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ACTIONS OF COMPACT GROUPS ON AF
C*-ALGEBRAS
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DAVID HANDELMAN2 AND WULF ROSSMANN

Introduction

Let G be a compact group, and .4 an AF (approximately finite dimensional)
C* algebra. Suppose a: G- Aut(.4) is a point norm continuous group
homomorphism such that (i) a(G) leaves globally invariant a dense locally
finite dimensional *-subalgebra; and (ii) a(G) is locally representable (i.e.,
there exists a dense locally finite dimensional *-subalgebra A I,.J.4i, with Ag
finite dimensional and invariant, and the action of a restricted to each A
arises from a representation of G in the unitary group of A;). Then a complete
invariant for conjugacy in Aut(A) of a may be given in terms of a suitable
partially ordered module over the representation ring of G, together with a
specified positive element.

This classification applies (as a very special case) to product type actions on
UHF algebras, and also to groups of prime order of approximately inner
automorphisms acting on arbitrary AF algebras, but satisfying (i) (IV).
Moreover, the invariant can be used to construct weird actions, which are
certainly not of product type, on UHF algebras, for any compact group (III,
VI).
We also show that if .4 has unique trace, then the complex vector space

generated by the traces of .4 G (the crossed product) is a cyclic module
over the complexified representation ring of G, when G is finite. This is true for
any unital C* algebra .4 with unique trace, and any action of G, and is
obtained by directly constructing all the traces on R x G, where R is the
tracial completion of .4.
Our emphasis here is on the crosssed product .4 x G (as opposed to the

fixed point algebra studied in [11]). The Grothendieck group (K0) of this
admits a natural ordered module structure over the representation ring of G.
The first key result, II.1 and II.2, describe the ordered module as a limit of
finitely generated ones (this is precisely analogous to dimension groups arising
as limits of simplicial groups; here Z, the ordered ring, is replaced by the
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representation ring of G, as an ordered ring, and maps between free modules
are described by matrices whose entries are characters). This description can be
used to construct strange actions, even for groups of order 2, and may be
considered a prescription for constructing all possible actions satisfying (i) and
(ii).
The next theorem (III.1) shows that the ordered module invariant together

with a single element in the positive cone, is a complete conjugacy invariant for
the action of G in Aut(A). This is achieved, essentially via an iteration of a
Noether Skolem theorem adapted for finite dimensional dynamical systems.
We also consider (VI) how the complete invariant behaves under tensoring;

that is, if a" G -o Aut(A), fl: G -, Aut(B) are actions of the compact group
G, then tx (R) fl" G -, Aut(A (R) B) is an action of G on A (R) B. The correspond-
ing invariant ordered module is a tensor product (over the representation ring
of G), of the modules arising from a and fl, if the latter are locally representa-
ble. Infinite tensor products of actions can be used to construct very highly
nonproduct type actions on UHF algebras.

For the convenience of the reader, there is an appendix which deals with
examples of representation tings of compact groups.

I. Definitions

Let G be a compact group. We denote by Ko(G) its representation ring (that
is, Ko(C*(G))); Ko(G) is the ring of differences of (finite dimensional)
characters, with multiplication defined via

(XI" X2)(g) Xl(g)x2(g),

corresponding to the tensor product of the representations, if X1, X 2 are actual
characters. There is a natural partial ordering on Ko(G), making it into a
partially ordered ring (take as positive cone, the characters). Then as a partially
ordered abelian group, Ko(G) is order-isomorphic to a direct sum of copies of
Z (coordinatewise ordering), one for each irreducible character of G.
We shall assume as familiar the equivalence between characters, finite

dimensional representations, and finite dimensional G-modules, and treat them
interchangeably as elements of Ko(G /.

If G is abelian, then Ko(G) is ring isomorphic to the (discrete) integral
group ring, ZG over the dual group, and the positive cone consists of elements
of the form nix with n nonnegative integers, and X in G^(the linear
characters), where almost all of the n are zero (see the appendix).

Let A be any (unital) C* algebra (or if G is finite, it suffices that A be an
algebra over C), and let a" G Aut(A) be a point-norm continuous group
homomorphism. We may form the crossed product A G: If G is finite, this
is easiest to treat as the algebra of formal sums
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(Y’.agg]g . G, ag .,),
with multiplication defined via ga a"t’g)g; if G is infinite, G is the C*
norm closure of the set of continuous functions f: G --, with multiplication
defined via a twisted convolution:

, dh,

where eth is a(h), and the measure on G is normalized Haar measure.
Recall the definition of (pre-ordered) K0 of a C* algebra, e.g., [7], [2], [4]. As

G is compact and A is locally finite dimensional, the crossed product A G
is AF, and C(G, A) contains a dense locally finite dimensional subalgebra
thereof. Hence the natural inclusion C(G, A) A , G induces an order-iso-
morphism on K0 (e.g., [9, Section 4]), so that when G is infinite, we may
restrict to the dense subalgebra of continuous functions on G with values in A
(and if A is AF, we may restrict to functions with values in the dense locally
finite dimensional subalgebra A).
Now Ko(A , G) admits a natural structure as a module over Ko(G (e.g.,

see [21]). If V is a finite dimensional G-module with corresponding character
X, and P is a finitely generated projective left A G module, then the
equivalence class in K0 of the A G-module, P (R)cV (the G-action on P and
V results in an action of A G on the whole tensor product) yields [P] X. It
is routine to verify that this turns K0(A G) into a K0(G)-module. Further-
more, if A G is stably finite (as will be the case when A is AF), then
Ko(A , G) admits a natural partial ordering [7] with positive cone ([P]I P
finitely generated projective Ko(A , G)-modules}, and the cone is preserved
by the action of the positive elements of Ko(G) (the characters). Thus in this
case, Ko(A G) is a partially ordered module over the partially ordered ring
Ko(G).
Our first main result (II.1 and II.2) will elaborate on this module structure.
If A is a *-algebra U(A) will denote the group of unitary elements of A.
Let A rA be a finite dimensional C* algebra expressed as a product of its

simple factors, and let a: G- Aut(A) be a (continuous) group homomor-
phism of a special form: There exists a representation 3" G - U(A) such that
Ad 3’(g) a(g) for all g in G. We call such an action a representable. If A is
now an algebra written as a unital union of finite dimensional *-subalgebras,
A OA, and a" G - Aut(A) (or G - Aut(A)) is a point-norm continuous
homomorphism such that for some increasing nest B B2c B of
finite dimensional C*-subalgebras of with dense union, and we have that
both a(G)B B and a/B is representable for all i, then we say a is locally
representable. (Since G is compact, a(G)(A) A entails the existence of a nest
of finite dimensional a(G)-invariant *-subalgebras B c B;+ with .4 UB.)

Locally representable actions can be rather fare from being inner, as is
well-known. The standard examples analysed in [5, 2] and [11] are product type
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actions. Put A (R) Mn(i)C, and let 7/ G--, U(n(i), C) be_a sequence of
representations; then a(g)= (R)Ad 7(g) yields a" G - Aut(A); this is obvi-
ously locally representable, but inner only when almost all of the 7g’s are
scalar-valued. There are many other non-product type actions on this tensor
product algebra, and we shall construct and classify the locally representable
ones.
A C* algebra is AF if it contains as a dense *-subalgebra, an algebra

A LIA, where each A is finite dimensional. If additionally any one such
dense A can be expressed_ in the form (R) MniC for some sequence_ of positive
integers { n(i)}, then A is a UHF algebra. For the AF algebra A we shall only
be studying those actions a: G Aut(A) that leave invariant a dense locally
finite *-subalgebra. Whether this assumption is redundant for AF algebras is
an open question for every compact group G. Since for A finite dimensional,
A /A,G is itself AF, it easily follows that both inclusions

A GAG and A

induce order-isomorphisms on K0, in the former case as Ko(G) ordered
modules. Hence in what follows, we need not discuss A, but concern ourselves
only with A, the dense locally finite dimensional *-subalgebra.
Very often, the subscripted symbol denoting the action of a group on an

algebra, e.g., a or a( or a/A will be suppressed in writing the crossed
product (for typographical reasons); thus A G could be written as A G
where no confusion would be likely to arise.

II. Finite dimensional dynamical systems

In this section, we discuss the construction of the general locally representa-
ble action, and how it translates when K0 is applied. We deduce that
(Ko(A G),[A]) is a complete invariant for locally representable actions a
(where A, is A viewed as an A , G-module, and [A] its class in Ko(A
G)). We also show how (Ko(Aa),[Aa]) (the complete invariant for the fixed
point algebra, qua AF algebra) may be recovered from the crossed product and
its Ko.
A dynamical system is a triple (A, G, a) where A is a C* algebra of a

*-subalgebra thereof, G is a compact group, and a: G---> Aut(A) is a group
homomorphism with the property that the map G --> A, g a(g is continu-
ous for every a in A. This is precisely the condition that allows the crossed
product to be formed. A morphism of dynamical systems qo: (A,G,a)
(B, G,/3) (G can be allowed to change, but this is never required below) is a
*-algebra map tp: A B such that

q(a(g)) p(a)(g) for all a in A, g in G.

Such a morphism p induces a map A G ---> B G on the crossed product
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(also denoted p), given by ag p(a)g if G is finite, and by f p f if G is
infinite. Conversely, any *-algebra map A B which extends in this way to a
map of the crossed products "is" a morphism (A, G, a) (B, G,/3) of dy-
namical systems.

If A is finite dimensional, and a: G Aut(A) is representable we use the
same symbol a to denote one choice of representation G U(A) which
implements the action a, provided confusion is unlikely to occur.

Suppose (A, G, a) and (B, G, fl) are dynamical systems with A, B finite
dimensional and a, fl representable. We wish to describe (up to suitable inner
automorphisms) all dynamical systems’ maps between them.
Now Ko(A G) and Ko(B G) are modules over the commutative ring

Ko(G) (what tensor product over C as multiplication). A morphism

induces a K0(G)-module homomorphism

via [M] --, [(B t G) (R)(,x )M], B t G being regarded as a right module
over A , G via tp: A G B t G.
We define A to be A, regarded as a left module over A G, via the action

(Eagg ) a Eaa(

if G is finite, and

fa= fJ(g)a"g)dg
if G is infinite. (From now on, we shall use the notation for finite G, omitting
the obvious modifications for infinite G.)
The map K0(p) evidently sends the element of Ko(A , G), [A], to [Bt in

Ko(B t G).
In the representable case, we may lift a to a homomorphism &: G - U(A);

then there is an algebra isomorphism A G - C*(G, A), sending Y’.agg to

ag&(g)-lg. If we write A 1-I’=lAi in terms of simple components, then the
K0(G)-module structure of Ko(AG) is especially simple to describe: each
simple component contributes a copy of Ko(G), so as a K0(G)-module,

m

Ko(AG) E Ko(AiG) Ko(G) m.
i=1

The ordering on Ko(AG) then corresponds to the usual ordering on Ko(G) m.
The isomorphism A , G AG described above induces an order isomor-
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phism of Ko(G)-modules Ko(A ,, G)-- Ko(G)m. This isomorphism is not
uniquely determined, however, because if (1, J2,-.. !m) is an m-tuple of
one-dimensional representations of G, then both & and represent a.
Conversely, if &l and &2: G U(A) both represent a: G Aut(A), then
they differ only by some such (because g &l(g)&2(g)- is a homomor-
phism of G into the unitary group of the centre of A).
The isomorphism Ko(A ,, G) Ko(G) is explicitly given by

[MI ([Hom,(V, M)]), [EV (R)cN] ([N]),. (1)

Here V Ck() is the simple A-module corresponding to A--- M,(oC. The
G-module structure on HomA(V/, M) is given by (g. f)(v)= g. (f(v)); the
A G-module structure on V (R) N is given by (ag). (v (R) n) (aix(g)v) (R)

gn. In particular, the element [A] of Ko(A , G) corresponds to the element
([V/*]) of Ko(G)m, where V* Homc(V, C) is the dual vector space. (This
because

Hom(V, A) --- HomA(V, Endc(V) --- HomA(V, V (R) V*) V*

as G-modules.)
To simplify notation, it is convenient to introduce the A

V Y’.V and the auxilary algebras
G-module

E Enda(V) I-IE cm, E EndA,(V)= C, EG CmG (CG) m.

Then obviously Ko(EG) Ko(G) m, and the isomorphism (1) above becomes
the isomorphism Ko(A ,,, G) =- Ko(EG) given by

[M] --> [HomA(V, M)],
IV (R)N] <-- [N] (2)

Let AG { a A: a a(g) a for all g G] be the fixed point subalgebra.
Since a is representable, Aa rlAa. We may regard Ko(A) as the subgroup
of Ko(A G) generated by V (R) eM* where M runs over the EG-submodules
of V via the embedding

/<o(A e --, a (3)

(The dual space M* of M is regarded as a G-module via (g f)(m) f(g m);
the action of A G on A (R)P is given by (ag). (b p) (a&(g)b) (R) p.)
--This is a consequence of the Morita duality between simple Aa-modules and
simple G-submodules of V.mNote that under Ko(A ,, G)= Ko(G)%
Ko(Aa) becomes the subgroup of Ko(G)" generated by ([Mi*]) i, where M
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runs over the G-submodules of V.
Suppose now we have two finite-dimensional, representable dynamical sys-

tems(A, G, a) and (B, G,/3) together with a morphism p: (A, G, a) (B, G,/3).
In analogy with Ai, V, E etc. as above, we introduce the corresponding objects
Bi, W, F etc. for (B, G, fl). The morphism p: (A, G, a) --, (B, G, fl) induces
maps A , G B t G and AC Bc and corresponding maps on K0.

11.1 LEMMA. The following diagram commutes.

K0(A]G)- Ko(BIIG)
Ko(A) Ko(BC).

(4)

Furthermore, under the identification

Ko(A X,,,G)= Ko(G) and Ko(B G)= Ko(G)"

the map Ko(A G) Ko(B G) becomes

go(G)m--> Ko(G)"

where Vi W.* (R)nF/= Hom,(V/, Wj.)*.

W* (R)AV is considered as a G-module via

g .(f(R) v) fo/(g)-I (R)

Wj.* is a fight A-modula via f. a f p(a). The maps in the diagram (4) are

[M] "-’ [(B tG)(R)(,,)M],
(R),,oP] [B

[P] [Q],

tel

Proof The commutativity of (4) means that

(B XtG ) (R)(x.) (R)A (R),P and B (R),(B
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are isomorphic as B t G-modules. The (left) B a G actions on these mod-
ules are

ag .(bh (R) c (R) p) ai(g)bi(g-X)gh (R) c (R) p,

ag .(b (R) p) a1(g)b (R) p.

(Here a, b B, g, h G, ag B , G, etc.) The required isomorphism is
given by

with inverse

b(R)l(R)p*-b(R)p.

To verify (5) it suffices to show that the following diagram commutes:

Ko(i
, G)- -Ko(i aG)

Ko(EG) -Ko(FG )

(7)

where the maps are given by

[V GeM [W

[M] [N],
[M] [(Homv(W, F) (R)V) (R)M].

Indeed, under Ko(EG) Ko(G)m, [IIiE (R)cMi] ([Mi])i the bottom map
in (7) becomes exactly the one in (5), because

(Homp(W, F)(R)AV)(R)AM =- (. Homr(l’Vj., Fj. ) (R)A (/V/)(R)v.(iMi )
J

EHomc(W., C) (R)AV/(R)cMi

E
j
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To prove that (7) commutes we have to check that for

N (Homv(W F)GAV) GeM

the B t G modules (B G) G(,x a)(V GeM) and W GFN are isomorphic.
For this we first note that there are natural bijections

B W GFHOm(W,F), B tG B GFFG.

Under the first bijection, W GFHOmF(W, F) becomes a left and right B-mod-
ule so that

a.(vGf)=avGf, (vGf).a=vGfa;

under the second one, B GFFG becomes left and fight B a G-module so that

ag .(b G h) a#(g)b/3(g-1) G gh,

(b G h) ag b(h)afl(h -1) G hg.

We now have to check that with the corresponding B t G-module struc-
tures on

(W GFHOmF(W, F) GFFG ) GA. a)(V GM)

and

W Gv((Homr(W, F)GA)GM),

these B t G-modules are isomorphic.
The left action of B c B G on either one of the modules is on the tensor

factor W only. So it suffices to check that

(HOmF(W, F) GFFG ) Go a)(V GM)

and

(HOmF(W, F) G,V) GeM

are isomorphic as left G-modules. Here the G-actions are given by

g .((fG h) G(v G m)) (fo/(g-1) G gh) G(o G m),

g .((f G v) G m) (fo/(g-1) G &(g)o) G(gm).
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The required G-isomorphism is given by

(f (R) h) (R)(v (R) m) (f ix(h) (R) o) (R) hm (f (R) ix(h)o) (R) hm.

Its inverse is given by

(f(R) l) (R)(v (R) m) (f(R)c)(R)m.

We omit the routine verifications.

Thus we have the commuting diagram

Ko(G)  -Ko(G )

The upper two vertical maps are (order-)isomorphisms, and the bottom two are
order-preserving embeddings. The map K0(G)" K0(G) n described in (5),
can be re-interpreted in terms of characters; it is given by an n rn matrix
with entries which are characters (that is, positive dements of Ko(G))--Xij is
the character of the representation afforded by Vi.

Conversely, given a" G U(A), a matrix of characters M (Xij), and a
specified element xI, (kl,..-, q,,)r in (Ko(G)m) +, and Mq’ in (K0(G)n) +,
we can construct (explicitly) an algebra B, an action fl: G U(B), and
homomorphism of dynamical systems (A, G, a) (B, G, fl) to yield the matrix
M, as follows.

Let M(1) denote the integer matrix (Xs/(1)). Define the algebra B as
lMk(s)C, where k(s) EtXst(1)k’(t) (the t-th simple component of A is a

matrix ring of size k’(t) kt(1)). In other words, the algebra A is interpreted
as the column of integers

K’ (k’(1),..., k’(m)) r,
representing the sizes of the matrix tings, and the corresponding column for B
is obtained via the matrix multiplication K M(1)K’. The algebra map :
A --* B is now obvious: Send the first central idempotent of A into the s’-th
component of B with multiplicity M(1); iterating this yields a unital algebra
map : A B such that

Ko(tp): Ko(A)- Ko(B )

is multiplication by the matrix M(1).
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Now we must describe the action of fl in B. Let A IIAi, B IIB. be the
factorizations in terms of the simple components, and set E (Fj) to be the ith
(j-th) minimal central idempotent of A(B), and let ei= (e,e2,"-,en) be
tp(Ei). Then FJp(Ai)Fj is a simple unital subalgebra of e)Be), which is itself
simple. Hence we may decompose e)Be)i FJp(Ai)Fj (R) Xj’, where Xj’ is the
centralizer of the former in eBej, and is of course simple. Then dim Xj’
Xij(1) 2 (by construction), so there exists a representation Pij: G U(Xj) such
that the character of tpj is Xj. Also the map A --, FJp(A)F is an algebra
isomorphism (or the zero map), so if y (3’1,..., ’m) is a representation
yielding the action a, we may transfer -/ to Fp(Ai)FJ, to obtain a map

"ri: G U(FJP(Ai)FJ).

Define 5: G-o U(B) via Yi (R) o, and define 5: G .-o U(B) as

This construction depends on the choice of representations; there is a
method of picking the representations in a manner compatible with limits and
homomorphisms; this is implicit in the proof of the results above. The
following lemma formalizes the procedure just given, in the language of
G-modules. In particular, limits are obtainable by simlly writing down a
sequence of matrices with characters as entries, of compatible dimensions.

II.2 LEMM. Let (A, G, a) and (B, G, fl) be finite dimensional, representa-
ble dynamical systems. Then any order preserving Ko(G)-module homomorphism

’" Ko(A x,,a), [A,,I--, ro(/ xt a),

is induced by a morphism of dynamical systems

Furthermore, q is uniquely determined by t up to an inner *automorphism of B
commuting with ft.

Proof The hypothesis [A] [Bt gives

SO

E(,x,[v,]) (R) [v,,] E[w,.] (R) [w,,], (8)
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because is a K0(G)-module homomorphism. Write

J

with [_M] Ko(G) /. Then (8) gives

J

so Ei[Mi] (R) [V*] [W/*] and

Wj. --- E V (R) M’ (9)

as G-modules. A choice of such an isomorphism of G-modules gives a
G-isomorphism of algebras

where Cij Endc(Mi), and therefore

j

So a choice of isomorphism (9) gives a map

A -=* B A @ C/, a --+ a (R) eij,

el/ the unit of Cj. This is the required morphism p: (A, G, a) --+ (B, G, fl) of
dynamical systems.

It is clear that any such morphism which induces the given

is obtained by this procedure with a suitable choice of the G-isomorphism (9)
(as one sees from (5)). Since B/= Endc.(W/), any two such choices differ by an
element bj of B/, which must satisfy bjfl(g) l)(g)bj in order to be a G-map.
This bj can further be chosen to be unitary, as the representatives of ele-
ments of Ko(G) can always be chosen to be unitary. It follows that any
two morphisms : (A, G, a) --+ (B, G,/3) which induce the same map
: Ko(A x,,, G) --+ Ko(B xt G) differ by an inner automorphism of B given
by a unitary element b /bj which commutes with/), m
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11.3 Example. Take G Z2 (1, g ). Then (see the appendix),

Ko(G) ZG^= 1. Z + g^.Z,

with positive cone Ko(G)+= ( + ng Im, n >_ 0}. Choose a sequence of
characters (Xj m(j) + n(j)g IJ = N}. Set s(j) re(j) / n(j) XJ(1).
Now form the tensor product algebras A !(R)j.1Ms(j)C. The obvious map,

a a (R) Is(i+1) is an embedding Ai A+. An action of G on each A,
j.compatible with these algebra maps, can be defined simply via (R)j=lq

G- A, where each qJ: G M<j)C is a representation with character X j-

(Taken to the limit, as we shall in Section III, this example is of a "product
type action," and is quite well-known.)

Since each A is simple, Ko(AJ G)= Ko(AJG)= K0(G); i.e., Ko(AJ
G) is a free rank 1 Ko(G)-module. On identification of Ko(AJ G) with
Ko(G), the diagram translates to

Ko(G ) ,Ko(G ).

This very simple example will be discussed further in 111.4.

11.4 Example. Again consider the two-element group G Z2. Define a
sequence of algebras and maps

A MC x MC --, A C x MC --, --, A" .C x .C

given by

(a,b)

a a
a

b
b

b

Each A satisfies Ko(Ai) Z 2 as ordered groups, via the map on equivalence
classes of idempotents, [(e, f)] (rank e, rank f). Transposing these pairs to
obtain columns (so matrices will act on the left), we see that K0 of the map
A A+ is given by the matrix

[2 3]
which we call M(1).
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We wish to impose a G-action (G Z2) on each A compatible with the
algebra maps. Select 4 characters of G, Xll, X12, X2x, X22, so that if M [Xij] r,
then M evaluated at 1 should be what we have called M(1). One choice for
M is

l+g 2 + g^^]2 l+2g

where g is the character sending the non-identity element to -1. The corre-
sponding representations Xij of G are given by the formulae:

(1 )ll(g) (1 ) :z(g) 1
-1

-1

-1

Describe an action of G on A as follows. The image of A in A is

a a
a a

b b
b b

b b

a,bC

The first component (in A) of the image of the first component of A is the
2 block (In a]/, and corresponds to the (1,1) entry of M. Theupper 2

centralizer in the whole 2 2 matrix ring is of course M2C again, so _we use

obtain a map from G to the upper left 2 2 block, g x ]11 to
-1

The first component in ‘41 of the image of the second component of A is
(diag(b, b, b)lb C }; its centralizer is M3C, and corresponds to the (1, 2)
entry of Mr, or in otherwords, to X21 2 + g, and its representation g
diag(1,1, -1). We use this last to fill in the image of G in the first component
of A1.
Working in the second component of .41, the representation are tp2 and 22.

Combining all four, we obtain the representation:

1
-1

1
-1

1
-1

-1
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This happened to be especially easy, since the action on A was trivial. Now
let us extend the action to A2.
The first component in 24 2 of the image of the first component of A is

{[a alia
_
M5C }; its centralizer in e1A1--21e1 (where

e I, 025
05

is isomorphic to M2C, and selecting 11, we obtain a representation G +
1-2 MloC byelA e

1

g 1 (R)1
1

-1

-1

diag(1, 1,1, 1, 1, 1,1, 1, 1, 1).

The first component in 242 of the image of the second component of A is
isomorphic to

Setting

the centralizer in 2- 2 2ela e is isomorphic to M3C. Selecting 21 define the map
2A2 2G -, ela e elE(Image A)e2 (R) M3C via

1

g 1 (R) 1
-1 -1

-1

diag(1,1,1, 1, 1,1,1,1, 1, 1, 1, 1, 1, 1, 1).
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The other two pieces are similarly computed, and the map G- A2 is
given by

1
-1

1 (R)

1
-I

1
-1

1 (R)

1
-1

1
1

1
-I

-i

1
1

1
-1

-i

[i ](R) -I
-I

[i(R) -i
-i

It is straightforward to iterate this (the page is not large enough to hold the
diagram describing G - A3). If G A is given by g (rl(g), ,rE(g)), then
G Ai+ is given by

,q(g) (R) [1

q(g) @ 1 1]
(R)[

If a(i) describes G Ai, then identifying Ko(A G) (suppressing the a(0 for
typographical reasons) with Ko(G)2 in the manner described earlier, identifies

oA ,(o) with (1,1)r;
tak,,,l with (3 + 2g 3 + 2g)r;
A(,_)] with (12 + 13g, 12 + 13g) r, etc.

These were obtained by taking the characters, on each component, of a(.
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Observe that

1 3 + 2g+
M

3 + 2g 12 + 13g

as is to be expected, since M must send 0[A(o)] to [A(1) ], the latter to [A2
a(2) ],

and so on.

This example can be generalized in a number of ways. First, the group G can
be altered to any compact group; second, there is no need for the character
matrix (here denoted M) to be the same at each level; it can be changed
provided the evaluations at 1 yield unital algebra maps; third, the initial action
(here, on A) need not be trivial (this would alter 0A0)], but not the module
structure).
The limit algebra and the corresponding action, together with computations

on the Ko-modules will be discussed in Section III.

III. Classification

We now turn from finite dimensional algebras to AF algebras. We shall
show that the invariant Ko(A G),[A] is a complete invariant for the locally
representable action on the AF algebra A up to automorphisms. More
precisely, we have the following result.

III.1 THEOREM. Let (A, G, a) and (B, G, fl) be direct limits offinite dimen-
sional, representable dynamical systems. Then any order preserving Ko(G)-mod-
ule homomorphism

is induced by a morphism of dynamical systems

p: (A,G,a) (B,G,).

Finally, (A, G, a) and (B, G, fl) are isomorphic as dynamical systems (i.e.,
there is a *isomorphism p: A B so that pa flop) if and only if Ko(A
G),[A,,] and Ko(B t G),[B] are isomorphic as ordered Ko(G)-modules with
specified elements.

Proof Consider the first assertion. Let

" Ko(A x,6), [A,]--, Ko( x,G),
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be an order preserving K0(G)-module homomorphism. Write (A, G, a) and
(B,G, fl) as limits of finite dimensional, representable dynamical systems:

-’ (ik, G, olk) ---) (ik+l,G, olk+l)--) -)(A,G, ol),
--, -. -,

After suitable telescoping and relabelling, the given map can be written as
the limit of a commuting diagram of order-preserving K0(G)-module homo-
morphisms:

--)Ko(Ak G),[Ak] .-)Ko(ATM X G), [Ak+] --) -)Ko(A ,, G), [A,,]

--)Ko(B " G),[B’] --)Ko(B’+ G), [B’+I- -)Ko(B oG),[Bol

By Lemmas 11.2, we get a diagram of morphisms of dynamical systems:

--.(Ak, G,ak) (Ak+l,G, ak+X) --->(A,G,a),

--,(,a,B) --,(/,c,BTM) --,

(2)

This last diagram (2) commutes initially only up to automorphisms of the
(B k, G, ilk). However, modifying the vertical maps successively by such auto-
morphisms, we may assume that the diagram commutes properly, and there-
fore passes to a vertical map in the limit. This is the required morphism
(A, G, a) (B, G, fl) of dynamical systems.

If Ko(A a G),[Aa] is order-isomorphic to Ko(B G),[Bt], then the
diagram (1) can be further telescoped so that we obtain positive maps in both
directions inducing the map and its inverse:

--,Ko(Ak G),[Ak] --*Ko(ATM G),[ATM] --->

Ko(B G),[B’] Ko(B+ X,[BTM] ....
(1’)

Then the corresponding map of dynamical systems (A, G, a) (B, G, fl) and
its inverse can be simultaneously built up by the usual interweaving argument
that arises in direct limits.

Remarks. (1) If G {1}, then the theorem and its proof reduce to those
of [4], classifying AF algebras via dimension groups, in the unital case.

(2) If a is known to be locally representable, and the K0(G)-module
structure of Ko(A G) is known, then Ko(A) (and thus A, as well as a) can
be recovered, as in [21; p. 101] (where a special case is considered). Let
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I {x Ko(G)lx(1) O) (x Ko(G)lx Xres 0} (Xreg is the character
of the regular representation--this applies if G is finite). Then the map,
Ko(A G) Ko(A) which simply regards every A G-module as an A-
module, has kernel J I. K0(A G). If we impose the trivial Ko(G) action
on Ko(A) (so y X X(1) "y for X in Ko(G)), then Ko(A G)/J Ko(A)
as ordered K0(G)-modules, because the isomorphism holds locally (at the
finite dimensional level), m

Let G be a finite group, and ares: G U(IGI, C) the regular representation,
with corresponding character X reg. If a, fl are two actions of G (on a C*
algebra A), we say they are stably conjugate if a (R) arCs, fl (R) arCg are conjugate
as actions on MnA A (R) MnC, where n GI.

111.2 COROLLARY. Let a, fl" G-, Aut(A) be two locally representable ac-
tions of the finite group G. Then tx and fl are stably conjugate if and only if there
is an order isomorphism p: Ko(A G) --, Ko(A / G) such that

( (t ol)Xro Xro -

Proof. Simply observe that [MA((R)reg)] [A]xrs, and apply the previ-
ous theorem, m

Remarks. (3) If, in the situation of the corollary, both a and fl decom-
pose as a’ (R) ares, and fl’ (R) arg, then stable conjugacy of a, fl implies actual
conjugacy, because 2Xr Xre(1)" Xra"

(4) In [11], analogous results were established for outer, product type
actions on UHF algebras, with K0(A x. G) replaced by Ko(AO). For G finite,
the A x. G A bimodule A implements a Morita duality between A x G
and A, so that their corresponding dimension groups are order-isomorphic.

This admits a considerable generalization. Drop the hypotheses of outer,
product type, and UHF (so we have a locally representable action on an AF
algebra). Then the pair (Ko(AO),[AO]) can always be recovered from
(Ko(A x,, G), [A.]) (the former pair is the complete invariant, in the category
of AF algebras, for Ao). This contrasts sharply with the situation for more
general C* algebras, where it is possible to have K0(A x. G) being zero, while
Ko(A) is hOt--so it might be difficult to recover the latter from the former!
We are indebted to Claude Schochet for this last remark, due to Alain Connes.

Let Xo: G C denote the trivial character of G, regarded as an element of
A x G. Then X0 is a projection, and A is isomorphic to X0 .(A x. G). X0
[20], and X0 of course serves as the identity of the latter. As the latter is C*
Morita equivalent to the closure of the ideal generated by X0 (in A x. G), and
everything in sight is an AF algebra (and closed ideals in AF algebras
correspond in a natural way with order ideals in the dimension group), we have

Ko(A) = Ko(Xo *(A X,, G)* Xo) Ko(cl((A X,, G)Xo(A X,, G)),
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which is the order ideal in Ko(A G) generated by [Xo ,(A G)], abbrevi-
ated Xo ]. In fact, the right A G-ideal X o * (X G) equals -. Thus

(Ko(A), [A]) ({ s Ko(A G)I there exists a positive integer

n with -n[Xo] < s < n[Xo]), [Xo])-
For example, if we take a fixed representation of a compact group G, q"
G ---, MnC, with character X, and take the product type action (so A (R) M,C,
and a (R)q), the diagram for Ko(A G) consists of a limit of 1 1
matrices, i.e., characters,

XX XX X
Ko( ) ro( ) ro( ) ....

The limit is a ring, R (Ko(G)/J)[x-1] (localize at the annihilator of X, J,
and invert X; if G is connected, J is (0)). Then I in R corresponds to [X0] if it
does so at the first level; this occurs if for example X is irreducible, so that
(MnC)= C. Then Ko(A) is just the bounded subring of R, that is the
elements of R that are bounded above and below by an integer multiple of 1.
This is a ring, and the ordering on it is partially determined by its multiplica-
tive positive homomorphisms to the reals (observed by Wassermann in his
thesis, inter alia). Under some circumstances (investigated in a forthcoming
paper by one of us), all states of R are extensions of states of the bounded
subring.

It is also possible to determine the generating interval, D(A G) (see [4]
for this notation). If + is an irreducible character of G, form tp 6/6 (1)
G-, C regarded as an dement both of C*(G) and A G. Each q is a
projection, and since C*(G) has an approximate identity consisting of finite
sums of the orthogonal projections equivalent in Ko(C*(G)) to 6(1)[],
A , G has a similar approximate identity, and so D(A G) is the interval
generated by (6(1)[tp]); that is,

D(A X. G) { r Ko(A x. G)IO < r < Eq,(1)[ql, some finite set of ’s}

111.3 COROLLARY. Let et: G Aut(A) be a locally representable outer
action of the finite group G (on the AF algebra A) such that A G is UHF.
Then .is UHF, and Morita equivalent to . G as well as 7. Moreover, t is
equivalent to an infinite tensor product of multiples of the regular representation of
G (that is, t is equivalent to (R)a

i, where t etreg (R) It(o, where treg: G-
End LE(G) denotes the regular representation, and It(i) is the trivial representa-
tion of multiplicity t(i)).

Proof. We have that Ko(A G) is rank 1 as a Z-module; necessarily
the action of R Ko(G) is trivial (that is, X" x X(1)x), as the map
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Ko(A , G) Ko(A) must be onto, and the abelian group rank is one so
the map is an isomorphism. So Ko(A) has rank 1, and thus A is UHF; since

K_o(A , G) is isomorphic (simply as an abelian group is_sufficient) to it,
A G is Morita equivalent to A. Since the action is outer, A G is Morita
equivalent to - (via the bimodule ).

Writing Ko(A , G) as a limit of the sequence of free K0(G)-modules
obtained from the local representability, we have

Ko(A X,,G)= limP" R"(0 R"(i+i) (R Ko(G)).

We may assume (telescoping if necessary), that every Pi is rank I as an abelian
group homomorphism. Regarding each Pi as a matrix of size n(i + 1) n(i),
each entry must be zero at every non-identity conjugacy class (otherwise,
modulo one of the minimal prime ideals other than the kernel of X X(1), the
matrix would not be zero, so the abelian group rank of Pi would exceed 1).
This means each entry must be an integer multiple of the character of the
regular representation.
Any rank 1 matrix with integer entries factors as wv, where w is a column

and o is a row; if the matrix has only non-negative entries, then the same may
be assumed for the column and row (consider the nonzero rows of the matrix;
because Z is a principal ideal domain, one of them will divide all the others,
yielding v). In the case of Pi, we can write Pi X regQ, where X reg is the
character of the regular representation, and Q; is a non-negative matrix with
integer entries. An additional telescoping allows us to assume

Pi XEregQi xgl GI Qi.

Factoring Q wv as a non-negative column times a non-negative row with
integer entries, we have a corresponding factorization P WV, where W
Xrtesw, V Xegv have entries from Ko(G). This yields an R-module order-
isomorphism between the limits of the rows of

Rn(i)___.__L Rn(i+ 1) _..>

R R "".

v+w

The bottom row of course would come from the product type action corre-
sponding to VW+ x, which is an integer multiple of the regular character, and
therefore corresponds to a multiple of the regular representation. The element
[A] is sent to some positive element in the limit of the bottom row, so we have
an order isomorphism to the K0(G)-module with a specified dement arising
from a product type action. By the theorem, the two actions are conjugate, m
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111.4 Example (Continuation of 11.3). Taking the limit of the algebra and
of the group action(s) constructed in 11.3, we obtain an action of G Z2 on
the UHF algebra A (R) Ms()C. The action is given simply as a(g)
(R) Ad opt(g). The module Ko(A ,, G) is the limit of the maps

Xi+1
....__> Ko(G ) --> Ko(G ) ....

In particular, K0(A a G) will have rank one over K0(G). Similar consider-
ations apply to any compact group (replacing Z2); the resulting action is called
product type. For Z2 and Z,, these actions are classified in [5], [6]. For other
finite groups and outer product type actions, classification is possible via the
fixed point algebra [11].

Returning to our example(s), we analyze the limit module Ko(A , G),
which we abbreviate to Q. Denoting the ideals of ZG generated by g -1,
g + 1 by P1, P2 (see the appendix), Q embeds subdirectly in Q1 Q2, where
Qi Q/PiQ. Sending g to 1 yields Q1 as the limit of Z ---, Z, where the maps
are multiplication by m(i)+ n(i); similarly Q2 is the limit of Z ---, Z, with
maps multiplication by m(i)- n(i). The embedding Q Qx $ Q2 is onto
(that is, Q decomposes as a direct sum of invariant subgroups under the action
of G ) if and only if m(i) + n(i) is even for infinitely many (it is possible to
verify that Q1 or Q2 is fiat as a ZG -module if and only if it is 2-divisible;
since Q is necessarily a fiat module, being a limit of free modules, the result
follows).
As a final remark, we observe that A a G has unique trace (and theref’-re

Ko(A G) has a unique state), if and only if for all j,

lm(i) n(i)l =0
m(i) + n(i)

[111.

Otherwise it has two pure traces (states). In any case the ordering is determined
by the states on Ko(A X,, G) by [3; 1.4]. m

111.5 Example (Conclusion of 11.4). Recalling notation from 11.4, we have a
limit of algebras, A limAi, together with compatible actions of G Z2
obtained from a(i): G ---, Ai. We compute the relevant K0-groups and modules.

First, we see that the algebra A is isomorphic to (R)Ms via the maps,
Ai .__, Ms,+ 1, given by

(a,b) b
b

b

This can also be deduced by computing Ko(A) (keeping track of [A])--Ko(A)
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is the limit (as ordered abelian groups) of

(.) Z2 2 3 ,l,Z 2 2 3 Z2, ., ...;

because

2 3 1

the limit is isomorphic to the limit of Z -o Z -o Z - where the maps
between the Z’s are multiplication by

1

On the crossed product level, the maps K0(A x G) -- K0(A+ x G) after
identification with Ko(G), are given by P Mr: Ko(G) -- Ko(G). Let Q
denote the limit module. We compute the rank of Q as a -module by utilizing
the subdirect decomposition of Ko(G) as a subdirect product (as tings) of two
copies of (see the appendix). Modulo the augmentation ideal P, Q/PQ is
simply the limit of the diagram in (,) (just evaluate the characters at 1), so
Q/PQ z[1/51 as abelian groups.^
On the other hand, modulo 12 (g -1), Q/P2Q, the maps are

[0 1]. Z2_. Z2.
2 -1

this has determinant -2, so the limit has Z-rank 2. As the R KoG-module
rank is just the maximum of the two ranks, rankRQ 2; the rank of Q as an
abelian group is the sum of the two ranks, so it is 3.
A product type action would necessarily yield R-module rank I and Z-mod-

ule rank 1 or 2, so this action cannot be of product type.
In Section VI, we shall see how to build from this example to an action

where Ko(A x G) has infinite rank.
More can be said about the module structure. Since Q/P1Q is not 2-divisi-

ble, and Q is flat, the subdirect sum decomposition

is not onto, but of index 2 (it is straightforward to verify that Q/PIQ as a
trivial G-module is not flat).
The ordering can also be described. Identify Q/PQ with Z[1/5] c R; then

the map Q - Q/PQ is a state. Since the action of G Z2 on A is outer,
A x, G is simple. Thus Q Ko(A x, G) is a simple dimension group. Writ-
ing R K0(G)= Z2 as an ordered abelian group, we have Q order isomor-
phic to the limit

Z4
x x

Z4
x

-o Z4 -o --.
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for some positive 4 4 matrix X (easily computed from M). Since the limit is
simple, the matrix X must be aperiodic irreducible, and thus Q admits ONLY
one state. So Q Z[1/5] arising from the quotient map is the only state, and
thus by [3; 1.4],

Q+= (0} u{m Qlq +P1Q >0 inZ[1/5]).

Such non-product type actions can be constructed for any compact Lie
group G in a very simple fashion, as follows. Find a projectively faithful
character X of G(lx(g)l X(1) implies g 1) (start with a faithful represen-
tation, and add the trivial one). Say X(1)= d. Select any integer n > d, and
consider the matrix with entries in R Ko(G),

x (n-d)x0]dXo (n- d)Xo

(where X0 is the trivial character). Under the map Ko(G) --, Z given by
X X(1), -: Z 2 Z 2 given by

results, The limiting abelian group is Z[1/n], so we define an action of G on
A EM,,C by regarding A as the limit of the corresponding finite dimensional
algebras obtained by iterating M. The action is obtained as in Example 11.4.
To see that it is not of product type, we compute the determinant of M as an
element of Ko(G) R" It is

(n d)(X d(n d)Xo) * O.

Hence regardless of whether G is infinite, the rank of the limit module is 2
(over R), so the corresponding action is not of product type.
Much more complicated actions can be given, with specified ranks, over

some UHF algebramfor rank k, set

X d d
d X d
d d X

d d d

d

(the cumbersome dx0 has been replaced by d). The determinant of M is

(X- dXo)k-l(x- d(1 k)Xo).
If k exceeds 2, this vanishes only at 1 in G (as Ix(g)l < x(1)). The R-module
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rank of the resulting module is exactly k. The algebra on which G acts is that
arising from the k k matrix with solid d ’s, namely (R) MdkC, a UHF algebra.

IV. Automatic local representability

While the results of the previous sections give a very general method for
constructing locally representable actions, it would be pleasant to give some
criteria for local representability, so that the invariants obtained there could be
applied (Ko(A G) is always an invariant for the action--but with local
representability, it becomes part of a complete invariant). Given a compact
group G, an AF algebra , and an action a" G Aut(A-), for a to be locally
representable, the following (redundant) three properties must hold:

(i) There is a dense locally finite dimensional *-subalgebra that is globally
invariant under a(G);

(ii) The action a is locally inner (that is, there exists a nest of invariant
finite dimensional *-subalgebras with dense union, A UAi, such that for all
g in G, a(g), restricted to each Ai, is inner);

(iii) The action a is locally representable (that is, there is a nest of finite
dimensional *-subalgebras, each invariant, with dense union, such that a
restricted to each can be implemented by a representation of G).

Of course (i) and (ii) may be suppressed, but their presence helps clarify
matters. It is a well known open question whether (i) holds for any group, and
say, any UHF algebra. One consequence of (ii) is that for all g in G, a(g) is
approximately inner, meaning that there exists a sequence of inner automor-
phisms Ad uj (uj unitaries_ in A) such that ((Ad u)(a)) converges in norm to
a(g)(a) for all a in A (or A). It is, however, easy to test for approximate
innerness in terms of Korea(g) is approximately inner if and only if K0(a(g))"
Ko(A) --, Ko(A) is the identity, or what amounts to the same thing, for all
projections p in A, a(g)(p) is equivalent to p, via a unitary (e.g., [1], [4]).

If A is UHF, more generally if Ko(A) is totally ordered and A is simple,
then all automorphisms are approximately inner.
We shall show that if G g) is a prime order group of automorphisms of

the AF algebra ,z and a" G Aut(A) satisfies (i) and is approximately inner,
then a is locally representable, so that our classification results apply.

It almost follows directly from the definitions, that if G is simply connected,
then (i) implies (iii) already, and if G is merely connected, then (i) implies (ii).

IV.1 THEOREM. Let A be an AF algebra, with dense locally finite dimen-
sional *-subalgebra A. Suppose is a (*-) automorphism of A, ofprime order p,
that is additionally approximately inner. Then t is locally inner, and so G t)
is locally representable.
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Proof. We may find a cofinal nest A c A2 c A c of unital finite
dimensional *-subalgebras with union A, such that t(A) A( We may
additionally assume (by taking a suitable telescoping) that if e, f are projec-
tions in A that are equivalent in A, then e, f are unitarily equivalent in Aj+ 1.
We shall construct an interstitial nest of *-subalgebras B; with A B c A2

C B 2 c where t(B) c B, and t/B is inner.
Start at some A; then the orbits of the minimal central idempotents of A;

under are either singletons or cycles of order p. If all are singletons, then
t/A is already inner; assume at least one p-cycle arises. Writing A I-IF/4
where F/ run over all the minimal central invariant idempotents (so F/ is
either a minimal central idempotent, or a sum of p such), we may in what
follows work cycle by cycle, and for notational convenience, we may assume
exactly one orbit occurs.
Then Ai= M M M (p times), and if Ej denotes

(0, 0,..., 0,1,0,..., 0) (j-th position),

we may assume t(Ej)= Ej+ 1, indexing mod p. Let ej denote the image of Ej
in A+1. Since Eej 1, and the ej are mutually equivalent in A (as is
approximately inner), we may find a unitary u in A+ such that uegu* eg/ 1.

Now consider the map A A+ 1. Since the minimal central idempotents of
A have become mutually equivalent in A+ 1, the mapping must be given by a
selection of integers (multiplicities), n(1),n(2),... and s(1),s(2),... ;where
(a1, a2,..., a,) in A M M is sent to the element of A/x (itself a
product of matrix rings) with

diag(a @ In(i) a 2 @ In(D,... ap (R) In(l) )
in the first s(1) components, the same with n(1) replaced by n(2) in the next
s(2) components etc. Here we may assume that each s(j) represents an orbit of
a minimal central idempotent in Ai+x (so s(j)= 1 or p, and the n( ) are
allowed to include repetitions). We wish to find a unitary v in A+ so that

(*) Ad v/A t/A and t(v) v.

Then we set B to be the *-algebra generated by A and v.
In any case, on any orbit, the action of on A+ is given by the cyclic

permutation followed by an inner automorphism, say Ad(w,..., wp). Thus on
a non-trivial orbit,

(x1, x2,..., x,) Ad(w1, w2,..., we)(xe, xl,...,

( WlXpW, W2XlW,... WpXp_ lW;).
Since is of order p, the product wpw,_ Wl is a scalar; hence so is any
cyclic rearrangement of the product of the w’s. The action of is given by the
following diagram,
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Fix k (that is, the k-th orbit) and assume s(k) is p and not 1. Now
Ad(w,...,w,) implements (since the image of A is invariant under the
permutation!), and the following yields information about the w’s.

IV.2 LEMMA. Let W be a unitary matrix of size mnp. Suppose that for all
p-tuples of m m matrices (al,..., ap) we have

(AdW)(diag(at (R) I,,,...,a, (R) I)) diag(ap (R) I,,at (R) I,,,...,ap_ (R) I).

Then W is of the form

Omn Im(R) X2

(**)

Im(R) Xp Omn

where the X are arbitrary unitaries of size n.

Proof Set V to be the matrix (, ,) with all the X’s replaced by I,. Then
Ad V and AdW agree on the subalgebra M,, Mm (p times) embedded
(via--(R) I,) in M,,,. Thus VW-1 centralizes all of these matrices. Now we
show that the centralizer of

{diag(at, al,..., at, a2,..., a2,..., ap,..., ap)la Mn, n-fold repetitions}

is simply

Im (R) x

I,, (R) x2 x in M,,C

Im (R) Xp

Write Cm’ U as a left module over A Mm x M A
A, embedded unitally in M,,C, which acts naturally on U. Then

Av .,,(U), where U is the standard irreducible of the algebra A. The
centralizer of A in End U MmpC is

End(.,4,(U/)" ) .End,4,(U/)" IPMnc.

As VW-t is unitary, the result follows.
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Returning to our proof of IV.l, we have that each w has the form

o
o

(***) 0

Ir (R) Xp+ r.n(k).p

with unitary X’s in Mn(k)C.
To construct our v (v,..., vp) to satisfy (,) on this orbit, in particular so

that t(v)= v, we compute

t(v) Ad(wl,. Wp)(Vp, Vl,. Vp_l)
( WlO Wf,

so we require v WlOpW, 02 w201w,... op WpOp_lW. Set vp to be the
matrix V in the proof of the lemma with m r, and define Vl,..., v,_ via the
first p- 1 equations. Then

Up_ Wp_ Wll)pW7 W*.__

so WpVp_ xW ve (as Wp w is a scalar). So we have constructed a candi-
date v which at least satisfies t(v) v. Now Ad v restricted to the image of A
agrees with on this orbit; putting all the orbits in Ai+ together (stringing the
corresponding v’s) into a unitary in A+1, we obtain V0 in U(A+1) such that
t(Vo) Vo, and Ad Vo/A agrees with t/A. Define B to be the subalgebra of
Ai+ generated by A and Vo. It is clearly an invariant *-subalgebra, and t/B
is given by Ad Vo. Thus is inner on each B i, and since the group is generated
by t, the action is locally representable, m

We have the following very easy observations:

IV.3 PROPOSITION. Let a: G --+ Aut(A) be an action of the compact group
G in the locally finite dimensional *-algebra A.

(a) If G is connected, then a is locally inner.

(b) If G is simply connected, then a is locally representable.
(Thus for G connected, (i) implies (ii); for simply connected G, (i) implies (iii).)

Proof (a) If A is a finite dimensional subalgebra left invariant by a(G),
then et(G) must leave invariant each of the simple components (else the kernel
of the permutation representation would be a proper closed subgroup of finite
index, violating connectedness). Thus each a(g)/A is inner.
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(b) Any projective finite dimensional representation G ---> PGL(n, C) of a
simply connected compact group lifts to an ordinary representation, G
GL(n, C). m

For other compact groups, to what extent is it true that properties (i) and (ii)
imply (iii), say with A simple and infinite dimensional? It certainly holds if G
is a d-toms. If (or when) the following conjecture holds, then (i) and (ii) do
imply local representability:

CONJECTURE. If a: G Aut(A) is an outer locally inner (i.e., satisfies (ii))
action of a compact group G on a simple infinite dimensional locally finite
dimensional *-algebra over C, then the ordered Ko(G) module Ko(A G) is
a direct limit of free Ko(G) modules with positive maps.

The assertion in the conjecture is analogous to the characterization of
dimension groups given in [3; 2.2]. This says that if a directed partially ordered
abelian group satisfies Riesz decomposition (op. cit.), and nx > 0 for some
positive integer n implies x > 0, then it is a limit of free abelian groups (with
the componentwise ordering) with positive maps. The analogous question for
ordered Ko(G) modules would be to decide which they arise as limits arising
in our situation, that is, limits of free K0(G)-modules (with the componentwise
ordering) and positive module maps between them. There is an additional
property that must be added to the properties given above for dimension
groupswthe module must be flat [14; Prop. 3, p. 133] (fiat modules can be
characterized precisely as direct limits of free modules).
For example, if M is a faithful Z[Z2] submodule of Q[Z2] (= Q Q as

rings), then M is fiat if and only if either (a) M is 2-divisible, or (b) M is not a
direct sum of two non-trivial submodules (which means M does not decom-
pose into its two homomorphic images obtained from the two homomorphisms
Z[Z2] Z. Set M Z[1/3] 9 Z[1/3] where G Z2 acts on the first compo-
nent trivially, And on the second by multiplication by -1 at the non-trivial
element of G. This module is not fiat, but it has an ordered module structure
on it which is a dimension group ordering (e.g., first component strictly
positive ordering). By IV.l, this cannot arise as Ko(A G) for any action
satisfying (i) of Z2 G on any AF algebra A which has all of its automor-
phisms approximately inner. Hence any action on such an algebra which yields
M as Ko(A ,, G) could not leave a dense locally finite dimensional *-subalge-
bra invariant!

There still is the question of whether an ordered K0(G)-module that is flat
and is a dimension group is a limit (and so arises from a locally representable
action).
Here is a partial result in this direction:

IV.4 PROPOSITION. Let G be a finite abelian group of order n. Equip
R ZG with the ordering, R+= {F.agglag > 0}. Suppose M is a countable,
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ordered R-module such that
(a) M is a dimension group,
(b) M is n-divisible as an abelian group.

Then M arises as an order direct limit of a system

Rk(1) _..> Rk(2) ._.>

In particular, M Ko(A , G) for some locally representable action of G on
the AF algebra , where Ko(A) M/IM (I being the augmentation ideal of R).

notation.
The group G and its dual G have been identified for ease of

Proof We show that if an ordered module homomorphism : R M is
given, then there exists a positive integer s, and ordered module homomor-
phisms Q: R Rs, : R M such that ker tp c kerQ, and the diagram

Q
R .R

M
commutes.

Let {el,...,et} denote the standard basis for Rt, and set m q(ei)/n in
M (recall that M is n-divisible and torsion-free as an abelian group, so it is
uniquely n-divisible). Define tpl: R M via e m (so nl ).

Since M is a dimension group and R is simplicial, there exists an integer s
and order-preserving group homomorphisms q: R Zs, o: Z M such
that oq tpx, and kerq D kertp kertp. We extend o to a map q: R M
in the obvious way (if { fj. } is the standard basis for Z, write R .fj.R, and
define k(fg) o(f)g, etc.). Then k is a positive R-module homomorphism,
(as o(f) > 0). The inclusion Z R, f fj. induces a positive group homo-
morphism : R R (not a module homomorphism), with k ql. More-
over ker D ker q kerx. Now we apply the standard averaging argument
to obtain a positive R-module homomorphism Q: R Rs.

Set Q(x) Y’.d(xg-)g. Since is positive, so is Q. Moreover, for h in G,

Q(xh)= _d#(xhg-1)g= E d#(xu-t) uh
G u=g-lh

so Q is an R-module homomorphism. As (1 t(I) is also an R-module
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homomorphism, we have kQ n tp. Finally, tpl(y ) 0 implies tp(y)
0 which yields that p(yg) 0 for all g in G, and therefore q(yg) 0 for all g
in G, so t(yg)= 0 for all g in G, and thus Q(y)= 0; hence ker c kerQ.

Since M is countable and generated by M/, the standard direct limit
argument (this time as ordered R-modules) yields that M is a limit in the
desired form. m

V. Traces on the crossed product

Here we wish to establish some results on the trace space of the crossed
product A , G, at least for finite groups G which leave invariant an extremal
trace of A. By completing at an extremal trace which is invariant to obtain the
corresponding finite factor R, the problem is reduced to studying the traces on
R G) (because the traces on R G are in natural bijection with those of
A G which agree on A with the original invariant trace).

Hence we are in the situation of a finite type I or II factor, with some action
of the finite group G on R. We wish to write down all traces, and show that
there is a single trace that generates the others in a fashion to be described
below.
For S a C* algebra, let Ta(S), Tc(S ) denote the real and complex (respec-

tively) vector subspaces of the dual space of S generated by the trace space
T(S) of S. We may form Ka(G) Ko(G) (R) R (characters with real coeffi-
cients), and Kc(G) Ko(G) (R) C L2(G). If S B G is a crossed prod-
uct, then TI(S),Tc(S ) become respectively Kl(G),Kc(G)-modules as
follows: with in T.(S), and X in K.(G) (. denotes R or C), define ’X by

If z >_ 0 (i.e., /(1) is a trace), and X Ka(G) +, then z. X >- 0 as well.
An element of Tc(B) (Ta(B)) will be called a (real) trace-like functional of

B. If f belongs to the dual space of B, then it lies in Tc(B) if and only if
f(xy) f(yx) for all x, y in B; it is a real trace-like functional provided it

additionally satisfies f(x*) f( x)
Related results to those below are obtained in work of Rieffel [19].

V.1 LEMMA. Let p be a trace-like functional on R
of K.(G). Then the functional pX defined by

G, and X an element

G

is trace-like. If p and X are real (positive), so is
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Proof. Set x Z,rgg, y Z,sgg; then

PX(xy) PX( _, rgsff(g)gh )
g,h

Ep(rgs:")gh)x(gh)
_,p(rggshh)X(hg)
EP(Shhrgg)x(hg )

EP(ShVhhg)x(hg)

pX(yx).

Reality of the product (if both are real) is clear, and positivity follows from the
usual Hadamard product trick, as in [18; proof of 7.1.10]. m

We will show that if G is abelian, then Tn(R G) is a cyclic Kn(G)
module, as is Tc(R G) without the abelian hypothesis. This means that
there is a trace-like functional zo on R , G, such that for any other trace-like
functional -, there is X in Kc(G) with z oX (so any trace can be obtained
from -o by multiplying by a suitable complexified character of G). The same
result holds of course, if R is replaced by any C* algebra with unique trace.
The generating trace is very far from the trivial trace, which sends Z,bgg to
zo(bl), where Zo is the trace on Rmin fact the vector space dimension of the
K.(G)-module generated by this trace is 1.

Define a subset N of G as follows:

N ( g G there exists u in U(R) with a(g) Ad u,

and ghg- lh- 1 implies uh) u}.

(Observe that if g belongs to N, and is represented by u, then any other
unitary which implements g will have the invariance property specified in the
definition of N, as well.) Then N is closed under conjugation (but is not a
subgroup in general), and if G is abelian,

N { g Glthere exists u in U(R) with a(g) Ad u }

(so in this case N is a subgroup). Since R is simple, it is easy to verify by direct
calculation that each G-conjugacy class in N contributes exactly one dimension
to the centre of R G, and the central elements so obtained span the centre.
If G is abelian (u-lglg N, et(g)= Adug} is a basis for the centre,
Z(R G). These calculations are done in [9] and [10; 1.6].
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The subset N is related to but distinct from Jones’ N(q) [12], which is

{ g Gla(g) is inner} (so N c N()). The construction of the traces given
below is not explicitly in [12], but can be deduced from 1.3.1 and 11.2.2 of [12].

Because G is finite, R G is a finite product of factors, so

Z(R ,G)= dima(Ta(G))= dimc(Tc(G));

there is a bijection between the pure traces of R G, and the minimal central
idempotents of R G.
Assume from now until further notice that G is abelian (what is necessary is

that N be a subgroup of the centre of G). We construct a group homomor-
phism 19: N --, U(R) (the codomain could be taken to be U(R)), so that the
following diagram commutes:

0
N -, U(R)

G" "’J’, Aut(R).

Here ,r(u) Ad u; thus Ad O(g) a(g) for all g in N.
Write G (gi), a direct sum of cyclic groups, each with generator gi. We

may select u in U(R) such that a(g)= Adu; as gi belongs to N and R is
simple, u lies in U(Ra); we may additionally assume u’rder(g,) 1, by multi-
plying by a suitable scalar. The assignment gi ui will extend to a group
homomorphism N U(R) provided uuj uju for all i, j. But this follows

u u,u .from u
Having thus obtained 0, we have an isomorphism

R N --, RN R (R) CN; r r; g O(g)g.

Identifying RN with R (R) CN, we may explicitly write down all traces on RN,
and transfer them back to R N, via the isomorphism. Then a sleight of
hand will show that these traces extend uniquely and exhaustively to traces on
R G, via the completely positive map (e.g., see [22]) R G R N.

Let 0 be the unique trace on R. Then all traces on R (R) CN are of the form

N N

for X in Ka(N)+ satisfying X(1)= 1; similar comments apply for (real)
trace-like functionals. In particular Dim.T.(RN) INI, and the state

(R) g
N N
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is a generator for T.(RN), in the sense that every other element of T.(RN) is of
the form 0NX for a unique X in K.(N). Via the isomorphism R N RN
described above, all traces on R N are of the form

for a unique X in KR(N) + with X(1)= 1, and all O’s so defined are traces;
parallel remarks apply to trace-like functionals.
Now we consider trace-like functionals on R , G. Let

Q" RXGRXN

be the completely positive map which restricts elements of R G to N; that
is, Q(SEsrgg) Z,Nrgg. Given Px in T(R x N) (or T.(R x N)), we obtain Px
in the dual space of R x G via Px Ox Q; in other words,

We shall prove that Px is trace-like, although we were not able to find a direct
computational proof of this. We shall also show that all trace-like functionals
arise in this fashion.

V.2 PROPOSITION. Let a: G- Aut(R) be an action of a finite abelian
group on a IIy or I factor. Define N a- I(rU(R)), where or: U(R) -Aut(R) is the map u Ad u. With O: N - U(R) as defined above, we have"

(i) Every (real) trace-like functional on R x G is of the form Px Ox Q,
where Q: R x G R X N is the restriction map, X belongs to K.(G), and

(ii) Every Ox so defined is a (real) trace-like functional on R X N, and all
elements of T.(R X N) admit such a form for a unique X in K.(N); Ox is a trace

if and only if X belongs to TR(N) + and X(1)= 1.
(iii) Allfunctionals of the form Px on R X G are trace-like; they are traces if

and only if X (1) 1 and X Tl(N) +.

Proof The isomorphism R X N RN yields (ii) as described earlier. We
prove (i) and (iii) by a trick.
The centres of R X N and R x G coincide--they are spanned by the basis

{ O(g)-lgIg N } as was indicated above. Since both R x, N and R x G
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must be finite products of simple algebras, and each simple component is a
factor so has unique trace, it follows that for the restriction maps,

xoo).--, xo ),

the first is an affine homeomorphism and the second and third (. indicates
either R or C) are vector space isomorphisms (the pure traces are determined
by 5.(e;)= iij where { ei } is a complete list of minimal central idempotents,
which are the same for the two algebras).

Let P be an element of T.(R a G). Define k in Kc(G) L2c(G) to be the
characteristic function of N. By Lemma V.1, Pk belongs to Tc(R G).
However, P/R N (Pq)/R N; as the restriction map is one to one,
P Pk. By (ii), P/R N #x for a unique X in K.(N). Then

Thus P Px, yielding (i).
Now we show that for any X in Kc(N), Px is trace-like. Form Px in

Tc(R N). From the isomorphism Tc(R G) Tc(R N) (obtained
by restriction), there exists P in Tc(R G) with P/R N Ox- By (i) and
(ii), there exists a unique k in Kc(N) such that P O, Q, so that P/R N

O+. As the restriction map is one to one, 0 Ox, so that k X, and thus
P Px" Hence Px belongs to Tc(R G)!
To complete the proof of (iii), simply observe that Q is a completely positive

map, so tax being a trace implies Px is positive, and the converse is trivial. Now
(ii) applies, m
We now drop our assumption that G be abelian.

V.3 COROLLARY. Let a" G - Aut R be an action of a finite group G on a

IIf factor R. With N (g Glthere exists u in U(R) such that tx(g)= Ad u,
and for all h in G commuting with g, uh u }, and a trace on R G, we
have ,(rg) 0 for all r in R and g in G \ N.

Proof If g does not belong to N, either (i) a(g) is outer, or (ii) there exists
u in R with a(g)= Ad u and h in G commuting with g such that u(h) u.

If (i) holds, set H (g). Then g does not belong to N(H), and H is
abelian, so the previous result applies to R H. The restriction of - to
R H must be of the form tax Qu(n), and QN(n)(rg) 0 so ’(rg) O.

If (ii) holds, set H (g, h). Then H is abelian, g does not belong to N(H),
and the same idea as in the previous paragraph finishes the proof, m
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We now wish to obtain the results analogous to V.2 for nonabelian G.
Unfortunately, N is not a subgroup in general, but simply a union of
G-conjugacy classes. Define a set function, : N U(R) as follows. For each
G-conjugacy class in N, cg, select a representative g c. There exists ug in
U(R) such that a(g)= Ad Ug. If h belongs to G, then we may attempt to
define O: C - U(R) via O(hgh -1) uh); this is well defined as hgh- jgj-1
implies j-lh commutes with g, and thus uj-lh) Ug; applying a(h)- yields

uh uj. This gives us a function O" N - U(R) with the property that for
all g in N, h in G, Ad 0(g) a(g) and O(gh) O(g)a(h). We may also select
O to satisfy additionally, 0(g)rder(g) 1.

V.4 LEMMA. Let a" G Aut(R) be an action of G on R. IfP is a trace-like

functional on R x G, there exists X in Kc(G) such that

where 0 is definedjust above.

Proof. For g not in N, P(rg)= 0 by the corollary. Define X" G - C via

x(g)
"I P(O(g)-lg) if g N

0 ifgN.

As (O(g)-l)a(h) O(gh) -1, X is a class function, so X belongs to Kc(G). It
suffices to show P(rg)= zo(rgO(g))x(g) for every g in N.

Fix g in N, set H (g), and let E" H C be the characteristic function
of g. Let p in Tc(R ,, H) be P/R H, and k X/H. Then pE belongs to

Tc(R H) by IV.l, and N(H)= H. We may define (R)" H- U(R) via
@)(gk) (O(g))k. This will play the role of theta in Proposition V.2. Hence
there exists q0 in Kc(H) with

Ezo(rhO(h))q(h).

But pp(Erhh ) p(rgg) P(rgg); thus (h) 0 if h 4: g, and

o(rgO(g))p(g) P(rgg).

Setting rg O(g) -x, we obtain tp(g)= P(O(g)-lg)= x(g).
Hence for all g in N, P(rg)= o(rgO(g))x(g). m
Define fo in the dual space of R G by fo(F,argg)= ENzo(rgO(g)). The

lemma just established shows that every trace-like functional on R G is of
the form fox for suitable X in Kc(G).
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V.5 LEMMA. Let G, a, R, O, fo be as above. Let X be an element of Kc(G).
Then every functional of the form foX: R G - C,

is an element of Tc(R , G).

Proof. We have fox foX’ if and only if x/N x’/N; that is, X- X’
belongs to N x. Hence the space F (f0xIx Kc(G)) (a subspace of the
dual space of R ,, G), has dimension exactly the number of G-conjugacy
classes in N. But this is also the dimension of the centre of R G, hence

dimcF-- dim Tc(R G). Thus the map Tc(R G) F given by the
previous lemma is a vector space homomorphism between equidimensional
spaces. The map (an identification of Tc(R G) with a subspace of the dual
space) is clearly one to one, so must be an isomorphism. Hence every fox
(including fo itself!) belongs to Tc(R ,, G). m

The combination of the previous two lemmas yields

Tc(R G) foKc(G); (1)

that is, Tc(R G) is a cyclic Kc(G)-module. The involution on Tc(R G),
f f*, where f*(g)=f(g-1)-, leaves fixed exactly Ta(R G). It seems
plausible that 1/2(fo + f) + 1/2i(fo f) should generate a Ta(R G)-module
as a Ka(G)-module, but we have not been able to find a proof. On the other
hand, if G is abelian, our original choice for yields an fo with fo f0*, so
TI(R G) is a cyclic Kl(G)-module with generator fo. (More is true when G
is abelian--f0 is a trace; after passing to R N, then to R (R) CN, f0
corresponds to the trivial character on N, so arises out of a trace on R N,
and is thus itself a trace.)
When G is abelian, the number of pure traces on R G is the order of a

subgroup, N, of G, so must divide the order of G. This was obtained by
Kishimoto [13; Lemma 3.9] for UHF algebras, and can also be obtained by
duality (since G must act transitively on the pure traces).

Recalling our reduction to a factor R, we may summarize some of the results
of this section as follows:

V.6 THEOREM. Let B be a unital C* algebra, and a: G - Aut(B) an action

of a finite group on B. Let be a pure trace of B that is left invariant by a(G).
Let Tc(B , G, ) denote the complex vector subspace of the dual space of
B , G generated by the traces of B G that restrict to on B. Then
Tc(B G, ) is a cyclic Kc(G)-module. If G is abelian, the dimension of
Tc(B ,, G, ) divides the order of G.
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VI. Tensor products of actions

Let G be a compact group, and suppose that a: G Aut(A), fl: G--*
Aut(B) are locally representable actions (so A and B are locally semisimple
algebras). We may construct a new action, this time on A (R) B, a (R) fl:
G Aut(A (R) B) via

(tx (R) fl)(g)(a (R) b) (a(g)(a)) (R)(fl(g)(b)).

If A LimA/, B LimBj ({Ai}i,(BJ} families of finite dimensional
algebras, indexed by the positive integers), then the (algebraic) tensor product
A (R) B is given by Lim A (R) B , and it follows that a (R)/3 is locally representa-
ble. Moreover, the crossed products on the finite dimensional levels, (A (R) B)
G (the subscript indicating the action has been deleted for legibility) are

themselves AF algebras, so that the (algebraic) limit will have the same
Ko-theory as the crossed product on A (R) B. In particular,

Ko((A (R) B) G)= limKo((Ai (R) B i) G).

Now at the finite dimensional levels, we may assume that A;, B; are
G-invariant, and moreover that the corresponding restrictions a(i), fl(i) are
representable. Thus a(i) (R) fl(i) is representable, so that

(Ai (R) B i) G C*(G, Ai (R) g i)

(but not C*(G, Ai) (R) C*(G, Bg)). If A has t simple components, and B has
u, then A (R) B has tu, so that K0 of C*(G, A (R) Bi), as a K0(G)-module is
Ko(G)TM. However, much more can be said, especially about the ordered
module structure; to this end, we now consider tensor products of ordered
modules.

Let R be a commutative partially ordered ring, and M, N ordered R-mod-
ules. We may form a new ordered module, M (R)R N (e.g., [14; Section 5.2]),
with positive cone

(M (R)RN) += (Em (R) n,lm M+, n . N+}.

It is routinely verified that M (R)R N becomes an ordered module, and if
M R (with the coordinatewise ordering), then M (R) RN is order-isomorphic
to N (with the coordinatewise ordering). In particular, R (R) RR is order-iso-
morphic to RTM, and the obvious map is the order-isomorphism. Furthermore,
if

M lim Pi" Rt(i) -’ Rt(i+l) and N lim Qi" RU(i) RU(i+l),
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then

M (R)N limP/(R) Qi" Rt(i) (R)g Ru(i) ---> Rt(i+l) (R)R Ru(i+l).

Now for any two AF algebras, or dense locally finite dimensional *-subalge-
bras thereof, C,D, Ko(C (R) D) is order-isomorphic to Ko(C)(R)zKo(D )
(viewed as ordered Z-modules, that is, ordered abelian groups). In the cases
under consideration, Ai, B finite dimensional, it is readily verified that
Ko(C*(G, A (R) Bi)) is order-isomorphic to

Ko(C*(G, Ai)) (R)Ko(C*(G, B’))

as ordered R Ko(G)-modules" Each class of minimal idempotents in A (R) B
contains a pure tensor of such from A, respectively B i, and these form an
R-basis for KoC*(G, A (R) B). The identification of Ko(C*( G, A (R) B)) with
the R-module tensor product also results in the commuting square

Ko((Ai (R) B i) G)- Ko((A’+(R) B’+1) G)

Ko(Ai+I G)(R)RKo(Bi+l G).

(The lower horizontal map is the R-module tensor product of the module
homomorphisms

Ko(Ai G) --> Ko(Ai+1 G) and Ko(Bi G) - K0(Bi+1 G).

As limits commute with tensor products (of free modules), we deduce that

Ko((A (R) B) ,(R)oG) -’* Ko(A XG) (R)RKo(B #G)

as ordered R-modules. The element [(A (R) B).0] is carried over to [A,] (R) [B0].
A special case occurs if B (R)Mn<0 and the action fl" G Aut(B) is

trivial. Then fl(i) corresponds to the character (II.= 1/1 (j))X 0 (X0 is the trivial
character), and the map

is simply multiplication by n(i)Xo as a map R R. In this case, Ko((A (R) B). G) is simply Ko(A G) (R)R(R (R)zE), where E is the subgroup of the
rational numbers associated to the sequence {n(i)} (the "supernatural num-
ber").
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If a, fl are both product type actions, then obviously so is a (R) ft. If the
respective sequences of characters are given by {X }, { X’i ), with a (R) a,/3
(R) fli, then the maps in Ko of the crossed product of the tensor product action
are simply multiplication by X X’i (R (R)nR R via r (R) r2 rlr2).
More interesting phenomena occur if neither Ko(A G) nor K0(B t G)

is rank 1 as an R-module (product type actions automatically lead to rank 1
modules). Consider the non-product type action of G Z2 discussed in 111.5,
and tensor it with itself. If M is the R-module arising from the original action,
then the module corresponding to the tensor product action is M (R)RM.
Iterations yield multifold tensor products M (R)R (R)R M, and it even makes
sense to consider the limit of the multifold tensor product actions, and obtain
the "infinite tensor product" of the actions, and the corresponding infinite
tensor product of the modules. We wish to compute some of the module
invariants attached to these tensor products, specifically, the rank as an abelian
group (rank z) and the rank as an R-module (rank n). This we do in consider-
ably more generality than is necessary to calculate this example.

Let M, N be modules over a ring R; assume R is a subdirect product of
domains D1,..., Dk corresponding to ideals P1,.--, P,, that is, D R/P,
f’lPi (0), but no intersection of a proper subset of (P,..., P,) is zero.
Suppose that M M/PiM, N N/PiN are torsion-free modules over D. As
M(N) is a subdirect sum of the M(N), with rank denoting the rank over D,.,

rankaM (R)aN max/(rankiM (R)iNi )

max ((rankiM)(rankN)).

On the other hand, if rankRM m, and rankRN n , then

rankzM (R)RN .,(rankzDi)min,.

If R Ko(G) with G Z2, then let P denote the augmentation ideal
(generated by g -1). The other prime ideal is generated by g + 1; call it P2.
The corresponding Dx, D2 are isomorphic to Z (see the appendix).

In the example of 111.5 with non-product type action, M N, M1 Z[1/5],
M2 has rank (over Z) 2, and therefore

rankM (R)RM max(1 1,2.2) 4

and

rank R (R)M max(l",2"} 2n.

The abelian group ranks are 2n+ 1. It also makes sense to discuss infinite
tensor products of actions. In this case, the underlying algebra remains the
same (because (R)zZ[1/5] Z[1/5]), and the module is the infinite tensor
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product of copies of M. This is a limit of the finite tensor products, and has
infinite R-rank (and therefore infinite Z-rank). These actions of Z2 are thus
very far removed from product type actions.
The simple computation of ranks over Ko(G) as above works for finite

groups G. If instead, G is compact and connected, the representation ring is a
commutative domain, so the R-module rank of R-torsion free modules is given
by multiplication of the ranks. Since fiat modules over a commutative domain
are automatically torsion-free [14; Prop. 3, p. 133], this applies to modules
arising from locally representable actions of G.

Appendix. Representation rings (examples)

Recall that for G a compact group, Ko(G) is a partially ordered ring with
positive cone the set of characters, and multiplication determined as functions

First consider the case that G be finite abelian. Then G^, the dual group is
isomorphic to G, and Ko(G) ZG (the integral group ring), with

Ko(G) +--- {Eae,g^]as> 0),
as characters are sums of the irreducible characters, and .multiplication of the
irreducibles is simply the usual group multiplication in G

If G Z2, then Ko(G) Z[Z2], which is embeddable in the ring direct
product ZZ via g(1,-1). As a+bg(a+b,a-b), Ko(G) has
image in Z Z given by A {(r, s) Z Z lr + s is even), with positive
cone {(r, s) AIr > Isl ). Notice that (Z Z)/A Z2.

If G Zp, p an odd prime, set Zp Z[ }, where is a primitive p-th root
of unity. As rings,

Ko(G ) ZG^-- A I(a, b) Z ZPlif b

g (1, j),

E bjtsj,Ebj=a
0

where g is a fixed generator of G^. (Since (1,,..., p-2} is a Z-basis of Zp

over Z, the expression b Y’.-lbjJ is not unique. However, 1 +
/ +p-l= 0 is the only relation among the roots of unity, so Ebj is
independent of the choice of by’s.)

If G is cyclic of order p" (p a prime), the ring structure of ZG is somewhat
more complicated. Select a primitive pn-th root of unity w. Then define the
rings of integers,

z[w] = ztw.] = Z[w. = = z[wr-’] = z[wrl z.
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There is an obvious ring homomorphism ZG Z[wp’] given by

-1

g (w,w’,...,wp ,1)

(g a fixed generator), yielding a subdirect product representation.
Finally, if G is an arbitrary finite abelian group, it is a direct sum of groups

of the form, cyclic of order p", so ZG is the corresponding tensor product,
with the tensor product ordering.
Now consider the situation that G Td, so that G^= Zd. Then

-1]Ko(G) Z[Zd] Z[Xl, X-1, .,Xd, Xd

the polynomial ring in d variables and their inverses. The irreducible char-
acters of G are exactly the monomials, so an element (that is, a polynomial) is
positive here precisely if all of its coefficients are non-negative.
A more exotic compact connected group is a solenoid, a group G with G

being embeddable in the rationals. If for example G^= Z[1/2] then Ko(G) is
somewhat complicated: Ko(G) Z[x2- -2-x ], with the obvious relations.
Every element of Ko(G) can be regarded as a polynomial in x 2-m for some
fixed m, and the characters again correspond to those elements which can be
realized as a positive combination of the generators and 1.

If G is a compact (connected) Lie group, then Ko(G) as a ring is a
polynomial ring (possibly with some inverses), but the ordering is often
difficult to describe. For G SO(3), Ko(G) Z[x + x -1] c Z[x,x-1], with
irreducibles1 x+l +x-,x2+x+l+x-l+x-2

Finite non-abelian groups may have complicated representation rings (al-
though these rings are still subdirect products of abelian tings of integers). If
G Sn, Ko(G) is a ring subdirect product of copies of Z, because all irreduci-
ble complex representations are realizable over the rational numbers. In
particular, for G S3, there are three irreducible characters, two of dimension
one (corresponding to the trivial character (X0) and the non-trivial one arising
from the homomorphism S Z2, (Xl), and a two-dimensional one (X2)
emanating from the irreducible representation

(1 2) [0 1] (1 2 3) [-1 -1]1 0 1 0

Since X1X2 corresponds to an irreducible character of dimension two (as X
is linear), XIX2-X2. Now X22((1 2))=0, X22((1 2 3))=1; as X22 is a
combination of X2, X1 and Xo, we deduce X22 + X2 + X + Xo. We have the

X0
X1

multiplication table

X0 Xl X2
X0 X1 X2
X1 X0 X2
X2 X2 X2 + X1 + X0
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as Ko(G) Xoz + xlZ + X2z (as abelian groups), the ring structure is
completely determined. The ring map Ko(G) Z Z Z is given by

Xo (1,1,1), X1(1,-1,1), X(2,0,-1)-

In all the examples (and in all cases), there is a map Ko(G) Z given by
X X(1). For G abelian, this corresponds to factoring out the augmentation
ideal. Call the kernel of the map I. If M is a K0(G)-module, then M/MI is a
Z-module (and in the abelian case, a trivial G -module); if M is of the form
Ko(A G) arising from a locally representable action on an AF algebra, then
Ko(A)= M/MI with the obvious ordering on the latter (at any level,
Ko(G) n(i) go(G)n(i+l) is transformed to Z "(g) ---, Z(+1), etc.).

All of the above is of course well known to algebraists, but may not be so
well known to people interested in group actions on C* algebras.
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