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INDEX OF HECKE OPERATORS
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HAROLD DONNELLY

1. Introduction

Let M be a complete Riemannian manifold. Suppose that the discrete group
F acts isometrically and properly discontinuously on M with compact quotient
M F \ M. Even though M need not be a manifold, the heat equation
method [5] may be used to study the spectral theory of M. Suppose S is a set
of isometries satisfying (2.1). Associated to S is the Hecke operator Ts, and we
will study the asymptotic behavior of its trace on the eigenspaces of the
Laplacian.
Now suppose in addition that M is oriented and that F and S are

orientation preserving. One may define the signature complex of M and
consider the signature, Sign(Ts), of the Hecke operator Ts. We will give an
explicit formula for Sign(Ts) in Theorem 4.1. Our approach is a natural
extension of the technique used in [8] to prove the equivariant signature
theorem. Since M need not be compact, it appears that the original proof of
the equivariant signature theorem by Atiyah and Singer [2] does not generalize
to compute Sign(Ts). In particular, Atiyah and Singer relied upon the repre-
sentation theory of compact groups.

If M G/K is a globally symmetric space, then the Hecke operators
associated to certain sets S of isometries have been studied by several authors
[9], [11], [12], [13]. The most effective technique has been the Selberg trace
formula. Of course, the trace formula can only be used when M admits a
transitive group of isometries, so our results are more general. Furthermore,
even in the case of symmetric spaces, Selberg’s work does not immediately give
an explicit formula for Sign(Ts). To derive our results from the Selberg trace
formula, certain complicated orbital integrals must be simplified. Apparently,
this has not been carried out except in special cases. On the other hand, the
trace formula can give an expression for the individual traces of Ts on each
harmonic piece of the signature complex, Tr/(Ts) and Tr_(Ts), rather than
just the difference

Sign(Ts) Tr+(Ts) Tr_(Ts).
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Unless a suitable vanishing theorem applies, the trace formula has a definite
advantage here.
The results of this paper generalize to the signature complex with coefficients

in a bundle. Using this generalized result, one can deduce the analogous
theorems for the other classical elliptic complexes [1].

Note added in proof There is some overlap of this paper with the recent work
of H. Moscovici [14]. He applies the Selberg trace formula to give an expres-
sion for the index of Hecke operators on compact locally symmetric spaces
F\ GK.

2. Heeke Operators

Let M be a connected manifold and F a group acting smoothly on M with
compact quotient M F \ M. We assume that F acts properly discontinu-
ously on M, meaning that each compact set in M intersects a finite number of
its F-translates. Under these circumstances, one may construct a F-invariant
metric on M, which is necessarily complete [5]. We assume henceforth that M
is endowed with a complete F-invariant metric. If F acts freely, then M is a
Riemannian manifold covered by M. In general, M is a space with singulari-
ties, sometimes called a V-manifold [10].

Suppose r: M M is the projection onto the orbit space of the F-action. A
function f defined on is said to be of class C1(_) if and only if

four Ct(M), the set of times continuously differentiable.functions on M.
Also, one may define a measure on M by using a partition of unity relative to
F. A non-negative function q C(M) satisfying Evrq(,x)= 1, for all
x M, is by definition a partition of unity relative to F. Such q always exist
[5] and we assume that one is chosen. The measure dff on M may be defined
by

f_f( ) d fff ( x f rx ) dx

for any continuous function f C(M). The measure dff is independent of the
choice of partition of unity q.
We proceed to define the Hecke operators. Let S be a set of isometries

satisfying the following properties"
(i) S FS SF. (2.1)
(ii) The orbit space F \ S is a finite set.

Note that S is not assumed to be a group. Suppose a, 1, 2,..., m, are a
set of representatives for the orbits of the F-action on S, so that S U Fai=l

If f is a continuous function on M, then identify f with a F-invariant function
on M. For z M, the Hecke operator Ts is defined by

Tsf(z) f(az). (2.2)
i=1
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This definition is justified by the following elementary lemma:

LEMMA 2.3. Tsf is a F-invariant function which is independent of the choice of
coset representatives ai. Thus Ts maps C(M) to C(M).

Proof (i) If flj -{jaj., j 1, 2,..., m, is another choice of coset repre-
sentatives, then

m

i=1 i=1 i=1

by F-invariance of f. So Ts does not depend upon the choice of coset
representatives.

(ii) Note that for any , F, cti,, 1, 2,..., m, is a set of coset repre-
sentatives for F \ S. So, by (i) of the proof,

m

Tsf(Yz) E f(a,),z) E f(a,z) Tsf(z ).
i=1 i=1

Thus, Tsf is F-invariant.
If M G/K is a globally symmetric space then a subgroup F c G acts

properly discontinuously on M if and only if F is discrete in G [4]. Sets of
isometries S c G satisfying (2.1) occur naturally and the corresponding Hecke
operators Ts have been studied by many authors [9], [11], [12], and [13]. In
some of the most important examples, S is not a group.

3. Asymptotic expansions

Suppose that the group F acts properly discontinuously and isometrically on
the complete Riemannian manifold M with compact quotient M F \ M.
Since F acts isometrically on M, the Laplace operator A is F-invariant. Thus,
A induces an operator on C2(j), the F-invariant functions in C2(M). In
[5], it was shown that A has a unique extension to a self-adjoint unbounded
operator on L2(). The extended operator has pure point spectrum. That
is, there is an orthonormal basis qi of L2(_) consisting of eigenfunctions of
with corresponding eigenvalues i.

If > 0, the bounded operator exp(-t): L(/) - L2(/) is well-defined
by the functional calculus for self-adjoint operators. In fact, exp(-tA) is
represented by a smoothing kernel E(t,x, y). It follows that exp(-tA) is
Hilbert-Schmidt. Using the semigroup property, exp(- (t + s)A)
exp(- tA)exp(--sA), one sees that exp(- tA) is trace class. Suppose E(t, x, y)
is the fundamental solution of the heat equation on M. One has, according to
[5],

(t,x, y) _, E(t,x,,ly). (3.1)
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Here x, y M are identified with their projections to M. The sum converges
uniformly on compact subsets of (0, oe) M x M.
We now consider the Hecke operators. Let S be a set of isometries satisfying

(2.1) and Ts the associated Hecke operator. From the definition (2.2), one
checks that Ts extends to a bounded operator on L2(/) which commutes with
A. In particular, Ts induces linear maps on the eigenspaces of A with
eigenvalue . The trace of the induced_ map Ts,, will be denoted by Tr(Ts,).
The composition Ts_o exp(-tA), of the bounded operator Ts with the trace

class operator exp(-tA) is necessarily trace class. One has

Tr( Tso exp( t)) ]Tr(Ts,) e-t.

where is summed over the distinct eigenvalues of A. On the other hand, using
(3.1) and the definition (2.2) of Ts, it follows that Ts exp(-tA) is represented
by a smoothing kernel &a where

m

(t,x, y) E Y’ E(t, aix,/Y) E E(t, sx, y).
i=1 ,F sS

Here we used the isometry invariance of the heat kernel E and the decomposi-
tion S u ’=xFai. Consequently, one has

where q, is a partition of unity relative to F.
The main goal of this section is to investigate the asymptotic behavior of the

left hand side of (3.2) at $ 0. In preparation, we record the elementary lemma:

LEMMA 3.3. Suppose that C is a compact set with FC M. Then only finitely
many elements s S have a fixed point in C.

Proof Recall that S [,.Jn=llai. If the lemma fails, there are infinitely
many s in a single F-orbit, say Fat, which have a fixed point in C. Reasoning
by contradiction, let sj 7ja be a sequence of distinct elements each having a
fixed point in C. The set D C U arC is compact and D cq 7j:- 1D is non-empty,
for all j. This contradicts the fact that F acts properly discontinuously.
One uses Lemma 3.3 with C equal to the support of q, where q, is a partition

of unity relative to F. Let F be the finite set of distinct elements having a fixed
point in C. It follows from (3.2) and the estimates of [5, p. 491] that

(3.4)
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for some constant C1 > 0. Thus, only those s in F contribute to the asymp-
totic expansion of Tr(Ts exp(-tA)), as $ 0.

Fix some s F. Since s acts isometrically its fixed point set is the disjoint
union of closed connected submanifolds N of dimension n. For each N 2
and z N, the isometry s induces an O(d- n) action A on the fiber of the
normal bundle (TzN) 1 at z. Here d is the dimension of M. The linear
transformation I A is invertible and we denote B (I A)-1. Let us state"

PROPOSITION 3.5.
t$0:

For each fixed s F, there is an asymptotic expansion as

E (4rt) -"/2 E tkf? (s q,z)dzk
N k=0

The bk s, q, z) are compactly supported smooth functions. Moreover,

bk [detBlb’,
where b’ is an O(n) O(d- n) invariant polynomial in the components of B,
the curvature tensor R of M and its covariant derivatives, and q along with its
covariant derivatives.

Proof This result was proved in [7] for M compact and q 1. The general
result follows by a similar argument, using the compact support of q.

It is immediate that one has:

PROPOSITION 3.6. There is an asymptotic expansion as $ O"

Y’ Tr(Ts,,) e-t, (4rt) -a/2 E e/t
/ k=0

where d is the dimension ofM and ek are constants independent of t.

Proof This follows from (3.4) by summing the expansions of Proposition
3.5 over s F.

4. Signature theorem

Suppose that M is a complete oriented Riemannian manifold of even
dimension 2l. Let F be a group of orientation preserving isometries of M
which act properly discontinuously with compact quotient M F \ M. We
denote by d the exterior derivative
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where N(_) are F-invariant /-forms on M. If d* is the adjoint of d with
respect to the induced inner products, then A dd* + d*d is the Hodge
Laplacian. Since M is compact, A has pure point spectrum on the space of
F-invariant forms. In particular, the kernel H*(M, C) of A is finite dimen-
sional.
Now consider the first order operator D d + d*. It is formally self-adjoint

and A- D*D D 2. In particular, the solutions of Du- 0 coincide with
those of Au 0. We introduce an operator r(0)= (fZ-1)p(p-1)+l, O) for
0 AP(.) (R) C, where is the Hodge star operator. Since ’r

2 1, we may
decompose A A+ A- into the + 1 eigenspaces for r. The signature com-
plex is the elliptic complex of F-invariant forms

D
0-oA + A---* O.

Suppose now that S is an orientation preserving set of isometries satisfying
(2.1). If S LJilFai, then define the Hecke operator Ts by

E
i=1

where 0 is a differential form and a’ denotes the pull-back on forms. Clearly,
Ts preserves the decomposition A A+ A- and commutes with A. We
define the signature of the Hecke operator by

Sign( Ts) Tr( TslH+ ) Tr( TslH- ).

Our goal is to give an explicit formula for the signature of the Hecke
operator. The method, via heat equation asymptotics, will be similar to the
proof of the equivariant signature theorem given in [8].

Let s S be an orientation preserving isometry of M. The fixed point set 2
of s is the disjoint union of connected totally geodesic submanifolds N. If N is
any component of 2, we decompose TM[N TN TN +/- into the tangent
and normal bundles. Suppose that A: TN- TN +/- is the endomorphism
induced by the differential of s. The eigenvalues of A are constant and one
may decompose the normal bundle

TN -L= TN-L(-1) TN-L(01) TN-L(O), 0i4:’n’.

Here A acts on TN l (_ 1) as multiplication by -1. The spaces TN - ((R)i) are
even dimensional and A reduces on these to a direct sum of the rotations

cosO sin 0
sin O; cos Oi

This gives TN +/- (0) a natural complex structure.
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One may define various characteristic forms on N associated to the bundles
TN, TN _L (_ 1), and TN +/- (0). These appear in the formula for the signature
of Ts. We let

U ) 1--I x/2
tanh(x/2)

where the Pontriagin forms of N are the elementary symmetric functions in the

x2. Let rn be the dimension of TN +/- (- 1). Since s is orientation preserving, rn
is necessarily even. One may write

2-m/-&’( TN- (- 1))-Xe( TN +/- (- 1)) 1--I tanh(x/2)
J

where the Pontriagin forms of TN +/- (-1) are the elementary symmetric
functions in the xf and the Euler form is the product of the xj.’s. Since
TN - (-1) may not be globally orientable, e(TN +/- (-1)) must be interpreted
as the Euler form relative to some local choice of orientation. Finally, we set

tanh(v 1 0i/2)
/,oi 1-I

x.. + vcz-1J
tanh

2
/

where the elementary symmetric functions of the x’s are the Chern forms of
TN +/- (Oi). Let c(O) be the complex dimension of TN +/- (O).
Suppose q is a partition of unity relative to F. According to Lemma 3.3, the

set of s S having a fixed point in the support of q is a finite set F.
The main result of this paper is:

THEOREM 4.1. For any partition of unity q relative to F,

sign(Ts) f2n-")/2 ,
N

sF N2 ’N

e(TN - (- 1)) 1-I’’ (TN +/- (0i))[ (z)th(z) dz

Here *N is the Hodge star operator relative to a local orientation of TN.
Similarly, e(TN - (-1)) is the Euler form of TN +/- (-1) relative to a local
choice of orientation for TN +/- (-1). These orientations are chosen to be
compatible with the orientation of TM[N.
One uses the heat equation asymptotics to prove Theorem 4.1. The method

is similar to the proof of the equivariant signature theorem given in [8].
However, there is a new technical difficulty which arises.

First of all, Proposition 3.5 may be extended to differential forms and, in a
standard way, one obtains a local expression which integrates to give
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Sign(Ts). Choosing a local orientation for N, may be regarded as a
differential n-form. Moreover, has the following properties:

(i) is an O(n) SO(m) U(cx) U(c) invariant polynomial
n-form in the components of the curvature tensor R of M, the partition of
unity q, and their covariant derivatives. The coefficients of this polynomial
depend rationally upon the eigenvalues of A.

(ii) is invariant under scaling of the metric on M.
(iii) depends linearly upon q and coincides with the integrand of Theorem

4.1 when q is locally equal to one.
To complete the proof of Theorem 4.1, it needs to be shown that the

covariant derivatives of q never contribute to the local formula . This will be
proved in the next section using invariant theory.

5. Invariant theory

Let be an O(n) SO(m) U(cl) U(cs) invariant polynomial
n-form in the components of the curvature tensor R of M, the function q, and
their covariant derivatives. Suppose that depends linearly upon q. We say
that y is of weight k if under the scaling of metrics g, c2g, on M, one has

cky. Thus , is invariant under scaling if and only if , has weight zero.
Classical invariant theory [8] implies that any such ,/ lies in the space

spanned by the elementary monomial invariants,

mon(R,q) Y’RFRv... RFpH, (5.1)
where Fx,..., Fp, H are multi-indices containing both tangential and normal
indices. It is understood that n of the tangential indices are to be alternated,
det may be applied to the normal indices in TN +/- (-1), and the remaining
indices must be contracted pairwise. Only one term, q’H, occurs since
depends linearly upon
We analyze the elementary monomial invariants in a series of lemmas:

LMM, 5.2. The weight of an elementary monomial invariant mon(R) is

2p + n ,fi h, where fi is the total number of indices in F and h is the total
number of indices in H.

Proof Similar to the proof of Lemma 5.2 in [8, p. 8]. Note that q is
invariant under scaling of the metric.

Suppose eR denotes the total number of covariant derivatives in the R’s.
Then f 4p + eR. Thus one obtains the formula

n weight(mon(R)) + 2p + en + h.

Before proceeding further, we recall some elementary identities:

LEMMA 5.3. (i) qij qi-
(ii) Rj. 0, Ri..r 0,
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where the bow denotes alternation.
(iii) R ijkl Rjikl, R ijkt R ijlk.

The identities 5.3 (ii), (iii) imply that for the tensors R F,. we may alternate
over at most two of the first five indices, else mon(R) 0. According to 5.3 (i),
we may alternative over at most one of the first two indices in Cn. Thus, as n is
the total number of alternations in the R’s one has n < 2p + e + h, with
strict inequality if eR > 0 or if h > 1. However,

2p + e + h n weight(mon(R)).
We deduce:

LEMMA 5.4. If weight(mon(R)) > 0, then weight(mon(R)) 0, e 0,
and h < 1.
The total number of indices in mon(R) is even since m and n are both even

and contractions occur in pairs. If e 0 and h < 1, this forces h 0. So one
has"

LEMMA 5.5. If weight(mon(R)) > 0, then eR h weight(mon(R))= 0.
In particular, if weight(mon(R)) 0 then h 0. This fact is precisely what

is needed to finish the proof of Theorem 4.1. Its proof is now complete.
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