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1. Introduction

Consider the simple continued fraction

(1.1) [xl, Xn] X "["

x: +
1 qn(Xl,...,Xn)"

". 1

Mathematicians have traditionally looked at a number 0 and determined its
representation as an infinite continued fraction: 0 [xl, x2,... ], x N. In
this paper, we are exclusively interested in the properties of the continuants,
pn(Xl,..., Xn) viewed as polynomials. In 1891, E. Lucas [7, Ch. 24], in effect,
posed the following problem. Suppose N is given; determine the maximum
value of Pn(Xl, X,,) subject to xi N and y,.n

g= lXi t. Lucas proved that
pn(x,..., x,) < pt(1,..., 1)= Ft+ 1, the (t + 1)-st Fibonacci number, (F0 0,
F 1, F,/ 2 F, + F,/ 1)- The first part of this paper considers this problem,
but allows and the xi’s to be non-negative reals, not just integers. In this case,
it is not obvious that Pn(XX,..., Xn) is bounded as a function of t; later in this
introduction, we show that

P,, (x1, Xn) <-- e t.

With a more careful analysis, we show that the true supremum is the C2

function ,(t):

(1.2) ,(t) (1 + 1/4t 9, 0 < < 2,

2e t/9-- , > 2.
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We also look at the general continued fraction

(1.3) X q- Yl
Y2

Pn(Xl x,; y;, Yn)
q,(xl,..., x,; y;,..., Yn)

and maximize

P,,(xl, x,,; Yz, Y,,)

subject to xi, yi > 0 and Ex + in___2Yi t. If the variables are real, the
maximum is achieved for Yi 0 and x t/n;

p, (x, y) < max (t/k) k,
k

a function asymptotic to e t/e. If they are non-negative integers, the maximum
is asymptotically C3t/3 and is achieved by again setting Yi 0 and as many of
the x,.’s as possible equal to 3, with zero, one or two 2’s depending on mod 3.
This problem is equivalent to the 1976 International Olympiad Problem 4 [8]
or Putnam Competition Problem 1979 A1 [3]. If the xi’s and y’s must be
positive integers, then the maximum occurs when y 1. The structure of the
maximizing strings is somewhat more complicated, depending on mod 4. The
maximum grows like 0lt/4 for a (c- + 3)/2. Note that in every instance,
the growth is exponential in t, although the bases are different for the different
cases.
Our interest in the last case revolves around its connection to the sequence

{ a } defined below:

(1.4) a 0 0, a 1, a2n a,,, a2n + a,,+l an for n > 1.

As a consequence of Corollary 6.13, [an[ <_ cn t, where/3 log a/log 16 and is
best possible. See [15] for more properties of (a }.

Returning to (1.1), since [xx,..., Xn] x + [x;,..., Xn] -1,

p,,(xx, x,,) xxp,,_x(x;, x,,) + q,,_l(x;, Xn)
qn(Xl,...,Xn) =Pn-l(X;,...,Xn).

It follows that the qn’s are superfluous, and if we adopt the convention that

P-1 0 and P0 1, the recurrence (1.6) can serve as a definition of the p’s
for n _> 1"

(1.6) P,,(xx, x,,) xlp,,_x(x;, Xn) + Pn-2(X3, Xn).
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The first few continuants are displayed below"

(1.7) pl(X) X, p2(x, y)= xy 4- 1, P3(X, y,z) xyz + x + z,

P4(XI, X2,X3,X4) X1X2X3X4 -1- XIX2 + XIX4 -[- X3X4 -1- 1.

Continuants have many nice properties; Section two is devoted to some of the
more useful ones.

It is clear from (1.6) and (1.7) that pn(xl,..., xn) < Z,xil xi, where the
sum is taken over all subsets of (1 n ), cf. (2.1), (2.2). With Eitxg t, we
have, by the arithmetic-geometric inequality,

(1.8) pn(Xt,...,Xn) < fi (1 + Xi) "i----1

(1 + xi)
i----1 +-- <et.

n

We close this introduction with some remarks. The following representation
of continuants as determinants is fairly well-known, see [11, p. 8] for example"

(1.9) pn(Xl,...,Xn) det

X

x2 0

X

Thus in the first two questions we are maximizing a determinant with fixed
trace while varying the diagonal elements over non-negative reals or integers.
Finally, note that these problems are not interesting if we allow negative
variables: P3(-Y, + 2y,-y) 2y / y2t- 2y which is unbounded as
yo.
We should add that several other analytical questions about continuants

have been addressed recently in the literature. First, define

E(m) (t (0,1)" t-t= [x1, x2,...], 1 _< Xi<__ m).

Good, Rogers, Cusick, Ramharter and others have studied the Hausdorff
dimension of E(m). Second, let (at,..., an} be fixed positive integers. For
which permutations { b } { ao(o ) does the continuant Pn(bt,.--, bn) achieve
its maximum and minimum? Partial answers were given by Nicol, Motzldn and
Straus and Cusick and a complete answer was given by Ramharter. See [13] for
a complete bibliography. The work contained in this paper does not appear to
be useful in addressing these questions.
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2. Some properties of continuants

In this section, we collect some properties of pn(xx,..., xn) that we will need
in the rest of the paper. Most are well-known and easy to prove either by
induction or direct examination. The first serious study of continuants was
undertaken by L. Euler in 1764 [2], which contains special cases of most
identities cited in this section. Since subscripts were not in widespread use at
this time, he should perhaps be credited with (2.1) through (2.8). In any event,
by 1853, Sylvester [16] had found them all, except as noted. For a more
detailed history see Muir’s encyclopedic works [9, pp. 413-444] and [10, pp.
393-422].
We have two equivalent general formulas for p:

(2.1) x.) Ex, 
where the sum is taken over 1<ix< <ik<n with i=-jmod2, k=
n mod 2, and 1 is included if n is even, and

(2.2) p,(Xl,...,X,) X X,.(XaXa+ XrXr+l) -1,

where the sum is taken over all disjoint increasing pairs of consecutive indices.
(For n 4, these would be , (1,2), (2, 3), (3, 4) and (1,2, 3, 4), as may be
checked against (1.7).) Both (2.1) and (2.2) imply (2.3), which, in turn, implies
(2.4):

(2.3)
(2.4)

Pn(X1,...,Xn) =Pn(Xn,...,Xl),
Pn(Xl, Xn) XnPn_l(X1, xn_l) + Pn_2(Xl, Xn_2).

At this point, we introduce a non-standard notation which saves us a lot of
space. If x (xx,...,xn) then x’= (Xl,..., X_x) and ’x (x2,..., x); x",
’x’, etc. are self-explanatory. In case n 1 and x x, we adopt the convention
that p_ I(X’) P0 1 and p_2(x") p_ 0. We also write (x, y) for
(x ,xn, Yx,..., Y,), etc. In view of the foregoing, (1.3) and (2.4) can be
rewritten as (2.5):

(2.5) p.(x) x.p._x(x’) + p._2(x"), n > 1,

Pn(X) XlPn_l(’X) + Pn_2("X), n > 1.

A crucial identity is (2.6)"

(2.6) Pk +i (X, y) pk (X) p, (y) + pk-1 (X’) Pl_l (’Y)"

Perhaps the best way to prove this is by induction on 1. By our conventions
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and (2.5), (2.6) is obvious for 0 and 1, and both sides satisfy the recurrence
c YtCt-1 + ct-_. Alternatively, we can derive (2.6) from (2.2) by considering
whether or not the block xky occurs in a term in pk+t(x,y). An immediate
corollary of (2.6) is (2.7):

P/ +1+ (X, y, Z) pk (X) P (Y) Pm (Z) + pk-l(X’) pl._l(’y) Pm (Z)
+P(X)P,-x(Y’)Pm-X(’Z) + P-(x’)P,-:(’Y’)Pm-I(’Z).

In applying (2.6) we must have > 1; when 1 we obtain

(2.8) pk+l+m(X, y,z) ypk(x)pm(Z) + pk_(x’)pm(Z) + Pk(X)Pm_l(’Z).

After renaming the variables, (2.8) implies the following partial differential
equation, useful in the application of Lagrange multipliers:

(2.9)
cgpn
OXj

(XI’’’’’ Xn) PJ-I(XI’ Xj-1)Pn-j(Xj+ I’ Xn)"

This equation was apparently discovered by Onofrio Porcelli [12] and has a
rather forlorn history explored more fully in [14]. Suffice it to say that [9]
attributes (2.9) to P. Onofrio. We need three more special identities, which we
isolate as a lemma; (b) and (c) appear as problems 9b and 9c in [4, p. 358].

LEMMA 2.10. (a) P, + I(X, 1) p,(x) + p_ (x’) p(x’, x + 1)
(b) p,+l(X, 0) Pn_l(X’)
(C) p+t+l(X, 0, y) p+l_t(X’,Xk + y,’y)

Proof Both (a) and (b) follow directly from (2.5); for (c), applications of
(2.5) and (2.8) to both sides show that each equals

(x + yl)p_l(x’)pt_(’y) + pk_x(x’)pt_2("y) + p_2(x")pt_l(’y).

We conclude this section with two lemmas whose import will be clearer in
the next section.

LEMMA 2.11. Suppose x (xx,..., x,) > 0, x #: 0 but x O. Then there
exists y (Yl,---, Ym) > 0 with m < n, EYi Exj and pm(y) > p,(x).

Proof If x. 0 then by (2.10)(b),

Pn(Xl, Xn) Pn_2(X1, Xn_2) Pn_2(Xl, Xn_ 2 d" Xn_l).

Continue in this way at both ends if necessary (cf. (2.3)) until the first and last
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components are positive. If any interior x.’s vanish, apply (2.10)(c) as neces-
sary.

LEMMA 2.12. Suppose

3p, p,
(y) _--. (y)

3x.

for 1 < j < k < n, n > 3 and y > O. Then y may be parametrized as follows:
Yl =Yn S, Y2 Yn-1 S S -1. Further, P,(Yl Yk)= sk for
1 < k < n 1, p,(y)= s" + s n-2 and Ei"=lyi > 2.

Proof First note that the statements about Pk(Yl,..., Yk) follow by induc-
tion from the claimed parametrization of the y’s. Now let

ai Pi(Yl,..., Yi) and b Pn-i+l(Yi," Yn)

for clarity. By (2.9) the hypothesis becomes

(2.13) aob2 alb3 an-lbn+ 1.

By (2.5) we have the useful twin recurrences

aj yjaj_ -[- aj_ 2, bj yjbj + + bj + 2.

Rewriting the first three equations of (2.13) (n > 3), we have

1 .(y_b + b4)= (YY2 + 1)b4 Yxb3.

From the first equality, b yb4 (Y24: 0) and so from the second,

YlY. + 1= y1 ( b4 4: 0 as n > 3).

Thus, setting Yl s, we have y_ s s -1 and a s, a 2 s 2.
The general case is similar: suppose y_ yj. S S-1 for j < n 2;

then a, s k and aj_ lbv+ a/ bj+ ab+ 2 implies

sJ- ( yj+ bj+ 2 -’l- bj+3)- ( Yj+ S j q" s J-1) bj+ "--sJbj+2

As above, the first equality implies bv./2 sbj/ and the second implies
1 + yj+s s , so yj+x s s -1. Since the procedure is symmetric, s s -x

Yn-1 =Yn- Y- implies Yn s. Finally, s s -1 > 0 implies s > 1 so EYi
ns (n 2)s- > 2.
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3. The first question

Let us now formally define

(3.1) a(t) sup{ p(xl,...,x)" n >_ 1, x >_ O, _,x t).
From the introduction, we know that e >_ a(t) > F[t]+ 1. A heuristic candidate
for making pn(x) large is x (t/n,..., t/n); let rn(x ) pn(x,...,x). Then
r_l(X)--0, r0(x)--1 and rn(x)= xrn_l(x ) + r_2(x ), and it is easy to
obtain two closed formulas for r(x). Viewing x as a constant, r satisfies a
second order linear recurrence. By standard methods,

(3.2) rn(x )
V/x2 + 4 2 2

hand, in (2.2), there are
[[n-i} waysOn the other

consecutive pairs in {1,..., n }, hence

to place disjoint

(3.3) r,(x) y,(n-i i) xn-2i
As a side note, if Un is the Chebyshev polynomial defined by

(cos 0) sin(n + 1) 0/sin 0,

then r,(x)= inUn(--ix/2), see [1, p. 775]. In any event, the asymptotics of
rn(t/n) are easy to handle and are summarized in (3.4):

(3.4) r2m cosh-, r2m+l 2m + 1 ’-* sinh.
As it happens, this distribution of weights is not asymptotically optimal, but
the (implicit) lower bound for a(t) is only off by a factor of 4/e.

THEOREM 3.5.

(3.6) q(t):= max(1 + t2/4,2e t/2-1) a(t).

Remark. Note that (3.6) agrees with (1.2) and that q’(2) exists so that q is
quite smooth.

Proof Let an(t ) max(pn(xl,..., x,): x > O, _,X t}. (By continuity
and compactness, the supremum is achieved.) Clearly a(t)= sup,a,(t). Con-
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sultation with (1.7) shows that az(t ) 1 + t2/4 > ax(t ) for all t. Suppose
now that n > 3 and a,(t) Pn(Y). By Lagrange multipliers, either y lies on the
boundary of (x > O, Y’.x } or

Op,
(Y) -Z-. (Y)x. forl <j<k<n.

In the first case, by Lemma 2.11, a,(t) p,(y) < pro(Z) where Y’.z t, z > 0
and m < n. Possibly pro(Z) < am(t); in any event, by repeating if necessary, we
get a,(t)<a,(t) for k=l or 2 or a,(t)<ak(t)=Pk(W) for w>0 and
k>3.

In the second case we must have, by Lemma 2.12,

y (s, s s- ),S--S-1 S ns-(n- 2)s-1=

and

a,(t) p,,(y)= s" + s "-2.

Solving for s, and assuming > 2, we have

+ v/4 +(3.7) s
2n

Letting

(3.8) h,(t) s(t) + ,-2 (t),

and noting that h2(t ) s22(t) + 1 t2/4 + 1 a2(t ), we have

(3.9) a(t) suph,(t).
n>2

(To prove that h,(t)= a,(t), we would have to prove that the hn’s are
monotonically increasing. Numerical evidence suggests this, but we have no
proof.)

For fixed t, s,(t)= 1 + (t/2 1)n -1 + O(n -2) as n , so h,(t)
2 exp(t/2 1). A more careful analysis shows that

(3.10) h,(t)= 2e t/--1 1- -- 1 n -2 + O(n -3

The relatively high powers of n- and t/2 1 in (3.10) suggest the delicacy of
n--2the asymptotics. Indeed, s(t)> exp(t/2- 1)> s (t) as n oo and we

will show h,(t) < q(t) for n > 2, > 2 in a regrettably indirect way. This,
with (3.9) and (3.10) will complete the proof.
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Suppose (3.11) holds for u >_ 2:

1 h’,,(u)(3.11) ->_

Since hn(2) 2, integrating (3.11) from 2 to > 2 gives q(t) > hn(t). Thus we
consider

(3.12) F(u)=h.(u)-2h’(u).

Letting w.(u)= (4n2- 8n + u
venient differential equations"

2)1/2, Sn(U) and wn(u) satisfy a pair of con-

(3.13) s’.(u) s.(u) u

Keeping in mind that w(2) 2n 2 > 0 and s(2)= 1 and suppressing the
arguments, we have

.-2 2ns,-1’- 2(n 2) n-3st(3.14) F.-- S "[" S S S

2 -(2n 4)]s. [(wn 2n)s. + w.

.’---- s--.-n Gn.

Since G.(2) 2wn(2) (4n 4) 0, it suffices to prove that G,(u) > 0 for
u > 2. But

(3.15) wi, s,, + ( w,, 2n )2s,,s, + w;,
1 [(2w. + u 4n)s2. + u
w.
1

Again, H.(2) 2w.(2) + 4 4n 0 so we are finished if we can show that
H’(u) > 0 for u > 2. Finally,

(3.16) 2 + (2w. + u- 4n)2s.s’. + 1H, (2w, + 1)s.
2s,, [4u + 5w,,- 8n] + 1.
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We are done if we can show that 5w, > 18n 4u[ for u > 2. However, by
squaring both sides and subtracting,

25w,2 64n 2 + 64nu 16u 2 36n 2 + 64nu + 9u2- 200n

36(n 1)2 +(u- 2)(64n + 9u + 18)
>0.

Working backwards, (3.11) has been verified and Theorem 3.5 is proved.
To compare this result with that of Lucas,

q(2) 2 F3, q(3) -= 3.2974 > 3 F4,

and

q(t + 2)- q(t + 1)- q(,)= (e- e1/2- 1)q(t)= .0696q(t) > 0,

hence q(n) >_ F, + by induction.

4. The second question

Now we restrict the xi’s to be positive integers and define

(4.1) b(t) sup{ p,(xl,...,x,)" n > 1, x e N, x t}.
In view of Lemma 2.10, the supremum could just as well be over (xi > 0,
x,. Z}. For the rest of this paper, we will suppress the suffix on the
continuant when it is clear from the context. By a string we will mean a
(possibly void) sequence x (xx,..., x,). If n 0, p(x)= 1; if n 1, p(x’)

1, p(’x’) 0, etc. By two applications of (2.7),

(4.2) p(x, u, 1,z) p(x, u + 1,z) (u 1) p (x) p (’z) + p(x’)p(’z).

By (4.2), the value of p can only be increased by splitting any x larger than 1
into x 1 and 1. Proceeding in this way, if x N and Ein=lxi it follows
immediately that p(x) < p(1,..., 1) r/(1) Ft+x (cf. (3.2)).

Lucas’ proof, mentioned in the introduction, is pretty enough to outline.
Consider an infinite array of rationals, the first four rows of which appear in
(4.3):

(4.3)

o 1

_0 ! I

0 ! ! _2 1
2

_0 1 1 _2 ! _3 _2 _3 1
4 2 4 1"
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Each row is an increasing subset of the Farey sequence; if a/b and c/d are
consecutive in row k then a/b, (a + c)/(b + d) and c/d are consecutive in
row k + 1. This is called the Stern-Brocot array. Lucas proved that every
reduced rational in [0,1] occurs eventually in (4.3) and, in fact, if a/b-
[kl,..., ks]- in the usual simple continued fraction representation (kj N),
then it occurs for the first time in row Z,=ikj. Thus b(t) is the largest (new)
denominator in row t. Since any such denominator is the sum of two previous
denominators, one of which is old, b(t) < b(t 1) + b(t 2). On the other
hand, as (4.3) suggests, F + does occur in the t-th row, next to an inherited Ft,

and these leapfrog each other down the array, producing the Fibonacci
sequence.
As an aside, consider the successive numerators of the k-th row of (4.3).

There are 2k + 1 of them,, and the first 2k- + 1 appear to be the successive
numerators of the (k 1)-st row. This observation, which is easily proved by
induction, leads to the definition of the sequence sn: so 0, s 1, s2 1,
S 2, s4 1, S5 3, This sequence satisfies the recurrence s2n s and

s2n+ s + sn+. Historically speaking, (4.3) is Brocot’s array and s, is
Stern’s sequence. A combinatorial interpretation of s, and the related sequence
a (cf. (1.4)) is given at the end of the paper. For some other remarkable
properties, see [5] and [6].

5. The third question

We now turn to continued fractions with general numerators. By (1.3) and
the reasoning of (1.5), we have

(5.1) p,(x,y) xlp_(’x;’y) + y2pn_2("x;"y),

with P-1 0, Po 1 as before. Now define

(5.2)
c,,,(t)= sup pn(x;y)" n < m, xi, yi >0, xi+ Yi=

i= i=2

c(t) sUpCm(t ).
m

It is immediate that c(t)= t. Suppose

XI + X2 + Y2--" t;

and let x (x + x2)/2- Then

P2(X, x2; Y2) XIX2 -[- Y2 < X2 + Y2 X2 2x + t.
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Since X 2 2x + is a convex function of x, it can only achieve its maximum
at the endpoints of its range: x 0 or x t/2. Thus

c2(t ) max{ t, t2/4}.

As Theorem 5.3 shows, this behavior is typical.

THEOREM 5.3.

(5.4) c,,(t) sup H ui" ui O, E ui-- t, k m
i--1 i--1

Proof. We have just shown (5.4) for m 1 and 2. It is easy to see from
(5.1) that pm(X1,...,Xm; 0,...,0)= 1-Iim__lXi, SO (5.4) gives a lower bound for
c,,(t). On the other hand, suppose (5.4) has been established for m < n 1
and (x,y) is given with Y’.i=xxi + Ei2yi t. Then by (5.1),

(5.5) p,,(x; y) _< XlCn_l(t- X --Y2) h-Y2Cn_2(t- X --y- X- Y3)
<_ (x + y)c._(t x Yz)

by the (obvious) monotonicity of c,,(t) in both m and t. Taking the supremum
first over all (x, y) with fixed x + Y2 ul and then over all u completes the
proof.

COROLLARY 5.6.

(5.7) c( ) nx -Proof. By the arithmetic-geometric inequality, it follows from (5.4) that

c,,(t) max((t/k) k" 1 < k < m).
Let f(x)= (t/x) where x is a continuous real variable. A calculus exercise
shows that log f is concave with maximum at x t/e. This justifies the "max"
in (5.7).

For large, choosing k t/e] gives c(t) exp(t/e). More specifically, let
rk kk(k 1) -(k-l) (-- (k + 1/2)e + o(1)). Then c(t)= (t/k) k for
[rk, rk+l]. It can be shown that

c(t) exp(t/e)[1 + O(t-)],
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but we omit the (routine) calculation. If we restrict the xi’s and Yi’S to be
non-negative integers then Theorem 5.3 still applies and we seek to maximize a
product of positive integers given their fixed sum. As noted in the introduction
this is a recent Putnam problem. To maximize the product, we replace (m)
with (2, m 2) if m > 4 and (1, k) with (k + 1) for any k. The maximum thus
occurs on strings of 2’s and 3’s. Since 3 3 > 2.2.2, there are at most two
2’s. The exact number is determined by t mod 3. The solution is unique up to
the substitution of (4) for (2,2) and equals Ci3t/3 where .92 < ci < 1 for

imod3.

6. The fourth question

For > 1 define

(6.1)
d(t) max(pn(xa,...,xn; Y2,..., Yn)" n > 1, xi, Yi N, _,x + _,Yi t).
LEMMA 6.2. If d(t) p(x; y) then all yi’s equal 1. Hence

((6.3) d(t) max p(xl,...,x)" n > 1, x = N+, Exi + n 1
i=1

Proof If n 1, the lemma is vacuous; if n 2 then > 3 and the lemma
is true by the argument of the last section. In any case, (5.1) and xi, yi > 1
imply that p(x,y)> Pn_l(’X,’y). Keeping wj =xj. + y+l fixed for 1 <j <
n 1, it follows by repeated application of (5.1) that p(x, y) is only increased
by setting x to w- 1 and y to 1.

It follows from this lemma that we only need consider simple continued
fractions. Our analysis is based on the systematic elimination of strings
x (x,..., xn) from consideration in (6.3) and is an extension of the ideas in
the last two sections. If we write Ilxll r-n_-x / n 1, the norm of x, then
Lemma 6.2 is, more succinctly,

(6.4) d(t) max(p(x): I[xll t).

Suppose Ilull Ilvll and for all strings w and z, p(w,u,z)> p(w,v,z); as
strings may be void this statement includes p(w,u)> p(w,v), etc. Since
II(w, u,z)ll II(w, v,z)ll, we may take the maximum in (6.4) over all strings
which do not contain v as a substring. In this case we say that u supersedes v,
or u >- v. We call a set of strings A sufficient if, for t > 2 there exists x A,
Ilxll with p(x) d(t). Note that A need not contain all such maximizing
strings. We take > 2 to avoid the case 1, since Ilxll 1 implies x (1)
and p(x) 1, and it is tedious to include this as a special case throughout.
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Our first task is to find strings which are superseded. It is essential to keep
(2.3) in mind; let i (x,,..., xl). If u >- v then >- ; this reduces our work
by half. The first lemma may be proved by two applications of (2.7).

LEMMA 6.5.

p (w, u, ,) p (w, , z) p (w) p (z)( p (u) p ())
+p (w)p (’z)( p (u’) p ()) + p (w’)p (z)( p (’u) p (’))
+p(w’)p(’z)(p(’u’) p (’v’)).

For given u and v let D p(u) p(v), D’ p(u’) p(v’), ’D p(’u) p(’v)
and ’D’= p(’u’)- p(’v’); D (D, D’,’D,’D’) is the difference vector of u
and v.

LEMMA 6.6. /f Ilull Ilvll and (i), (ii) or (iii) hold then u >- v:
(i) D, D’, ’D, ’D’ > 0;
(ii) D,D+D’,’D,’D+’D’>0;
(iii) D,D+’D,D’,D’+’D’>0.

Proof. We prove (ii), which is equivalent to (iii) and implied by (i). For any
w and z, p(w)>_ p(w’)>_ 0 and p(z)>_ p(’z)>_ 0 since all components are at
least 1. By Lemma 6.5, then,

p (w, u, z) p (w, v, z) >_ ( D + D’)p (w)p (’z) + (’D + ’D’)p (w’)p (’z) >_ 0.

It is now convenient to introduce some more notation which we will use
extensively in this section. Let (i a, j b, k C,...) denote the string of a i’s
followed by bj’s, c k ’s, etc., and let rn(3) p(3n). Given a set of integers 1, let
A(I) denote the set of all strings x with x I. (Thus the maximum in (6.4) is
taken over A(N).) For a string v let B(v) denote the set of all strings which do
not contain v as a substring. Our last lemma for a while is a direct consequence
of (2.5), (2.7) and such identities as r rm_ 2 3rm_ .
LEMMA 6.7.
(i) p(3",x) xr, + rn_ rn+ q- (X 3)r,.
(ii) p(3n, x, y) (xy + 1)r, + Yrn_ 1.

(iii) p(x, 3", y) (xy + 1)r, + (x + y 3)rn_ .
PROPOSITION 6.8. Let C ((3a,4, 3b): a, b >_ 0}; then

(A({2,3}) B({24})) IO C

is sufficient.
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Remark. In other words, we may restrict out attention to strings of 2’s and
3’s with no four consecutive 2’s and strings that are all 3’s except for one 4.

Proof. We first show that no string containing a I can be maximal. Observe
that (x, 1) may be written (u, s, 1) for n > 2 (since > 1) and that

II (u, s, 1)11 II (u, s + 2)11 Ilull + s + 3.

By Lemma 2.10(ii), p(u, s, 1) p(u, s + 1) < p(u, s + 2). Now suppose s > r
and consider the difference vector of u (r + 2, s) and v (r, 1, s), (11 u ll
I111 r + s + 3)"

D (rs + 2s + 1, r + 2, s,1)-(rs + r + s,r + 1, s + 1,1)
(s- r + 1,1,-1,1).

By Lemma 6.6(iii), u >- v and, as noted earlier, (s, r + 2) >- (s, 1, r). Therefore
A(N) n B((1}) is sufficient. If s > 5, then (s- 3,2)>-(s) with difference
vector

(2s 5, s 3,2,1) -(s,l,l,0) (s 5,s 4,1,1) > 0.

Thus A({ 2, 3, 4}) is sufficient.
Now we consider strings in A({2, 3, 4}) which contain a 4; we show that

(3m+1,2,2) >- (4,3m,4) and (3m+2) >- (4,3m,2)

for m > 0. These two supersedures show that we can replace any string with a
4 if it contains any other non-3’s. Let u (3m+ 1, 2, 2) and v (4, 3m, 4), then
Ilull Ilwll 4m + 9 and by Lemma 6.7,

I)-" (5rm+ q- 2rm,2rm+ + rm,5r q- 2rm_l,2r + rm_l)
-(17r + 5rm 4r + rm 4rm + rm rm )
(O, rm+,r + rm_l,r q- rm_x) >_ O.

The skeptical reader may check this formula for m 0: u (3, 2, 2), v (4, 4)
and D (0, 3,1,1). Now let u (3m+2) and v (4, 3m, 2). Then Ilull Ilvll
4m + 7, and, by more of Lemma 6.7,

D (10r + 3rm_x,3r + rm_,3r + rm_x,

-(gr + 3rm_,4r + rm_,2r + rm_l, rm)
(rm,--rm, rm,O).

By Lemma 6.6(ii), u >- v, and by symmetry, (3m+ 2) >. (2, 3m, 4). Combining the
above, A({ 2, 3 }) t C is sufficient.
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Finally, we exclude strings with four consecutive 2’s. Note that

11(33)11--11(24)11-- 11 and p(33) 33 > 29 p(24).

Further, we claim that (33,2)>-(25) and (34) >-(24,3). The norms on both
sides of the supersedures are 14 and 15 respectively and the two difference
vectors are

(109, 33, 33, 10) (99, 29, 41, 12) (10, 4, 8, 2)

and

(76, 33, 23, 10) (70, 29, 29,12) (6, 4, 6, 2)

respectively. Two more applications of Lemma 6.6(iii) complete the proof of
the claim. Since we are now restricting our attention to A((2, 3 }) t3 C, we have
handled all possible appearances of 24 and the proposition is proved.

In the last part of the proof, it is tempting to write (33) (24). This is false,
however as p(1, 24,1) 58 > 56 p(1, 33,1). In order to pare down A((2, 3))
one step further we need one more result, which we isolate as a lemma.

LEMMA 6.9. (3m+1,2n+l) >" (3,2n, 3m, 2) for n,m > 1.

Proof We compute, in turn, D, D’, ’D and ’D’. First,

D p(3m+1,2n+l) p(3,2n,3m,2) p(2,2",3m,3) --p(3,2",3m,2).

By two applications of (2.7) with y (2 n, 3m),

O p(2n-l, 3") p(2", 3"-1) p(2"-1, 3, 3m-l) p (2n-l, 2, 3m-l)
p(2"-l)p(3"-l) > 0

by Lemma 6.5. Next, using (2.5) twice,

D’ =p(3m+,2n) -p(3,2n,3m)
3p(3m,2n) +p(3m-l,2n) 3p(2n,3m) --p(2n-1,3m) -D.

Similarly,

’D =p(3m,2n+l) -p(2n,3m,2)
2p(3m,2n) +p(3m,2n-l) 2p(2n,3m) --p(2n,3m-l) D.

Since ’D’ p(3m, 2") -p(2", 3’’) 0, D (D,-D, D, 0) and the lemma is
proved by another application of (6.6)(ii).
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The import of this lemma is that we need only consider strings of 2’s and 3’s
with at most two "changes". The delicacy of the argument is suggested by the
fact that (3m+ 1, 2n+ 1) does not supersede (2, 3m, 2 n, 3); of course (2n/ 1, 3m+ 1)
does, by symmetry. We are now done with" >- "; we can calculate p(x) for the
last sufficient set. The next lemma reduces us to four cases.

LEMMA 6.10.

p(x’, y,n, x,) p(x,+n, ym) (x y)p(x’-l)p( ym-1)p(x’-l).

Proof. By two applications of (2.7), the left hand side equals

p(x’,ym, x n) --p(xl, xn, y m)
p(xl)[ p(ym)p(xn) + p( ym-1)p(xn-1)

--p(x")p(y’) p(x"-l)p(ym-1)]
+p(xl-X)[ p( ym-X)p(xn) + p( ym-2)p(x"-l)

--p(x"-X)p(y ’’) p(x"-:)p( ym-1)]
p(xt-X)[p(ym-1)(p(x ") --p(x"-:))

__p(x-X)(p(ym) p( ym--))]
p(xt-X)[xp(xn-X)p(ym-I) yp(ym-X)p(xn-1)]

THEOREM 6.11. The set of strings of the form (2m), (3a), (4,3a) and
(3", 2", 3) with a > 1 and 3 > rn > 1 is sufficient.

Proof. By Proposition 6.8 and Lemma 6.10, the named strings plus those of
the form (2m, 3a), (3a, 4, 3b), (2m, 3a, 2n) and (3a, 2m, 3b) form a sufficient set.
By Lemma 6.10, however,

and

p(3a+b,4) > p(3a,4,3b), p(3a,2m+n) > p(2m,3a,2n)

p(3a-1 2 3)> p(3 2m)

a > 1, so we may exclude these strings. Further,

p(3a, 2m,3b) p(3a+b, 2m) + p(3a-1)p(3b-1)p(2m-l)
p(3a/ , 2 + p(2m-X)ra_lrb_l.

Hence the theorem will be proved if we can show that /’0/’a+b_2 l’a_l?’b_ for
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a > 1, b > 1. Fix c > 1 and let d rord+ rcrd. Then o 0, rc+
3r,. r 0 and td+ 2 3td+ + d SO td > 0 for all d > 0 and we are done.

The following table presents the remaining strings with the relevant parame-
ters computed. We separate out the three possible values for m.

Table 6.12

x Ilxll p(x)

(2) 2 2
(2 5 5
(2 8
(3a), a > 1 4a 1 ra
(4,3), a > 0 4a + 4 4r + r_
(3",2, 3), a > 0 4a + 6 7ra + 3ra_
(3,22,3), a > 0 4a + 9 17r + 7r_
(3a,23,3), a > 0 4a + 12 41r + 17r,,_

Observe that the strings in this table have norms which cover N {1} with
duplication only at multiples of 4. First,

11(23)11 11(4,3)11 8 and p(4,3)= 13 > p(23),

so d(8)= 13. Otherwise, suppose 4m, rn > 3; then

11(4,3m-1)11 11(3m-3,23,3)11

and

p(4,3m-l) --p(3m-3,23,3) 4r,_1 + rm_ 2 41rm_
2rm_ 4rm_ 4 um.

17rm_ 4

Again, u 2, u4 2 and Urn+ 2 3Urn+ -I- U SO U > O. Putting it all
together, with a relabeling of indices, and the usual manipulations with the
rk’S, we have the following corollary.

COROLLARY 6.13. /f < 5, d(t)= t; otherwise,

d(4m) r + /’m-l, d(4m + 1)= -4r + 19rm_,

d(4m + 2)= 3r,,- 2r,,_x and d(4m + 3)= 3r + I’m_ 1.

Let ct (lx/]-- + 3)/2; r 13-1/2otm+l from (3.2) so that d(t)-- ciolt/4,
for mod 4 with 1.19 < c < 1.24.

Recall the sequence {a,} defined in (1.4). It is a consequence of the
recurrence that aan+3 an, SO the candidate n’s to make a large quickly
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have the binary form n [10.-- 010 010 112. That is, there are no two
consecutive l’s in the base 2 representation of n. In fact, if there are blocks of
O’s of lengths kl,...,k in this representation, then lanl pr(kl,...,k).
Since

2 > n > 2m-1 for rn II(k,..., k)ll,

Corollary 6.13 proves the claim made in the introduction. See [14] for further
details.
The sequence (a } can be derived in a way similar to the Stern sequence,

except that you take the difference (rather than the sum) of two consecutive
terms to define the (k + 1)-st row from the k-th. This sequence and the Stern
sequence have analogous combinatorial interpretations. Let a(m,i) denote
the number of ways to write m as Eel2k with ek (0,1,2}. Then s
Ea(n- 1, i) and a _,(-1)ia(n- 1, i). I thank Professor A. Garsia for
prodding me to find a combinatorial interpretation of (a }.
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