THE CLOSURE IN LIP α NORMS OF RATIONAL MODULES WITH THREE GENERATORS

BY
J.J. Carmona Domenech

1. Introduction

Let X be a compact subset of the complex plane \mathbf{C}. We will denote by $R_{0}(X)$ the algebra of rational functions with poles off X, by $R(X)$ the uniform closure of $R_{0}(X)$ in $C(X)$ and by $\operatorname{lip}(\alpha, X)$ and $\operatorname{Lip}(\alpha, X), 0<\alpha<1$, the spaces of Lipschitzian functions with the usual norm for which they are Banach spaces [12]. If g_{1}, \ldots, g_{n} are functions on X, then we will denote by $R_{0}\left(X, g_{1}, \ldots, g_{n}\right)$ the rational module

$$
R_{0}(X)+R_{0}(X) g_{1}+\cdots+R_{0}(X) g_{n}
$$

When g_{1}, \ldots, g_{n} are differentiable in a neighborhood of X we will write $Z_{i}=\left\{x \in X / \bar{\partial} g_{i}(x)=0\right\}, i=1, \ldots, n$.

In the case that $g_{1}(z)=\bar{z}, \ldots, g_{n}(z)=\bar{z}^{n}$, the closures in different norms of $R_{0}\left(X, g_{1}, \ldots, g_{n}\right)$ have been studied by O'Farrell [5], in connection with problems of rational approximation in $\operatorname{Lip}(\alpha)$ norms, and by Wang [14], [15], [16]. Trent and Wang [10] have proved that if X is a compact subset of \mathbf{C} with empty interior, then $R_{0}(X, \bar{z})$ is uniformly dense in $C(X)$. It was shown later (by Trent and Wang [11] and, independently, by the author [2]), under the same hypothesis about X, that $R_{0}\left(X, g_{1}\right)$ is uniformly dense in $C(X)$ if and only if $R\left(Z_{1}\right)=C\left(Z_{1}\right)$. It was reasonable to try to extend this approximation result to norms stronger than the uniform norm, for example the $\operatorname{Lip}(\alpha)$ norms. However Wang [17] has recently established relations between the $\operatorname{Lip}(\alpha)$ approximation by functions of $R_{0}(X, \bar{z})$ and the L^{p} rational approximation, showing the failure of the analogous to the former result in $\operatorname{Lip}(\alpha)$ norm. At this point we pose the following question: If g is a differentiable function, what functions g_{1}, \ldots, g_{n} have to be added to $R_{0}(X, g)$ to make $R_{0}\left(X, g, g_{1}, \ldots, g_{n}\right)$ dense in lip (α, X) ?. Theorem 1, which is the main result of this work, gives a solution to above problem. Theorem 1 states that it is enough to consider $g_{1}=F \circ g, F$ being a holomorphic function. If we want to weaken the hypothesis to analyticity of F, assuming only differentiability (of class C^{2}),
we have to assume that $g=\bar{h}$ and $g_{1}=F \circ h$, with h holomorphic. This is Theorem 2. Both theorems are stated in §2. In §3 we state some lemmas used in the proofs of Theorem 1 and 2, presented in $\S 4$ and $\S 5$ respectively. Section 6 is devoted to analyzing the uniform closure of $R_{0}\left(X, g_{1}, \ldots, g_{n}\right)$. In Theorem 3 a general result is achieved, without assuming functional relations among g_{1}, \ldots, g_{n}.

This work gives information on the problem proposed in III of [11], which consists of the study of the closures (in different norms) of $R_{0}\left(X, g_{1}, \ldots, g_{n}\right)$.

Some of these results are taken from the author's doctoral dissertation [3].
Let us introduce some notations. If U is an open subset of \mathbf{C} and $k \in \mathbf{N}$, we denote by $C^{k}(U)$ (resp. $\left.D^{k}(U)\right)$ the set of functions of class C^{k} (resp. of class C^{k} with compact support included in U). When $k=\infty$ we write $D(U)$. The Lebesgue two-dimensional measure in \mathbf{C} is denoted by m. Throughout,

$$
R^{\alpha}(X) \quad\left(\text { resp. } R^{\alpha}\left(X, g_{1}, \ldots, g_{n}\right)\right)
$$

stands for the $\operatorname{Lip}(\alpha)$ closure of $R_{0}(X)$ (resp. $R_{0}\left(X, g_{1}, \ldots, g_{n}\right)$), $0<\alpha<1$.

2. Formulation of the theorems

In this section we are going to assume that X is a compact subset of \mathbf{C} with empty interior.

Theorem 1. Let g be a function of class C^{1} in a neighborhood of X and let F be a holomorphic function in an open subset V such that $g(X) \subset V$. Suppose $F^{\prime \prime} \neq 0$ in each component of V intersecting $g(X)$. Let $Z=\{w \in X / \bar{\partial} g(w)=$ $0\}$. Then, for each α,

$$
R^{\alpha}(X, g, F \circ g)=\left\{f \in \operatorname{lip}(\alpha, X) /\left.f\right|_{Z} \in R^{\alpha}(Z)\right\}
$$

Corollary 1. Under the hypothesis of Theorem 1, $R^{\alpha}(X, g, F \circ g)=$ $\operatorname{lip}(\alpha, X)$ if and only if $R^{\alpha}(Z)=\operatorname{lip}(\alpha, Z)$.

Corollary 2. If $n \geqq 2$, then $R^{\alpha}\left(X, g, g^{n}\right)=\operatorname{lip}(\alpha, X)$ if and only if $R^{\alpha}(Z)$ $=\operatorname{lip}(\alpha, Z)$.

When $g(z)=\bar{z}$ and $n=2$, Corollary 2 gives a generalization of a result of Wang [14]. The condition $F^{\prime \prime} \neq 0$ is necessary. In fact, if we take $g(z)=\bar{z}$ and F linear, then there is a suitable compact subset X such that $R_{0}(X, g, F \circ g)$ $=R_{0}(X, \bar{z})$ is not dense in $\operatorname{lip}(\alpha, X)$ (see [17]).

Theorem 2. Let h be an analytic function in a neighborhood U of X, non-constant in each component of U and let F be a function of class C^{2} in a
neighborhood of $h(X)$. Let

$$
T=\left\{x \in X / \bar{\partial}^{2} F(h(x))=0\right\}
$$

Then the following propositions hold.
(a) If $R^{\alpha}(T)=\operatorname{lip}(\alpha, T)$, then $R^{\alpha}(X, \bar{h}, F \circ h)=\operatorname{lip}(\alpha, X)$.
(b) If $R^{\alpha}(X, \bar{h}, F \circ h)=\operatorname{lip}(\alpha, X)$, then $R^{\alpha}(T, \bar{h})=\operatorname{lip}(\alpha, T)$.

Let us point out that necessary and sufficient conditions for the approximation in $\operatorname{lip}(\alpha, Z)$ by functions of $R_{0}(Z)$ are well known [7].

An interesting application of the above theorems is obtained when $m(Z)=0$ or $m(T)=0$.

The proofs of Theorems 1 and 2 are by duality. If $\phi \in \operatorname{lip}(\alpha, X)^{*}$, then the restriction of ϕ to $\left.D\right|_{X}$ is a distribution ϕ_{1}. We associate to ϕ_{1} a distribution $\tilde{\phi}_{1}$ (defined by (2) with T replaced by ϕ_{1}). It can be shown that $\tilde{\phi}_{1}$ is a $d m$-absolutely continuous measure, the density function being continuous (Lemma 4). If, moreover, ϕ_{1} is orthogonal to $R_{0}\left(X, g_{1}, g_{2}\right)$, then we deduce that $\tilde{\phi}_{1}=0$ on C. From this it follows that ϕ_{1} is supported in Z and is orthogonal to $\operatorname{lip}(\alpha, Z)$. The results will follow readily.

3. Preliminary lemmas

We will consider a general scheme which applies to the theorems above. We assume that $g_{1}, g_{2} \in C^{1}(U), U$ an open neighborhood of X. Also assume:
(1) There exists $u \in C^{1}(U)$ such that $\bar{\partial} g_{2}=u \cdot \bar{\partial} g_{1}$ in U.

In this case we define the kernel:
$k(z, w)=\left(g_{2}(z)-g_{2}(w)-u(w) \cdot\left(g_{1}(z)-g_{1}(w)\right)\right) /(z-w), \quad z, w \in U$, $k(z, z)=0, \quad z \in U$.

The function k is locally bounded in $U \times U$. We write

$$
\tilde{\psi}(z)=\int k(z, w) \psi(w) d m(w), \quad \psi \in D^{1}(U)
$$

This function is called the transform of ψ relative to g_{1}, g_{2}. It is easy to see that $\tilde{\psi} \in C^{1}(U)$. If T is a distribution of order 1 with compact support in U, then we define the transform of T, relative to g_{1}, g_{2}, by

$$
\begin{equation*}
\tilde{T}(\psi)=T(\tilde{\psi}), \quad \psi \in D^{1}(U) \tag{2}
\end{equation*}
$$

Let us recall the definition of the Cauchy transform of a compactly supported distribution in C [5]:

$$
\hat{T}(\psi)=-T(\hat{\psi}) \quad \text { if } \psi \in D^{1}(\mathbf{C})
$$

where

$$
\hat{\psi}(w)=\int \frac{1}{z-w} \psi(z) d m(z)
$$

We will also need the definition of the transform of ψ, relative to $g_{1}[11],[3]$;

$$
\check{\psi}(w)=\int \frac{g_{1}(z)-g_{1}(w)}{z-w} \psi(z) d m(z), \quad \psi \in D^{1}(U)
$$

and the corresponding one for compactly supporting distributions,

$$
\check{T}(\psi)=T(\check{\psi}), \quad \psi \in D^{1}(U)
$$

Lemma 1. Let g_{1} and g_{2} satisfy (1). Let T be a distribution of order 1 with compact support in U, such that \tilde{T} and \hat{T} are measures. Then
(a) $\bar{\partial} \tilde{T}=\bar{\partial} u \cdot \check{T}$ and
(b) $\bar{\partial} \check{T}=-\bar{\partial} g_{1} \cdot \hat{T}$.

Proof. We will only prove (a), the proof of (b) being similar. Since

$$
\bar{\partial} \tilde{T}(\psi)=T\left(-(\bar{\partial} \psi)^{\sim}\right) \quad \text { and } \quad \bar{\partial} u \cdot \check{T}(\psi)=T\left((\bar{\partial} u \cdot \psi)^{\check{ }}\right)
$$

it is sufficient to show that

$$
\begin{equation*}
(\bar{\partial} \psi)^{\sim}=-(\bar{\partial} u \cdot \psi)^{v} \quad \text { in } U, \quad \text { for } \psi \in D^{2}(U) \tag{3}
\end{equation*}
$$

Let $z_{0} \in U$. We consider an open set G with $G \subset U, \partial G$ piecewise of class C^{1}, supp $\psi \subset G$ and $z_{0} \in G$. Let us choose an $\varepsilon>0$ in such a way that the closed disc $D_{\varepsilon}=D\left(z_{0}, \varepsilon\right)$ is included in G. If $G_{\varepsilon}=G-D_{\varepsilon}$, then G_{ε} is an open bounded set and its boundary is piecewise of class C^{1}. We suppose this boundary endowed with the orientation induced by the usual one in G_{ε}. We consider the following differential form of class C^{1} in a neighborhood of $\bar{G}_{\boldsymbol{\varepsilon}}$:

$$
k\left(z_{0}, z\right) \psi(z) d z
$$

Applying Stokes' Theorem and using (1), we get

$$
\begin{array}{r}
\int_{G_{\varepsilon}} k\left(z_{0}, z\right) \bar{\partial} \psi(z) d \bar{z} \wedge d z-\int_{G_{e}} \frac{g_{1}\left(z_{0}\right)-g_{1}(z)}{z_{0}-z} \bar{\partial} u(z) \psi(z) d \bar{z} \wedge d z \tag{4}\\
=-\int_{C\left(z_{0}, \varepsilon\right)} k\left(z_{0}, z\right) \psi(z) d z
\end{array}
$$

Note that

$$
\begin{aligned}
& \left|k\left(z_{0}, z\right) \bar{\partial} \psi(z)\right|=O\left(\left|z_{0}-z\right|^{-1}\right) \\
& \left|\frac{g_{1}\left(z_{0}\right)-g_{1}(z)}{z_{0}-z} \bar{\partial} u(z) \psi(z)\right|=O\left(\left|z_{0}-z\right|^{-1}\right), \quad z \in \operatorname{supp} \psi
\end{aligned}
$$

and

$$
k\left(z_{0}, z\right) \psi(z)=O(1), \quad z \in C\left(z_{0}, \varepsilon\right)
$$

Letting $\varepsilon \rightarrow 0$ in (4), we obtain (3).
From now on we will restrict ourselves to two cases:
(i) $g_{1}=g, g_{2}=F \circ g$, with F and g satisfying the hypothesis of Theorem

1. In this situation $\bar{\partial} g_{2}=\left(F^{\prime} \circ g\right) \cdot \bar{\partial} g$; so (1) holds with $u=F^{\prime} \circ g$.
(ii) $g_{1}=\bar{h}, g_{2}=F \circ h$, with h and F as in Theorem 2. Here

$$
\bar{\partial} g_{2}=(\bar{\partial} F \circ h) \cdot \bar{\partial} g_{1}
$$

i.e., $u=\bar{\partial} F \circ h$.

The respective kernels for $z \neq w, z, w \in U$, are:

$$
\begin{aligned}
k_{1}(z, w) & =\left(F(g(z))-F(g(w))-F^{\prime}(g(w))(g(z)-g(w))\right) /(z-w), \\
k_{1}(z, z) & =0 \\
k_{2}(z, w) & =(F(h(z))-F(h(w))-\bar{\partial} F(h(w))(\bar{h}(z)-\bar{h}(w))) /(z-w), \\
k_{2}(z, z) & =\partial F(h(z)) \cdot h^{\prime}(z)
\end{aligned}
$$

Let us study the properties of the above kernels.
Lemma 2. (a) The functions k_{1}, k_{2} are continuous on $U \times U$.
(b) For each compact $K \subset U$, the functions $k_{i}(\cdot, w), w \in K$, are locally uniformly Lipschitzian; i.e., for each compact L,

$$
\begin{gathered}
\left|k_{i}(x, w)-k_{i}(y, w)\right| \leqq C(g, K, L)|x-y| \\
x, y \in L, \quad w \in K, \quad i=1,2
\end{gathered}
$$

Proof. (a) It is sufficient to prove continuity at the points

$$
\left(z_{0}, z_{0}\right) \in U \times U
$$

We will denote by g both the function g of (i) and the function h of (ii). Let V be an open neighborhood of $g(X)$ on which F is defined and such that $g(U) \subset V$.

Let $z_{0} \in U$ and let $\left(z_{n}, w_{n}\right)_{n}$ be a sequence converging to $\left(z_{0}, z_{0}\right)$. By applying Taylor's formula to F, we get

$$
\left|F(z)-F\left(z^{\prime}\right)-\bar{\partial} F\left(z^{\prime}\right)\left(\bar{z}-\bar{z}^{\prime}\right)-\partial F\left(z^{\prime}\right)\left(z-z^{\prime}\right)\right|=O\left(\left|z-z^{\prime}\right|^{2}\right)
$$

for every z and z^{\prime} in a closed disc centered at z_{0} and included in V. By the continuity of g,

$$
\begin{aligned}
\mid F\left(g\left(z_{n}\right)\right) & -F\left(g\left(w_{n}\right)\right)-\bar{\partial} F\left(g\left(w_{n}\right)\right)\left(\bar{g}\left(z_{n}\right)-\bar{g}\left(w_{n}\right)\right) \\
& -\partial F\left(g\left(w_{n}\right)\right)\left(g\left(z_{n}\right)-g\left(w_{n}\right)\right) \mid=O\left(\left|g\left(z_{n}\right)-g\left(w_{n}\right)\right|^{2}\right)
\end{aligned}
$$

for n large enough.
In case (i) we have $\bar{\partial} F=0$ and

$$
\left|k_{1}\left(z_{n}, w_{n}\right)\right| \leqq M\left|g\left(z_{n}\right)-g\left(w_{n}\right)\right|^{2} /\left|z_{n}-w_{n}\right|=O\left(\left|z_{n}-w_{n}\right|\right)
$$

On the other hand, in case (ii) we obtain

$$
\text { (5) }\left|k_{2}\left(z_{n}, w_{n}\right)-\partial F\left(g\left(w_{n}\right)\right)\left(g\left(z_{n}\right)-g\left(w_{n}\right)\right)\left(z_{n}-w_{n}\right)^{-1}\right|=O\left(\left|z_{n}-w_{n}\right|\right)
$$

Since g is holomorphic, the function $(g(z)-g(w))(z-w)^{-1}$ is continuous on $U \times U$. Thus by taking limits in (5) we obtain (a).
(b) Let K and L be two compact subsets of U. We will show that

$$
\begin{align*}
\left|k_{i}(x, w)-k_{i}(y, w)\right| \leqq C(g, K, L)|x-y| & \tag{6}\\
& w \in K, \quad x, y \in L, \quad i=1,2
\end{align*}
$$

for x and y sufficiently close.
Let $M=K \cup L$ and let x, y, w be three fixed points in M with

$$
|x-y| \leqq \frac{1}{2} d(M, \mathbf{C}-U)
$$

By (a) we can assume in (6) that $w \notin[x, y]$. In this case, $k_{i}(\cdot, w)$ is of class C^{1} in a neighborhood of $[x, y]$. If we estimate $\bar{\partial} k_{i}(\cdot, w)$ and $\partial k_{i}(\cdot, w)$ uniformly, then (6) follows. Let us calculate these derivatives.

Case (i). By the uniform continuity of g on M and by developing F in a power series, we conclude that there exists $\delta, 0<\delta<d(M, \mathrm{C}-U)$, such that
$F(g(z))-F(g(w))-F^{\prime}(g(w))(g(z)-g(w))=(g(z)-g(w))^{2} H(z, w)$,
for $|z-w|<\delta, z, w \in M$, where H is a differentiable function defined on a
neighborhood of $M \times M$. A straightforward calculation shows that

$$
\begin{gathered}
\bar{\partial} k_{1}(s, w)=2 \frac{g(s)-g(w)}{s-w} \bar{\partial} g(s) H(s, w)+\frac{(g(s)-g(w))^{2}}{s-w} \bar{\partial} H(s, w), \\
\partial k_{1}(s, w)=2 \frac{(g(s)-g(w)) \bar{\partial} g(s) H(s, w)+(g(s)-g(w))^{2} \partial H(s, w)}{s-w} \\
-\frac{(g(s)-g(w))^{2} H(s, w)}{(s-w)^{2}}, \quad s \in[x, y] .
\end{gathered}
$$

If $|s-w|<\frac{1}{2} \delta$ we can apply the mean value theorem, and if $|s-w| \geqq \frac{1}{2} \delta$ we can estimate directly to obtain

$$
\bar{\partial} k_{1}(s, w)=O(1), \quad \partial k_{1}(s, w)=O(1)
$$

Case (ii). We have
(7) $\partial k_{2}(s, w)$

$$
=\frac{-F(h(s))+F(h(w))+\bar{\partial} F(h(w))(\bar{h}(s)-\bar{h}(w))+\partial F(h(s))\left(h^{\prime}(s)(s-w)\right)}{(s-w)^{2}},
$$

for $s \in[x, y]$.
The absolute value of the numerator of (7) will be less than

$$
\begin{aligned}
& \mid-F(h(s))+F(h(w))+\bar{\partial} F(h(w))(\overline{h(s)}-\overline{h(w)}) \\
& \quad+\partial F(h(w))(h(s)-h(w)) \mid \\
& \quad+|(\partial F(h(w))-\partial F(h(s)))(h(s)-h(w))| \\
& \quad+\left|\partial F(h(s))\left(h^{\prime}(s)(s-w)-h(s)-h(w)\right)\right| \mid
\end{aligned}
$$

It is sufficient to estimate these terms for s and w sufficiently close. They turn out to be $O\left(|s-w|^{2}\right)$. The first is estimated using Taylor's formula, the second by the mean value theorem and the third recalling that h is a holomorphic function. As a consequence we obtain $\partial k_{2}(s, w)=O(1)$ for $s \in[x, y]$ and $w \in M$.

Let us see a characterization of the dual space of $\operatorname{lip}(\alpha, X), 0<\alpha<1$. The original idea belongs to de Leew [4].

Lemma 3. Let $\phi \in \operatorname{lip}(\alpha, X)^{*}$. Then there are two regular Borel measures μ and ν, on X and $X \times X$ respectively, such that for any $f \in \operatorname{lip}(\alpha, X)$ we have

$$
\begin{equation*}
\phi(f)=\int_{X} f d \mu+\int_{X \times X} \frac{f(x)-f(y)}{|x-y|^{\alpha}} d \nu(x, y) \tag{8}
\end{equation*}
$$

Proof. Let us consider the space $E=X \cup(X \times X)$ with the sum topology. We define the linear mapping

$$
T: \operatorname{lip}(\alpha, X) \rightarrow C(E), \quad T(f)=\tilde{f}
$$

where $\tilde{f}(x)=f(x)$ if $x \in X$,

$$
\begin{gathered}
\tilde{f}(x, y)=\frac{f(x)-f(y)}{|x-y|^{\alpha}} \text { if } x \neq y \\
\tilde{f}(x, x)=0, \quad x \in X
\end{gathered}
$$

It is clear that T is an isometry. The linear form ϕ can be defined on $T(\operatorname{lip}(\alpha, X))$ and by the Hahn-Banach theorem we can extend it to $C(E)$. From the Riesz representation theorem we infer that there is a regular Borel measure ω on E such that $\phi(f)=\int_{E} \tilde{f} d \omega$. Defining $\mu=\left.\omega\right|_{X}$ and $\nu=\left.\omega\right|_{X \times X}$ we obtain (8).

If $\phi \in \operatorname{lip}(\alpha, X)^{*}$ we denote by ϕ_{1} the distribution of order 1 , with compact support, defined by

$$
\phi_{1}(\psi)=\phi\left(\left.\psi\right|_{X}\right), \quad \psi \in C^{1}(\mathbf{C})
$$

Lemma 4. Let $\phi \in \operatorname{lip}(\alpha, X)^{*}$. Then the transform $\tilde{\phi}_{1}$ of ϕ_{1} (both with respect to k_{1} and k_{2}) is a dm-absolutely continuous measure, with a continuous density function.

Proof. Let μ and ν be the measures of Lemma 3 satisfying (8). If $\psi \in$ $D U^{1}(\mathrm{U})$, then

$$
\begin{align*}
\tilde{\phi}_{1}(\psi)= & \int_{X} \tilde{\psi}(z) d \mu(z)+\int_{X \times X} \frac{\tilde{\psi}(x)-\tilde{\psi}(y)}{|x-y|^{\alpha}} d \nu(x, y) \tag{*}\\
= & \int_{X}\left(\int k(z, w) \psi(w) d m(w)\right) d \mu(z) \\
& +\int_{X \times X}\left(\int \frac{k(x, w)-k(y, w)}{|x-y|^{\alpha}} \psi(w) d m(w)\right) d \nu(x, y)
\end{align*}
$$

According to Lemma 2 we can apply Fubini's Theorem to (*) to obtain

$$
\int \psi(w)\left(\mu^{*}(w)+\nu_{\alpha}^{*}(w)\right) d m(w)
$$

with

$$
\mu^{*}(w)=\int k(z, w) d \mu(z)
$$

and

$$
\nu_{\alpha}^{*}(w)=\int \frac{k(x, w)-k(y, w)}{|x-y|^{\alpha}} d \nu(x, y)
$$

Now we are going to show that μ^{*} and ν_{α}^{*} are continuous functions. Let $w_{0} \in U$ and let $\left(w_{n}\right)$ be a sequence converging to w_{0}. By Lemma 2,

$$
k\left(z, w_{n}\right) \rightarrow k\left(z, w_{0}\right), \quad z \in U
$$

and

$$
\frac{k\left(x, w_{n}\right)-k\left(y, w_{n}\right)}{|x-y|^{\alpha}} \rightarrow \frac{k\left(x, z_{0}\right)-k\left(y, z_{0}\right)}{|x-y|^{\alpha}}, \quad x, y \in X, x \neq y
$$

If $x=y$, both expressions are equal to 0 . Moreover $k\left(z, w_{n}\right)=O(1)$ and

$$
\frac{\left|k\left(x, w_{n}\right)-k\left(y, w_{n}\right)\right|}{|x-y|^{\alpha}}=O\left(|x-y|^{1-\alpha}\right), \quad x, y \in X, n \in N
$$

By the Lebesgue convergence theorem, $\mu^{*}\left(w_{n}\right) \rightarrow \mu^{*}\left(w_{0}\right)$ and $\nu_{\alpha}^{*}\left(w_{n}\right) \rightarrow \nu_{\alpha}^{*}\left(w_{0}\right)$.

4. Proof of Theorem 1

Let us write $B=\left\{f \in \operatorname{lip}(\alpha, X) /\left.f\right|_{Z} \in R^{\alpha}(Z)\right\}$. As $\bar{\partial} g=\bar{\partial}(F \circ g)=0$ on Z we have, as a consequence of a theorem of O'Farrell [8], that $R^{\alpha}(X, g, F \circ g)$ $\subset B$. Let ϕ be a continuous linear functional on $\operatorname{lip}(\alpha, X)$ which is orthogonal to $R_{0}(X, g, F \circ g)$. We must prove that ϕ is orthogonal to B. We consider the distribution ϕ_{1}. By Lemma 4, it follows that

$$
\tilde{\phi}_{1}(\psi)=\int \psi\left(\mu^{*}+\nu_{\alpha}^{*}\right) d m, \quad \psi \in C^{1}(U)
$$

On the other hand, the representation of Lemma 3 gives

$$
\phi_{1}\left(k_{1}(\cdot, w)\right)=\left(\mu^{*}+\nu_{\alpha}^{*}\right)(w), \quad w \in U
$$

If $w \notin X$, then $k_{1}(\cdot, w) \in R_{0}(X, g, F \circ g)$. Therefore $\mu^{*}+\nu_{\alpha}^{*}=0$ on $U-X$. By Lemma 4, $\mu^{*}+\nu_{\alpha}^{*}=0$ on U, so $\phi_{1}=0$ on U. Since ϕ_{1} satisfies

$$
\left|\check{\phi}_{1}(\psi)\right| \leqq c\|\psi\|_{\infty}, \quad \psi \in D^{1}(U), d(\operatorname{supp} \psi, \mathbf{C}-U) \geqq \delta,
$$

$\check{\phi}_{1}$ is a measure with support in X. The same is true of $\hat{\phi}_{1}$ [5]. The hypothesis
of Lemma 1 is satisfied, with $u=F^{\prime} \circ g$, and so

$$
\begin{equation*}
\bar{\partial} \tilde{\phi}_{1}=\bar{\partial} g \cdot\left(F^{\prime \prime} \circ g\right) \cdot \check{\phi}_{1}, \quad \bar{\partial} \check{\phi}_{1}=-\bar{\partial} g \cdot \hat{\phi}_{1} \tag{9}
\end{equation*}
$$

Let $Z_{1}=Z \cup\left\{x \in X / F^{\prime \prime}(g(x))=0\right\}$. By assumption $F^{\prime \prime}$ has finitely many zeros in $g(X)$. Applying the implicit function theorem we obtain that $Z_{1}-Z$ is contained in a finite union of subsets of C^{1}-curves, so that $m\left(Z_{1}-Z\right)=0$. From (9) and the fact that $\phi_{1} \perp R_{0}(X)$ it follows that $\hat{\phi}_{1}=0$ on $\mathbf{C}-Z_{1}$. Since $\hat{\phi}_{1}$ is a $d m$-absolutely continuous measure, we have $\hat{\phi}_{1}=0$ on $\mathbf{C}-Z$ and so ϕ_{1} is orthogonal to $R_{0}(Z)$.

Now let us show that

$$
\begin{equation*}
\left|\phi_{1}(h)\right| \leqq c\|h\|_{\operatorname{lip}(\alpha, Z)}, \quad h \in C^{1}(\mathbf{C}) \tag{10}
\end{equation*}
$$

where $c>0$ does not depend on h.
We need the following property:

$$
\begin{equation*}
\text { If } f \in \operatorname{lip}(\alpha, X) \text { and } f=0 \text { on } Z, \text { then } \phi(f)=0 \tag{11}
\end{equation*}
$$

This means that ϕ depends only on the values of f on Z. When $f \in C^{1}(\mathbf{C})$ and $f=0$ on a neighborhood of Z, (11) holds because supp $\phi_{1} \subset Z$. The general case is proved as follows. We suppose that f has been extended to a function of $\operatorname{lip}(\alpha, X)$ [13, p. 174]. Let K be a compact neighborhood of X. By a result of Sherbert [12] there is a sequence $\left(f_{n}\right)$ such that $f_{n} \in \operatorname{lip}(\alpha, K)$, $f_{n}=0$ on a neighborhood of Z and $f_{n} \rightarrow f$ in $\operatorname{lip}(\alpha, K)$. Considering convolutions of the functions f_{n} with an approximate identity we can also assume that $f_{n} \in C^{1}(\mathbf{C})$. Therefore

$$
\phi(f)=\lim \phi\left(\left.f_{n}\right|_{X}\right)=0,
$$

and (11) holds.
We denote by $E: \operatorname{lip}(\alpha, Z) \rightarrow \operatorname{lip}(\alpha, X)$ the linear continuous extension operator defined in [13, p. 174]. If $h \in C^{1}(\mathbf{C})$, then

$$
\phi_{1}(h)=\phi\left(\left.h\right|_{X}\right)=\phi\left(E\left(\left.h\right|_{Z}\right)\right)
$$

because the functions $\left.h\right|_{X}$ and $E(h \mid Z)$ are equal on Z. It follows that

$$
\left|\phi_{1}(h)\right| \leqq\|\phi\|\|E\|\left\|\left.h\right|_{Z}\right\|_{\operatorname{lip}(\alpha, Z)}=C\left\|\left.h\right|_{Z}\right\|_{\operatorname{lip}(\alpha, Z)},
$$

and so (10) is proved.
Next we claim that ϕ is orthogonal to B. To see this, let $f \in B$ and $h_{n} \in R_{0}(Z)$ such that $\left.f\right|_{Z}=\left.\lim h_{n}\right|_{Z}$. Then by (10) and (11) it follows that

$$
\phi(f)=\phi\left(E\left(\left.f\right|_{z}\right)\right)=\lim \phi\left(E\left(\left.h_{n}\right|_{Z}\right)\right)=0
$$

5. Proof of Theorem 2

(a) Let $\phi \in \operatorname{lip}(\alpha, X)^{*}$. In this case $u=\bar{\partial}(F \circ h)$. Lemma 1 shows that

$$
\bar{\partial} \tilde{\phi}_{1}=\left(\bar{\partial}^{2} F \circ h\right) \cdot \overline{h^{\prime}} \cdot \check{\phi}_{1} \quad \text { and } \quad \bar{\partial} \check{\phi}_{1}=-\overline{h^{\prime}} \cdot \hat{\phi}_{1}
$$

Let $T_{1}=\left\{x \in X / \bar{\partial}^{2} F(h(x)) \overline{h^{\prime}(x)}=0\right\}$. By the hypothesis, we have

$$
R^{\alpha}\left(T_{1}\right)=\operatorname{lip}\left(\alpha, T_{1}\right)
$$

The procedure of $\S 5$ can be repeated now to show that $\hat{\phi}_{1}$ is supported on T_{1} and is orthogonal to $R^{\alpha}\left(T_{1}\right)$. Then (a) follows.
(b) We assume that $R^{\alpha}(X, \bar{h}, F \circ h)=\operatorname{lip}(\alpha, X)$. It is enough to show that $F \circ h \in R^{\alpha}(T, \bar{h})$. First we remark that the integral formula of Proposition 1 of [2] is also true with the following weaker hypothesis: There exists $u \in C^{1}$ and $\bar{\partial} f=u \cdot \bar{\partial} g$.

In our case $\bar{\partial}(F \circ h)=(\bar{\partial} F \circ h) \cdot \bar{\partial} g$ on U. Let ϕ be an element of $\operatorname{lip}(\alpha, T)^{*}$ which is orthogonal to $R^{\alpha}(T, \bar{h})$. An application of the aforesaid formula (for a convenient subset G) gives

$$
\begin{array}{r}
\phi_{1}(F \circ h)=\phi_{1}\left(\frac{1}{2 \pi i} \int_{\partial G} \frac{F(h(z))}{z-w} d z\right)-\phi_{1}\left(\frac{1}{2 \pi i} \int_{\partial G} F(h(z)) \frac{\bar{h}(z)-\bar{h}(w)}{z-w} d z\right) \\
+\check{\phi}_{1}\left(1 / \pi\left(\bar{\partial}^{2} F \circ h\right) \overline{h^{\prime}}\right) .
\end{array}
$$

As in [5] (see [3]) it can be shown that $\check{\phi}_{1}$ is a $d m$-absolutely continuous measure with support on T. Since

$$
\int_{\partial G} \frac{F(h(z))}{z-w} d z \in R_{0}(T)
$$

and

$$
\int_{\partial G} \bar{\partial} F(h(z)) \frac{\bar{h}(z)-\bar{h}(w)}{z-w} d z \in R_{0}(T, \bar{h}),
$$

it follows that $\phi_{1}(F \circ h)=0$. Thus (b) holds.

6. Further results

When dealing with the uniform approximation by functions of

$$
R_{0}\left(X, g_{1}, \ldots, g_{n}\right)
$$

a more precise information can be achieved. Let $R\left(X, g_{1}, \ldots, g_{n}\right)$ denote the
uniform closure of $R_{0}\left(X, g_{1}, \ldots, g_{n}\right)$. To simplify notation we are going to state the following theorem only for $n=2$.

Theorem 3. Let X be a compact subset of \mathbf{C}, and g_{1}, g_{2} two functions of class C^{3} in a neighborhood of X. Then the following assertions are equivalent:
(a) $\quad R\left(X, g_{1}, g_{2}\right)=\left\{f \in C(X) /\left.f\right|_{Z_{1} \cap Z_{2}} \in R\left(Z_{1} \cap Z_{2}\right)\right\}$.
(b) $\dot{X} \subset Z_{1} \cap Z_{2}$.

Lemma 5. Let X be a compact subset of \mathbf{C} and g a function of class C^{2} in a neighborhood of X. Given a measure μ on X, the following conditions are equivalent:
(i) $\mu \in R(X, g)^{\perp}$.
(ii) μ is concentrated on $\stackrel{\circ}{X} \cup Z$ and $\mu \in R(\overline{\dot{X}} \cup Z, g)^{\perp}$.

We omit the proof of Lemma 5. It can be obtained by using the ideas of the proof of Theorem of [2] (see [3]).

Proof of Theorem 3. (b) \Rightarrow (a). Let

$$
B=\left\{f \in C(X) /\left.f\right|_{Z_{1} \cap Z_{2}} \in R\left(Z_{1} \cap Z_{2}\right)\right\}
$$

Since $\bar{\partial} g_{i}=0$ on $Z_{1} \cap Z_{2}$, then $R\left(X, g_{1}, g_{2}\right) \subset B$. Let $\mu \in R\left(X, g_{1}, g_{2}\right)_{\stackrel{\circ}{+}}^{\perp}$ and $f \in B$. We will show that $\int f d \mu=0$. By Lemma $5, \mu$ is supported in $\dot{\bar{X}} \cup Z_{1}$ and $\bar{X} \cup Z_{2}$. Thus (b) implies that μ is supported in $Z_{1} \cap Z_{2}$ and also that $\mu \in R\left(Z_{1} \cap Z_{2}\right)^{\perp}$. Therefore $\int f d \mu=0$.
(a) \Rightarrow (b). We suppose that $\dot{X} \not \subset Z_{1} \cap Z_{2}$. There is an open disc D such that $D \subset \bar{D} \subset \dot{X}$ and, let us say, that $\bar{D} \cap Z_{1}=\varnothing$. If $f \in R\left(X, g_{1}, g_{2}\right)$, then f satisfies (in the distribution sense) the following equation on D :

$$
\bar{\partial}\left(\frac{\bar{\partial} f}{\bar{\partial} g_{1}}\right)=\bar{\partial}\left(\frac{\bar{\partial} g_{2}}{\bar{\partial} g_{1}}\right) \cdot k, \quad \text { with } \bar{\partial} k=0 \text { on } D
$$

Let

$$
A=\left\{z \in D / \bar{\partial}\left(\frac{\bar{\partial} g_{2}}{\bar{\partial} g_{1}}\right)(z)=0\right\}
$$

We distinguish two cases.
(i) $\AA \neq \varnothing$. For every function $f \in R\left(X, g_{1}, g_{2}\right)$, we have

$$
\begin{equation*}
\bar{\partial}\left(\frac{\bar{\partial} f}{\bar{\partial} g_{1}}\right)=0 \quad \text { on } \AA . \tag{12}
\end{equation*}
$$

By choosing a function that vanishes in a neighborhood of $Z_{1} \cap Z_{2}$ and does not satisfy (12), we infer that $B \not \subset R\left(X, g_{1}, g_{2}\right)$.
(ii) $\AA=\varnothing$. There is an open disc $D_{1} \subset D$ such that

$$
\begin{equation*}
\bar{\partial}\left(\frac{1}{\psi} \bar{\partial}\left(\frac{\bar{\partial} f}{\bar{\partial} g_{1}}\right)\right)=0 \quad \text { on } D_{1} \tag{13}
\end{equation*}
$$

where

$$
\psi=\bar{\partial}\left(\frac{\bar{\partial} g_{2}}{\bar{\partial} g_{1}}\right) \quad \text { and } \quad f \in R\left(X, g_{1}, g_{2}\right)
$$

We can always find a function that vanishes in a neighborhood of $Z_{1} \cap Z_{2}$ and does not satisfy (13); thus $B \not \subset R\left(X, g_{1}, g_{2}\right)$.

Remark. We observe that Lemma 5 is true for g only of class C^{1} on X. Therefore $(\mathrm{b}) \Rightarrow(\mathrm{a})$ of Theorem 3 holds when g_{1}, g_{2} are C^{1} on X. The stronger differentiability of g_{1} and g_{2} was only required to prove (a) $\Rightarrow(\mathrm{b})$ in Theorem 3.

Theorem 3 provides a generalization of a theorem by Trent and Wang [17]. Next we present an application of Theorem 3 to a classical problem. Several authors, for example Wermer [18] and Preeskenis [9], have studied the following question: If D is the closed unit disc on \mathbf{C}, for which functions $g \in C(D)$ is the closed algebra generated by z and g equal to $C(D)$? When we consider this problem for another compact X of \mathbf{C}, it is necessary to replace z by $R(X)$, and Theorem 3 provides a solution in the case $\grave{X}=\varnothing$.

Corollary 4. Let X be a compact subset of \mathbf{C} and g a function of class C^{1} in a neighborhood of X. We suppose that $X \subset Z$. Then the closed algebra generated by $R_{0}(X)$ and g is $R(X, g)=\left\{f \in C(X) /\left.f\right|_{Z} \in R(Z)\right\}$.

Notice the similarity with the theorem of [18, p. 9].
Finally, we point out two problems whose solution we do not know.
Problem 1. Characterize the compact subsets X of \mathbf{C} such that

$$
R^{\alpha}(X, \bar{z})=\operatorname{lip}(\alpha, X)
$$

Problem 2. Characterize the compact subsets X of \mathbf{C} such that $R_{0}(X, \bar{z})$ is dense in $D^{1}(X)$ in the $\operatorname{Lip}(1)$ norm (see [5] for the definition of $D^{1}(X)$).

Notice that it is well known when $R_{0}(X)$ is dense in $D^{1}(X)$ [6].

Acknowledgment. The author would like to thank Prof. Joan Verdera for the suggestion of generalizing Corollary 2 to Corollary 1, as well as for other valuable remarks.

References

1. A. Browder, Introduction to function algebras, Benjamin, New York, 1969.
2. J.J. Carmona, A necessary and sufficient condition for uniform approximation by certain rational modules, Proc. Amer. Math. Soc., vol. 86 (1982), 487-490.
3. \qquad , Ph. D. dissertation, Universidad Barcelona, 1982.
4. K. Leeuw, Banach spaces of Lipschitz functions, Studia Math., vol. 21 (1961), pp. 55-66.
5. A. O'Farrell, Annihilators of rational modules, J. Functional Analysis, vol. 19 (1975), pp. 373-389.
6. \qquad , Lip(1) rational approximation, J. London Math. Soc. (2), vol. 11 (1975), pp. 159-164.
7. \qquad , Hausdorff content and rational approximation in fractional Lipschitz norms, Trans. Amer. Math. Soc., vol. 228 (1977), pp. 187-206.
8. \qquad , Rational approximation in Lipschitz norms I, Proc. Royal Irish Academy, vol. 77 (1977), pp. 113-115.
9. K. Preskenis, Approximation by polynomials in z and another function, Proc. Amer. Math. Soc., vol. 68 (1978), pp. 69-74.
10. T. Trent and J. Wang, Uniform approximation by rational modules on nowhere dense sets, Proc. Amer. Math. Soc., vol. 81 (1981), pp. 62-64.
11. \qquad , The uniform closure of rational modules, Bull. London Math. Soc., vol. 13 (1981), pp. 415-420.
12. D. Sherbert, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc., vol. 111 (1964), pp. 240-272.
13. E.M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N.J., 1970.
14. J. Wang, Approximation by rational modules on nowhere dense sets, Pacific J. Math., vol. 80 (1979), pp. 293-295.
15. __, Approximation by rational modules on boundary sets, Pacific J. Math., vol. 92 (1981), pp. 237-239.
16. \qquad , Rational modules and higher order Cauchy transforms, Internat. J. Math. Sci., vol. 4 (1982), pp. 661-665.
17. \qquad , Approximation by rational modules in $\operatorname{Lip}(\alpha)$ norms, Illinois J. Math., vol. 26 (1982), pp. 632-636.
18. J. Wermer, Polynomially convex disks, Math. Ann., vol. 158 (1965), pp. 6-10.

Universitat Autónoma de Barcelona
Barcelona, Spain

