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ISOMORPHISMS OF INCIDENCE RINGS

BY

JOEL K. HAACK

Let R be a ring with identity and let (X, _<) be a finite preordered set, that
is, a finite set X with a relation < that is reflexive and transitive but not
necessarily antisymmetrie. The incidence ring I(X, R) of R over X is a ring
with the additive structure of a free R-module with basis {fxy[ x _< y} and
multiplication given by

[2], [5], [13], [16]. Such rings may be considered subrings of
(Card X)x (Card X) block upper triangular matrix rings over R [6]. The
question of finding classes of rings R such that I(X, R)-I(Y, R) implies
X Y has been the subject of several studies [2], [3], [11], [14], [16]. Here
we consider whether I(X, R) - I(X, S) implies R - S, and in fact show that if
R is an indecomposable semiperfect ring and X and Y are finite partially
ordered sets, then I(X, R)-I(Y, S) if and only if there is a ring T and
(necessarily finite) partially ordered sets Z and W with R -I(Z, T),
S -I(W, T), and X x Z- Y x W. It follows, that I(X, R) I(X, S) implies
R S if R is semiperfect and X is finite. Further, if R is an /R-irreducible
ring and X is a finite partially ordered set, then any automorphism of I(X, R)
is the composition of an inner automorphism, an automorphism induced by
an order automorphism of X, and an automorphism induced by a family of
additive maps from R to R satisfying multiplication laws induced by the
partial order. (Compare [14, Theorem 2] which characterizes K-algebra
automorphisms of I(X, K) for K a field.) Finally, we answer a question left
open in [5] by showing that the incidence rings I(X, R) and I(X, S) have
Morita duality only if R and S do. Hence I(X, R) is self-dual if and only if R
is.

First, let us fix notation and recall certain facts. The symbol _< will be
used for any preorder; the context will make it clear which relation is being
considered. Let X denote a finite preordered set throughout. The relation
defined on X by x x’ iff x _< x’ and x _< x is an equivalence relation, and
the set Xo X/~ forms a partially ordered set with partial ordering defined
on equivalence classes Xo and x) with representatives x and x’ by Xo _< x) iff
x _< x’ in X. The incidence rings I(X, R) and I(Xo, R) are Morita equivalent.

Received August 19, 1982.

676

1984 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America



ISOMORPHISMS OF INCIDENCE RINGS 677

The product X x Y of preordered sets X and Y is defined by (x, y) < (x’, y’)
iff x < x’ and y < y’ for x, x’ X and y, y’ Y. A result of Lovfisz (1"17"1; see
also [8]) implies that if X, Y and Z are finite preordered sets, then X x Y
and X Z are order isomorphic if and only if Y is order isomorphic to Z.
The incidence rings I(X Y, R) and !(X, I(Y, R)) are naturally isomorphic.
A preordered set X is said to be connected if for any elements x and x’ of X
there is a finite sequence x xl, x2,..., Xm x’ of elements of X with either

xi < xi+ or x+ < x for i= 1, m- 1. Any finite preordered set can be
written uniquely as the sum (disjoint union) of its connected components;

X tz{ Y IY is a connected component of X}.

The product distributes over sums. The behavior of the incidence ring con-
struction on sums is given by I(XuY, R)-I(X, R) x I(Y, R). An order iso-
morphism O" X Y induces a ring isomorphism O" I(X, R) I(Y, R) via

From a semiperfect ring R, we may choose a complete orthogonal set/ of
primitive idempotents {ex, en}. A preordering of/ may be defined by

=e’in/withe < e’ iff there exists a sequence of idempotents e e,

e} Re’+t 4= O fori=l,...,m-1.

With this preordering, / is called the associated preordered set of R. R is
indecomposable as a ri,ng if and only if/ is connected [1, Theorem 7.9]. An
incidence ring I(X, R) is semiperfect if and only if R is semiperfect and X is
finite. A complete orthogonal set of primitive idempotents for I(X, R) is given
by {f elx X; 1, n} where f =f for x X. Here, fe <f,e if
and only if (x, e)< (x’, ej) in X x/, so that I(X, R) is order isomorphic to
X x/ 1716, Lemma 4.2]; we will write X x/ for I(X, R). If R R1 x R2 as
rings, then I(X, R) I(X, RI) x I(X, R2). If S is another semiperfect ring, we
will use g, gm to denote the elements of a complete orthogonal set of
idempotents for S; if Y is a preordered set, we will use h,, (with h h,) for
the canonical basis elements of I(Y, S) over S.
We are now ready to begin the analysis of an isomorphism between

I(S, R) and I(Y, S).

1. PROPOSITION. Let R be a semiperfect ring and X a finite preordered set.

If " I(X, R)--, I(Y, S) is an isomorphism, then there exists an inner automor-
phism fl of I(Y, S) such that flu(X x R) Y x S.

Proof Since 0 is an isomorphism 0(X x/) is complete orthogonal set of
primitive idempotents of the semiperfect ring I(Y, S). Hence there is an inner
automorphism of I(Y, S) carrying 0(X x/) to Y x 14, Proposition
8.23.5]. I
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One might initially hope that if " I(X, R)- I(X, R) is a ring automorp-
hism with

(x x )= (x x ),

then a copy of R, say fx R fx I(X, R)f, would be carried onto somef, R. A
little reflection shows that this need not be the case even if R is indecompos-
able and X is connected. For example, let F be a field and X {1, 2} with
ordering 1 < 1, 1 _< 2, 2 _< 2. Then R I(X, F) is isomorphic to the ring of
2 x 2 upper triangular matrices over F. Define : I(X, R)--, I(X, R) by inter-
changing the 2nd and 3rd rows and columns of the elements of I(X, R) con-
sidered as matrices over F"

(The map corresponds to the twisting order automorphism z of X x X
given by z(x, x’)= (x’, x).) We dofind, however, that fxR is sent to an inci-
dence ring.

2. LEMMA. Let R be an indecomposable semfperfect ring and let x be any
element of a finite preordered set X. Let fxo {f,,l x’ Xo}. Let be an
isomorphism from I(X, R) to I(Y, S) such that (X x I)= Y x . Then there
exist an idempotent u of S and a subset Z of Y such .that

(foI(X, R)fxo) ( (hlz Z})I( Y, uSu)(Y’, (h]z Z}).
Hence Mm(R - I(Z, uSu) where Xo has m elements and Mm(R is the m x m-
matrix ring over R. The subset Z consists of the first coordinates of the pairs in
the set ot(xo x R).

Proof First, notice that restricted to X x/ is in fact an order iso-
morphism, since the ordering on X x/ is determined by the transitive exten-
sion of the ring-theoretic condition fe Rf,ej :/: O. Because R is
indecomposable,/ is connected. Hence there are idempotents 9], 9, in g
and a subset Z of Y with

(Xo x/) Z x {#, #,} [16, Lemma 3.1].
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Let u g +... + g,. Then

(fo) (, {f,e, lx’ Xo, i= 1, n}, {h,a)lz Z; j 1, k}
{hulz Z}.

Hence

t(fxoI(X, R)fo)= (fo)I(Y, S)(fxo)

=( h)I(Y, uSu,(
Hence we see that the image offR under an isomorphism is not con-

tained in some hS only if R is itself nontrivially an incidence ring if Xo is a
singleton. Define an indecomposable semiperfect ring R to be IR-irreducible
if whenever T is a ring and Z is a partially ordered set with R I(Z, T), Z is
a singleton (so also T R). If R is/R-irreducible and : I(X, R) I(Y, S) is
an isomorphism with X partially ordered, then the subset Z of Y in Lemma
2 must be a singleton, so that there is an idempotent u of S with R uSu.
Furthermore, we have:

3. PROPOSITION. Let R be an IR-irreducible ring and X and Y finite par-
tially ordered Sets with I(X, R)-I(Y, S). Then there exist an idempotent u of
S with R - uSu and a subset W ofX such that S - I(W, R) and X Y x W.

Proof Let " I(X, R)--. I(Y, S) be an isomorphism with (X x R)=
Y x S. First assume that S is idecomposable. If x X then from Lemma 2
and the/R-irreducibility of R, there exist an element y of Y and an indempo-
tent u of S with o(f,R)= hyuSu. Apply Lemma 2 to I(Y, S), y, and -1 to
obtain a subset W of X and an idempotent v of R with

o- (hyS) {fwlw W}vRv

and S - I(W, vRv). Then

fx R o- xo(f R) fx vRv;

hence v 1 and S - I(W, R). Since

I(X, R) - I(Y, S) - I(Y, I(W, R)) - I(Y x W, R),

we see that X Y x W (16, Theorem 4.3].
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If S is not indecomposable, write S as the product I-I)’= sj of indecompos-
able rings Sj and X as the sum Uk= Xk of its connected components. Then

I-I I(Xk, R)
k=!

is the decomposition of I(X, R) into indecomposable rings since for each k,
Xk X R is connected. For each factor S of S, there are unique components
X, Xi of X with I(Y, S)= (I(X, g)), where X= Xt...txJ; this
gives a decomposition e Xj of X (1 Theorem 7.9] Hence for each j thereJ=l
is a subset Wj of X with S - I(Wj, R) and X Y x Wj. Then

S 1-I s 1-I I(Wj, R)= I( Wj, g),

and

X=XjU(gx Wj)= Yx(uWj).
Since W c_ X, the W are disjoint so that c_ X. |

4. COROLLARY. If R and S are IR-irreducible rings with I(R, X)-I(S, Y),
then R - S and X - Y.

Proof. The partially ordered set W of Proposition 3 must be a singleton. |

Corollary 4 provides the uniqueness of the/R-irreducible decomposition of
an indecomposable semiperfect ring R in the following proposition.

5. PrtOr,OSITION. If R is an indecomposablb semiperfect ring, then there
exist an IR-irreducible ring T and a finite partially ordered set Z such that
R - I(Z, T); T and Z are unique up to isomorphism.

Proofi If R is not /R-irreducible, write R I(Y, S) with Y not a sing-
leton. Since/ is finite and/ Y x g, the cardinality of g is less than that of
/, providing a bsis for induction. |

Consequently, although an incidence ring over an indecomposable semi-
perfect ring may be isomorphic to a second incidence ring with neither the
ground rings nor the partially ordered sets isomorphic, we can decompose
the ground rings and obtain isomorphisms.

6. THEOtEM. Let R be an indecomposable ring and X and Y finite partially
ordered set. If I(X, R)-I(Y, S), then there exist an IR-irreducible ring T,
idempotents v R and u S with T vRv uSu, and preordered sets Z and
W such that R - I(Z, T), S I(W, T) and X x Z Y x W.

Proof. Let T be an/R-irreducible ring and Z a partially ordered set with
I(Z, T) - R. Then

I(Y, S) - I(X, R) - I(X x Z, T).
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Proposition 3 yields a subset
XxZ-Wx Y. I

W of XxZ such that S-I(W,T) and

Immediately from Proposition 1 and the result of Lovtsz concerning can-
cellability of finite preordered sets I-7], we may conclude that if R is semi-
perfect and X is a finite preordered set, then I(X, R) I(Y, R) implies
X - Y. From Theorem 6 and Lovhsz’s result we may conclude that if R is
an indecomposable semiperfect ring and X is a finite partially ordered set,
then I(X, R) - I(X, S) implies R - S. The indecomposability assumption on
R is unnecessary:

7. THEOREM. If R is a semiperfect ring and X is a finite partially ordered
set, then I(X, R) - I(X, S) implies R - S.

Proof. Let " I(X, R)---, I(X, S) be an isomorphism with 0t(X x R)
X x S-. Write R as a product Ill= Ri of indecomposable semiperfect rings.
With each Ri is associated an /R-irreducible ring T and a finite partially
ordered set Z with R I(Z, T). Some (or all) of the T may be isomorphic;
let { Tr[ v A} be a set of representatives of the isomorphism classes of the T.
Collect the factors of R having associated/R-irreducible rings isomorphic to

T and let R be their product. R is isomorphic to I(Zt, T) where Z is the
sumof the partially ordered sets associated to the factors of Rt. Let S be
the product of the indecomposable factors of S having T as their associated
/R-irreducible rings; we will show first that (I(X, R))= I(X, S). To this
end, decompose X as the sum of its connected components t2 Xk and S 1--I
sj as the product of indecomposable rings. The factorization of I(X, S) into
indecomposable rings is given by 1-I l(Xk, Sj). Let I(Xk, S) be a factor in the
decomposition of ot(I(X, Rt)). Then there is a component X, of X and a
factor R of R with

I(Xk, S) (I(X,, Ri)) l(Xt, x Zi, T).
Hence by Proposition 3 and Lemma 5, T is the associated /R-irreducible

ring of S. Thus z(l(X, Rt)
_

I(X, St). Applying a similar argument to 0t-
and I(X, S) shows that -t(I(X, S))

_
I(X, R), so that (I(X, R))

I(X, St). It also is apparent that S I’I st. Now
I(X, St) - I(X, Rt) - I(X x Zt, T).

Again by Proposition 3, there exists Y
_
X x Z with

StI(Y,T) and Xx YgXxZt.

Cancel X; then Y - Z so that S - R Thus S II st - II Rt R. |

Of course, if there is an isomorphism a from I(X, R) to I(Y, S), the com-
ponents R and S still satisfy (I(X, Rt) I(Y, St). This would allow us to
obtain a conclusion analogous to, albeit more complicated than, that of
Theorem 6 in the case of arbitrary semiperfect rings.
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Let us now turn to the structure of an automorphism of a finite inci-
dence ring I(X, R) over an /R-irreducible ring R. First by applying the
inverse of an inner automorphism fl, we may obtain the automorphism fl-1
satisfying

/-(X x/) X x/,

yielding an order automorphism of X x R. Moreover, since R is IR-
irreducible, for any x X there is an x’ e X with fl-l({x} x/) {x’} x/,
so that fl-1 induces an order automorphism 0 of X as well, via O(x)= x’.
Let be the ring automorphism of I(X, R) induced by 0. Finally, let x < y in
X. Then

-1fl-1a(fxr R) fxy R.
Let tkxy be the additive map from R to R induced by the restriction of
/-1fl-1 to f g. The family {tpx x _< y} satisfies xz(r)bz(s) p(rs) for
x _< z _< y and r, S R, since

/- fl-1(fxz r)/-1fl- (fz s) =/-1fl- (fx rs)

Conversely, any such family {blx < y} of additive isomorphisms from R to
R yields a ring automorphism b of I(X, R). Thus we have shown"

8. THEOREM. Let R be an IR-irreducible rino and X a finite partially
ordered set. A map is an automorphism of I(X, R) if and only if there exist an
inner automorphism fl of I(X, R), an order automorphism 0 of X, and a family
{ylx < y} of additive automorphisms of R satisfying dpx(r)dpy(s dpy(rs) for
x <_ z <_ y and r, s R, such that

This decomposition of is not unique, for there may exist distinct auto-
morphisms of I(X, R) arising from additive isomorphisms of R satisfying the
multiplicative conditions that compose to give an inner automorphism of
I(X, R); see the discussion and example in [14].
A ring R is said to be (Morita) dual to a ring S if there is a left R-right

S-bimodule C that is a left R-injective cogenerator and a right S-injective
cogenerator with S End (RC) and R End (Cs) canonically [9], [10], [15].
If R- S, R is said to be self-dual. It is known that if R is dual to S, then
I(X, R) is dual to I(X, S) for any finite preordered set X. Until now, only
partial results have been available concerning the converse [5]. The converse
is true in general; we will now prove it. Since the basic ring of I(X, R) is
I(Xo, Ro) where Xo is the associated partially ordered set of X and Ro is the
basic ring of R, it is sufficient to consider basic rings and partially ordered
sets in the proof of the following theorem.

9. THEOREM. The incidence rings I(X, R) and I(X, S) are dual if and only if
R and S are dual. In particular, I(X, R) is self-dual if and only if R is self-dual.
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Proof. Only rings that are semiperfect admit Morita dualities [12], so as
noted above it is sufficient to show that if X is a finite partially ordered set
and R and S are basic, then I(X, R) is dual to I(X, S) only if R is dual to S.
Let C be a minimal left injective cogenerator for R. Since R is a quotient
ring of I(X, R). R admits a duality; in fact, R is dual to End (sC) [10]. Hence
I(X,R) is dual to I(X, End (sC)) [5, Corollary 3]. Because I(X, End
(C)) and I(X, S) are each basic and dual to I(X, R), I(X, End (sC)) and
I(X, S) are isomorphic [15, Proposition 1.5], [-1, Proposition 27.14]. Then by
Theorem 7, End (sC) S and R is dual to S. |
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