((L, n), #(L)) (L, n) c #(L)= [11.
These fundamental classes pass to U is the usual fashion as follows. First, if Lo
denotes L minus a small ’collar" around the boundary, then the image of
(L; n) under

Hm(L, 63L; (L)) Hm(u, U Lo, (L)) H"(U;
determines (U; n) e H(U; M(U)), the twisted n-fundamental cohomology
class of U. Furthermore, if s is the family of compact, connected manifolds L
with boundary cL such that L c U, one can choose a compatible sg’ family [8]

#(U;/1:) {//(L;/1:) Hm(L OL; (L)) =_ Hm(U, U Lo; M(U))}
and call/(U; n), the twisted n-fundamental homology class of U. In a similar
fashion, a compatible ’ family

/x(U) {#(L) Hm(L, OL; -(L))}
determines the twisted fundamental class (up to sign)of U.

Finally, for any compactly fixed f: U M, the pairing

P: (f)(R) -(U) (f)
induces a Kronecker product

H’(U; (f)) ,<,._lv)>,. ZR[iv,
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induced by

H(L, c3L; (f L)) <.,_(L)>, ZR[ic, qc] --hl ZR[iv, qv]

where d(f, L)is (f) restricted to L.

Remark 4.8. A simple direct argument (without invoking duality) shows
that

’,/(L)) Hm(L, c3L; $(f L)) ZR[iL, qL]
is an isomorphism.

5. Calculating the local obstruction index o(f)
We assume again the data (M,f, U)of 2.3, with the added assumption that U

is connected. We also assume that K is a compact manifold with boundary and
Fixf int K. Our immediate objective is to compute the local obstruction
index o(f, K) Hm(K, OK; (f, K)) off on K (Definition 2.5). We focus our
attention first on one of the components L of K and then o(f, K) will be
computed in terms of its components o(f, L) Hm(L, cOL; (f, L)). Thus our
immediate objective is to prove, using the notation in Section 4, the following
result.

THEOREM 5.1. Suppose f: U M is a compactly fixed map and L a connected
compact submanifold with boundary cOL such that L U and (Fix f) c cOL
If o(f L) is the local obstruction index off on L in U, then usin9 the pairin9
(Section 4)(f L)(R) -(L)(f L), under the isomorphism

we have

.,/(L): Hm(L, cOL; (f L)) ZR[iL, PL],

(o(f L),/(L)) E I(p)p
pR

where R R[ic, Pc] is the set ofReidemeister classes and I(p) is the index ofthe
Nielsen class correspondin9 to p under the map F: R[it, q)c] V(f L)ofPro-
position 3.9.

Before, giving the proof of Theorem 5.1, we prove a succession of lemmas.
Some of these closely parallel corresponding ones in the global case [1] so we
may omit some details.
We assume now (without loss of generality), in addition to the previous data

that Fix (f) L is finite and each fixed point lies in the interior of a maximal
simplex of a triangulation of L. Furthermore, each such simplex s is contained
in a Euclidean neighborhood V and if Fix (f) c s : b, then f(s) V.

Consider the section u UL: L Fixf E(f) given by

u(y) (y, f(y)), y e L Fix f



LOCAL FIXED POINT INDEX THEORY 693

Thus, the cochain c(f, L) Cm(L, 3L; (f, L)), representing the obstruction
o(f, L) is given by the following" If s is an oriented m-cell, then

0 if s c Fix f= bc(f, L)(s) [qgs 7m-1 (q_ 1(Us)) otherwise

where us Os, and when (Dm, fin-1, ao) and (s, Os, us) are identified, preserving
orientations,

q(u) (uu; (f(u)f(v)))
where uv is the directed line segment from u to v (see Figure 2). As noted in [1],

FIG. 2

a simple homotopy argument shows that if we let s" ds (M, M x) be given
by

Ss(u =f(u)- u

where V R and x O, x Fix f (int s), then if we let s b + us (trans-
lation by u), we have

if s Fix f bc(f,L)(s)= [A] otherwise,

where

[A] rtm(M, M us, f(us)) m(M X M, M x M A, (Us, f(us)))

’" 7m-1 (F(us, f (Us))).
Thus, since u -f(u)tetermines the (numerical)oca intex (f, x)at x, we have

0 if sin Fixf=bc(f, L)(s} (_ 1) Ind (f, x)#, otherwise.

Thus, we have the following proposition.
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LEMMA 5.2. The local obstruction index o(f, L) has the cochain
representation

C(f, L)= (-1) ’ [](f,

where I(f, s) is the local index off on s.

Remark 5.3. The unhappy sign (-1) is the result of using x f: U-
M x M, rather than f x i; thus encountering f- id, rather than id -f.

Let Y(f, L), denote the local Nielsen classes off[L, designated individually
by Nl(f, L),..., Nj(f, L), For each j pick a simplex sj containing a fixed
point representing N(f, L). If s is another simplex containing a fixed point of
S(f, L), then there is a path ct from s to s such that f(0). Thus, since AsS to
cohomologus to

[sAn (, s, s)(, f())#(gs)]sj
and since (, f(g))(g)= sAn (, s, s)gj, we have:

PROPOSITION 5.4. The local obstruction index o(f, L) has the cochain
representation

c’(f, L)- (-1) [I(Sj(f, L))gsj]s

where the sum is over the local Nielsen classes 4/(f, L) and I(Sj(f, L)) is the
(numerical) index of Nj(f, L).

COROLLARY 5.5. (Local Wecken Theorem). A necessary and sufficient con-
dition that f lL be deformable in M (relative to cOL) to a fixed point free map is
that the local Nielsen number n(f, L)= 0, i.e. n(f, L)= 0>o(f, L)= O.

Now, choose a simplex s in L and assume that our base point is u t?s and
we identify rim-(Ftul, ftul))) with Z[n], gl corresponding to 1. See Figure 3.

FIG. 3
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Choose for each j, a path coj in L such that

Then, gsj is cohomologus to [sgn (co), s, s)(oj,f(o)))#(g)]s where, by
Lemma 4.2,

(j, f(j))# (g,) sgn aj(zja; 1)
with % [;], z [f@)]. Since a 1 and sgn (, s, s)= 1, we
have g,s cohomologous to zs where z [; lf@)]. See Figure 3.

LMMA 5.6. The local obstruction index o( L) has the following cochain
representation concentrated at s where the local group at s is identified with
z[.]"

c"Ir L)=(-1)m( I(Nj(

where z is given by [; f(m)] for an appropriate path pom the
Nielsen class N(f L)to the Nielsen class N( L).

LMMa 5.7. IfX and x are fixed points off L in simplexes s and t, respec-
tively and , and are paths from s to s and to s such that

(, ). ,, (,, ,) ,
then x and x are Nielsen equivalent in L and only

are Reidemeister equivalent on L, i.e.

Proof By the argument preceding Lemma 5.6, we have (,f())x
,(gs) r [; f()]. Suppose T is a path in L from s to with T f(T).
Then,

w ere

LEMMA 5.8. Let F denote the correspondence of Proposition 3.9 from the
geidemeister classes glib, (p] to the Nielsen classes 4(f L). Then, if
zj [oof lf(o9)], as in Proposition 5.6, we have F([zf 1])= Ni(f L)

Proof. Let xj denote the fixed point in sj, and x the fixed point in x 1. Use
as base point and then apply part (b) of the proof of Proposition 3.6.

If F" R[iL, (PL] -- (f L) is the correspondence of Proposition 3.9, between
Reidemeister classes and Nielsen classes, then we set Np F(p). Also, we set
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I(p) =/(No), the index of the corresponding Nielsen class. Of course, if
F(p) b, we set l(p) 0.
We can only give a short proof of Theorem 5.1.

Proof of Theorem 5.1. By Lemma 5.6,

/

Passing to Reidemeister classes on the right, we obtain

(o(f L),/(L)) (- 1)" Z I(p)p ZR[iL, tpL].
p

COROLLARY 5.9. Letf: U M be compactlyfixed and let K LI Lj, afinite
disjoint union of connected submanifolds with boundary. Then under the
isomorphism

ZR[ir, qrl E ZR[iL,,
we have

(o(f K), E (Lj)) Z Z I(p)p
peRj

where R; R[iLj q)Lj]"

COROLLARY 5.10. (Global case). Let f: M M denote a self map of a
compact, connected manifold with boundary c3M such that (Fix f) OM b.
Then the 91obal obstruction index

o(f H"(M, 0M; (f))

is given by

(o(f), kt(M))= Z I(p)p
per

where R R[id, q] and q) f," rc rc rcl(M).

COROLLARY 5.11. Letf: U --* M be compactlyfixed. Suppose K is a compact

submanifold with boundary such that K c U, Fix fc int K and the Nielsen
classes V’(f U) and V(f K)are identical. (The existence ofsuch a K is 9uar-
anteed by Proposition 3.14). Then o(f)= 0 if, and only if, o(f K)- O.

Proof The "if part" is obvious. On the other hand suppose o(f) 0. Then
for some K’, K c K’ c U we have o(f, K’)= 0 and hence

0 (o(f K’), Iu(K’))= Z I(p)p;
peR’
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thus, I(p) 0 for all Reidemeister classes in R’ R[iK,, qgK,]. Consequently, all
the Nielsen classes in K’ have index 0. This forces all the Nielsen classes off
relative to K to be inessential and thus

(o(f, K), Z I(p)p 0
pR

therefore, o(f, K)= O.

THEOREM 5.12. Suppose f: U - M is compactly fixed with U connected.
Then, under the isomorphism

we have

(’, #(U))" H’(U; (f))- ZR[iv, qL]

where R R[iv, qv].

(o(f),/(U)) l(p)p
pR

Proof Choose a connected K satisfying the condition of Corollary 5.11. Let

hVK" R’ R[ir, (PK]--’ R[iv, qgv] R

denote the correspondence in Section 3. Then,

p R ,I pR

COROLLARY 5.13. Supposef: U --, M is compactlyfixed. Thenfis deformable,
via a compactlyfixed homotopy, to afixed pointfree map g" U M if, and only if,
the local Nielsen number n(f, U)= O.

Suppose now thatf: U M as usual, L LI L = K U such that Fix f
LIj (int Lj), and L, K are connected submanifolds with boundary. We now
want to describe how o(f, L) in Hm(L, OL; (f, L)) "coalesces" to o(f, K)in
Hm(K, OK; .(f K)) thus yielding the appropriate "additivity property" for
our generalized local index. We make use of the correspondences (Section 3)

hi,j: R[iL, qgLj R[i,

LEMMA 5.14. If p g[ir, qg] and I(p) is its numerical index, then

I(p)= I(fl)
flePj

where P {fl" h(fl)= p}.

Proof Let Na(L, f)denote the Nielsen class in (L, f)corresponding to

fl P, and N(p) the Nielsen class in V(K, f) corresponding to p. It suffices to
prove that

I_[ I_I Na(L), f) S().
flePj
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Recall (Section 3) that given a fixed point x N(p), the Reidemeister class p is
determined by the element 0 n subject to the condition

where r/ l(x). Such an x belongs to some L) and hence to some Nielsen
class N(L, f) where is the Lj-Reidemeister class belonging to N(L, f). We
need to show that h(fl) p. Or, equivalently that also represents . Choose

()and then

thus does represent fl, and hence

The cvcsc inclusion has a simila aumcnt and is omitted.
The followin theorem is a consequence of Lcmma 5.1.

THEOREM 5.15 (Additivity). Let f: U M be compactlyfixed and suppose
V Ltj v is a disjoint union of open sets in U coverin9 Fix f We identify

o(f U)=_ I(p)p, o(f V)=_ I(fl)fl
peR fleRj

where R R[iv, qgv], gj g[ivj, qgvj]. Then, under the correspondence

h" g[iv, qgv] g[iv, qgv],

we have

where Pj(p)= {fl" hW(fl)= p}.

Remark 5.16. When M is 1-connected, Theorem 5.15 reduces to

I(f, K)-- Z I(f, Lj)

the "addivity property" of the classical (numerical) local index.

The next result is another application of Theorem 5.1.

THEOREM 5.17. Suppose f: M - M is a compactly fixed map on a connected
manifold with boundary such that (Fix f) OM b. Suppose K is a connected
submanifold with boundary and Fix fc int K. If ix: rt(K) t is surjective then

(a) h" R[ir, qgK]--* g[iM, qgM] is bijective,
(b) dt/(j, K)_= V’(f M)=
(c) n(f K)= n(f M)= n(f),
(d) o(f K)= 0 if and only if o(f M)= O.
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Proof Part (a) is a simple exercise which establishes a one-one correspon-
dence between Nielsen classes relative to K and Nielsen classes relative to M.
Then (d) is an immediate consequence of Theorem 5.1.
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