ILLINOIS JOURNAL OF MATHEMATICS
Volume 29, Number 4, Winter 1985

INNER PRODUCTS ON A GREEN RING FOR FINITE
GROUPS WITH A CYCLIC P-SYLOW SUBGROUP

BY
I. REITEN AND K.W. ROGGENKAMP

Introduction

Let G be a finite group with a cyclic p-Sylow subgroup and let R be an
unramified extension of the p-adic integers, for some prime number p. Denote
by p the radical of R and by K its field of quotients. Then L will be either R
or R/p = k. In addition we assume k to be a splitting field for G. (This is a
technical assumption which is only used in Lemma 1.2 to guarantee that the
projectives in a minimal projective resolution of R over RG are indecompos-
able. It is superfluous when L = k (see [10]), and if the p-Sylow subgroup has
order p [6], [14].) Let ;;M° be the category of L-free finitely generated left
LG-modules, and %, (G) the Green ring of the LG-modules in ;;M°, that is,
the elements in A, (G) are generated by the isomorphism classes of modules
in,; ;M°. Addition is induced from the direct sum and multiplication from the
tensor product over L. We often do not distinguish carefully between the
modules in ;;M° and the objects in %, (G).

Denote by L, the trivial LG-module, and consider

‘@LO: 2 Q020 s 20> L0,

a minimal projective resolution of L,. We note that if L = R and the p-Sylow
subgroup of G has order p, then all nonprojective indecomposable R-free
RG-modules in the principal block occur as syzygies in Py [6], [14]. Let
9% %(G) be the subring of %A, (G) generated by the finitely generated projective
LG-modules and the syzygies in &, . If @, is such a syzygy, then £, ®,%,
gives a projective resolution of £,, so that Q. ®,§; decomposes into a direct
sum of a projective and a syzygy module of §;, which is also a syzygy of L.
A% (G) denotes the ideal in AY(G) generated by the finitely generated projec-
tive modules.

In this note we study a bilinear form [ , ]on %%(G), and we show that
this form is nondegenerate unless L = R and the p-Sylow subgroup of G has
order 2. To prove this, denoting by Q the rational numbers, we consider the
associated ring %9(G) = Q ®,%9(G) with corresponding ideal 9} (G) and
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INNER PRODUCTS ON A GREEN RING 641

define a related bilinear form ( , ) on the quotient A(G) =
A (G)/AL(G).

The bilinear forms we consider are described as follows.

For M, N in ,;M°, denote by P(M, N) the projective homomorphisms,
that is, the ¢ € Hom (M, N) such that there exists a commutative diagram

/ P\
with P projective. It was shown in [4] using almost split sequences that [ , ]
= dim, P( , ) is a symmetric nondegenerate bilinear form on % ,(G), and
there is a generalization to symmetric algebras in [3]. This is the form we
consider when L = k. If X is indecomposable and in %?(G), then the dual X
of X as constructed in [4] using almost split sequences does not in general lie in

A9(G), so the result for A,(G) can not be applied. If L = R we define the
form[ , ]by

[M,N] = dim,(P(M,N) + pHomy;(M,N))/pHomy;(M,N),

for M, N in p;M°. As for L = k [4], we show that [M, N] is the number of
times Q,, the projective cover of the trivial module R, occurs as a summand
in a direct sum decomposition of Hom z(M, N). We reduce the problem of
showing that [ , ] is nondegenerate on A%(G) (with the exceptions men-
tioned before), to the corresponding problem for %A(G).

Let P,,..., P, be the nonisomorphic indecomposable projective kG-mod-
ules. Since the Cartan matrix

C = (¢;;), ;. j<.» Where ¢;; = dim, Hom, (P, P,),

is known to have nonzero determinant, there is a dual basis { Pt,..., Pt} o
{P,,...,P,} in A}(G) with respect to [ , ]. For X,Y in AY(G) we define

yy =16¥]- L (2. ¥][x 22,

Then ( , Y vanishes on %.(G), and hence it induces a bilinear form

( , ) on AY(G). We also consider ( , ) as a form on the subgroup
A2(G) of AY(G) generated by the indecomposable nonprojective modules. We
prove that ( , ) is nondegenerate on %(G).

Two algebras B and B’ are said to be stably equivalent if the module
categories modulo projectives are equivalent categories. The form [ , ]is not
invariant under stable equivalence. We can, however, prove along the way that
the form ( , ) onAY(G) is invariant under stable equivalence. We found
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this fact, which is of interest in itself, surprising since ( , ) is defined
entirely in terms of projective homomorphisms.

The proofs will be carried out so that they apply to blocks with a cyclic
defect group and k, replaced by a suitably chosen irreducible representation.
We hope that our results can be used to get orthogonality relations like in [4],
[16].

The organization of the paper is as follows. In Section 1 we reduce the case
L = R to the case L =k, and we show that ( , ) being nondegenerate

on A2(G) implies that [ , ] is nondegenerate on A(G) . In Section 2 we
show that ( , ) is invariant under stable equivalence and prove that it is

nondegenerate on A{(G). In Section 3 we give some examples, in particular
showing that our results on invariance under stable equivalence do not have an
obvious generalization. In Section 4 we consider a Brauer tree T and show that
there is a Backstrom order A such that A/pA = S is associated with the
Brauer tree 7, and the indecomposable A-lattices reduce modulo p exactly to
the indecomposables occurring as syzygies in a minimal projective resolution of
a simple module corresponding to an edge having one vertex which is a
nonexceptional end point of the tree. Alternatively, we could prove the results
on the forms working with this A, but this turned out not to be necessary. We
include the construction since it seems interesting in itself, and may be thought
of as an analogue of the result that for every Brauer tree there is some
associated symmetric algebra [8] [9].

We would like to thank M. Auslander and A. Wiedemann for valuable
discussions on some of the questions involved.

1. Connection between nondegeneracy of two forms

In this section we reduce the problem for orders and for algebras to a
common setting. Then we show that if ( , ) is nondegenerate on %9(G),
then[ , ]is nondegenerate on A(G).

Let R and K be as before and A an R-order in the semisimple K-algebra
A. We write S = A/pA, and let[ , ], denote our form on ,M° [ , Ig
the form on (M ?, as defined in the introduction for RG and kG. The following
fact was pointed out to us by M. Auslander.

LeEMMA 1.1. If A is a Gorenstein order, then for M, N in ,M°,

[M,N],=[M/pM,N/pN]s.

Proof. We recall that A is said to be a Gorenstein order provided A is an
injective object in ,M°.
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Reduction modulo p induces an R-linear map
p:Hom,(M,N) - Homg¢(M/pM,N/pN).

If ¢ € P,(M, N), then clearly p(¢) € Po(M/pM,N/pN), so there is an
induced map p’:

P,(M,N) - Ps(M/pM,N/pN).

If M is projective, then p is surjective, and dually, if N is an injective object
in ,M°, then p is surjective. Since A is a Gorenstein order, p is surjective
when N is projective. This implies that p’ is surjective. For given a factoriza-
tion

¢
M/pM >N/bN,
where P is projective in ¢M°, there is a projective A-module P with P/pP = P,

and by the above & and B can be lifted to « € P,(M,P)and B € P,(P,N).
Hence Ba lifts ¢. But then the commutative diagram

0 — pHom,(M, N) —» Hom,(M, N) > Homg(M/pM,N/pN) - 0
i) i) ” i)
0 - Kerp’ » P,(M,N) - P{(M/pM,N/pN) — 0
shows that Kerp’ = P,(M, N) N p Hom,(M, N), and hence

Pg(M/pM,N/pN) = P\(M,N)/(P,(M,N) N pHom,(M, N))
= (P,(M,N) + pHom,(M,N))/pHom,(M,N).

This finishes the proof of the lemma.
LEMMA 1.2. With the notation of the introduction,
R/b ®rPr, =Py,
in particular,
AR(G) = AR(G), AR(G) = AL(G),

unless p = 2 and the 2-Sylow subgroup of G has order 2.
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Proof. For an R-free RG-module X we write X = X/p X. Since
X/rad X = X/rad X,

X has a simple top if and only if the same holds for X. Since the p-Sylow
subgroup of G is cyclic, it follows from [5] that all syzygies of R, have a
simple top. Since R, = k, it follows that R/p ® rZPR, 1s a minimal projective
resolution of k.

_ Let {Q,;} be the syzygies in P, . We claim that @, =, if and only if
Q; = Q,, unless p = 2 and the 2-Sylow subgroup of G has order 2. To see this,
let P be a p-Sylow subgroup of G and N the normalizer of P in G. Unless
p = 2 and P has order 2, the RP-modules R, RP and the augmentation ideal
I,(P) satisfy the hypothesis of [11, Theorem 1]. Since a syzygy in an RN-
minimal resolution of R is a direct summand of one of the induced modules
RN ®zp,R,, RN or RN ®ppIz(P), the result follows for N. Using the first
part of the proof we can pass from N to G with Green correspondence.

To complete the proof we use that Green correspondence from N to G
commutes with tensor products and that for N the result follows from [11,
Theorem 2].

We note that Lemma 1.2 reduces for normal P with more than two elements
to [12, Theorem 5]. Observe also that the result is definitely false for p = 2 and
P of order 2.

We have the following consequence of Lemmas 1.1 and 1.2.

PROPOSITION 1.3.  Let the notation be as before and assume that the p-Sylow
subgroup P of G is not of order 2. Then {( , ) is nondegenerate on A%(G) if
and only if it is nondegenerate on A} (G) .

As for L = k [4], we have the following description of the form [ , ] for
MO
RG

PROPOSITION 1.4. For M, N in gcM 0 [M, N] is the number of times the
projective cover P, of the trivial module L, occurs as a summand in a direct sum
decomposition of Hom x(M, N).

Proof. The corresponding result with R replaced by k was proved in [4].
Since RG is a Gorenstein order, we want to use Lemma 1.1 to reduce to this
case. If P{*|Hom g(M, N), then clearly

(Py/pPy)Hom, (M/pM,N/pN),

and P,/pP, = P, is the projective cover of the trivial module k. Conversely,
assume that

PHom,(M/pM,N/pN) =Hom (M, N)
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and let Hom z(M, N) = X. We then have maps #: X - P, and i:P, — X such
that #i = & = &2 By the proof of Lemma 1.1, 7 can be lifted to 7: X - P,
and i to i: P, > X. Then 7i: X > P, — X is an idempotent modulo p, and
hence = is surjective, so that P, is a summand of X = Homz(M, N).

We now show that it is sufficient for our problem to show that {( , ) is

nondegenerate on AL(G) , as a consequence of the following more general
result.

PROPOSITION 1.5. Let S be a k-algebra where all simples have k as endomor-
phism ring, whose Cartan matrix has nonzero determinant and where [ , | is
symmetric. Let @ be an additive subcategory of ¢M° containing the projectives,
N(2D) the free abelian group having the isomorphism classes of indecomposable
modules in 2 as basis. If the form ( , ) is nondegenerate on
A (D)/ANS)(where A(S) is generated by the projectives), then | , ] is
nondegenerate on N(D).

Proof. Write X in 9(2) as X = X¢_,a;P, + L!_,b;M,, where the M, are
the indecomposable nonprojective objects in & and the a, and b, are in Q.
Assume that [ X, Y] =0 for all Y in A(2). Consider

<X’Y> = [X’Y] - Z [X’ Pil][PiaY]-
i=1
We must then have that (X,Y) = 0. If P is indecomposable projective, then
(P,Y) = 0. Hence we get that (¥!_,b,M,,Y) = 0 for all Y in %(2)/A'(S).
Since ( , ) is assumed to be nondegenerate, we must have that all b, are
zero. Since [ , ]is nondegenerate on A(S), we conclude that also all the a;

are zero. Since [ , ] is symmetric, this shows that[ , ]is nondegenerate on
A(2) and hence on A (D).

2. Nondegeneracy of forms for Brauer trees

Let k& be a field, T a Brauer tree with e edges and multiplicity m at the
exceptional vertex, and S a corresponding k-algebra. For example the blocks
of group algebras with cyclic defect group are given by a Brauer tree when k is
a splitting field for the group [8], [9]. (See [10] for arbitrary k.) The edges are in
one-one correspondence with the indecomposable projective S-modules
P, ..., P,. Consider an edge having a vertex which is a nonexceptional end
point of the tree and the associated projective module Q. Then there is an
exact sequence

08>0 12 20, 2>0,>5~0,

where S, is simple, all Q, are indecomposable projective, and the resolution is
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obtained by walking around the tree T [1], [S]. Denote by A(S) the free
abelian group whose elements are the isomorphism classes of finitely generated
modules, by A°(S) the subgroup generated by the syzygy modules 'S,
0 < i < 2e, and the indecomposable projectives and by A!(S) the subgroup
generated by the indecomposable projectives.

Let[ , Jon %°%S)and( , )on %°S)/%!(S) be the bilinear forms as
defined before, where we use the fact that the Cartan matrix for S has nonzero
determinant. We find a more suitable expression for ( , ), enabling us to
show that it is nondegenerate on %°(S)/%(S). Along the way we show the
curious fact that ( , ) is invariant under stable equivalence.

Let T},...,T,,, denote the vertices of the Brauer tree T and assume for all
the lemmas that T is not

Then the modules Q'S,, 0 < i < 2e, are pairwise nonisomorphic, and we can
think of them as belonging to exactly one of these vertices in the following
way, which has to do with how the resolution is obtained by walking around
the tree. Let S, belong to the end point we start with. We associate Q'S with
the other vertex of this edge. Q2S, is placed at the other vertex of the edge
of the projective cover of QS,, and so on. For M = QS we define sig(M) =
(—1)". If M belongs to the vertex T}, we define sig T, = sig M. This is clearly
well defined since T is a tree.

We have the following description of the modules belonging to a given
vertex in the above sense.

LEMMA 2.1. The indecomposable modules belonging to a given vertex T, are
the following: For each edge E with T, as a vertex, take the uniserial module
corresponding to winding around T, m, times, starting with E and ending with the
edge preceding E, where the composition factors are given from top to bottom.

Here m; is m at the exceptional vertex and 1 otherwise.

Proof. Assume some 'S, at T; has this form. Let E be the edge corre-
sponding to the projective cover of 2'S,. From the structure of indecompos-
able projectives Q/*1S, is then of the desired form. It is associated with the
other vertex of E, and the structure as uniserial module is given by starting
with the edge following E. Since S, itself has the desired form, these considera-
tions prove the lemma.

The values [P, M] and [M, N], for M and N indecomposable in 2°(S),
depend heavily on the vertex to which the modules belong.
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LEMMA 2.2. Let M and N be syzygies of S,.

(@) [P, P)ism;if P, %P, have T, as a common vertex, is max (m; + 1,
m;+1) if P, =P, and T, and T; are the corresponding vertices, and is 0
otherwise.

(b) [P, M]=[M,P] is equal to m; if M belongs to a vertex T, of the edge
corresponding to P, and is O otherwise.

() [M,Nlism,—YifM =N, ism,if M N, but M and N belong to the
same vertex T,, and is O otherwise.

Proof. (a) This follows directly from the description of the indecompos-
able projectives, since [P,, P,] equals the number of times P/t P, where v is
the radical of S, occurs as a composition factor in P,.

(b) This follows similarly, by counting composition factors.

(c) If M and N belong to the same vertex T}, then M/t M occurs m; times
as a composition factor in N. From the description of M and N given in
Lemma 2.1 it follows that each map from M to N which is not an isomor-
phism must factor through a projective module.

Let M and N belong to different vertices. If there is no edge connecting
these vertices, then M and N have no common composition factors, so that
there are no nonzero maps from M to N. If there is an edge connecting the
vertices, M and N have one composition factor in common. But it is easy to
see that any corresponding nonzero map can not factor through a projective
module.

We shall need the following matrices associated with a Brauer tree, in
addition to the Cartan matrix. The (e + 1,e) matrix D = (d;)),1 <i<e+
1,1 <j < e, is defined as follows:

{m,. if T, is a vertex of the edge corresponding to P,.
ij

0 otherwise.

If foreachi,1 < i < e + 1, we choose a module {2, at T;, we have d;; [Pj,Qi].
The matrix D = (d ) is deﬁned by

_ { 1 if T; is a vertex of the edge corresponding to P,
Y 0 otherw1$e.

There is the following relationship with the Cartan matrix C.
LEmMa 2.3. C = D'D.

Proof We have C = (c,;), where c;; is m,, if P; ¢ P, have a common vertex
T,, is max (m,+ 1,m, + 1) if P, = P has vertices T, and T,, and is 0
otherwise. So clearly Z"“d d,

iv*iu
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The next lemma provides an essential step in our proof.

LEMMA 2.4.

¢ RN o ) m
igl[Pi,Qu][Qv,Pi ] =myg,, 51gTus1gTvme 1

Proof. Let X = (X,,)1 <, »<c+1 D€ the (e + 1,e + 1) matrix defined by

e

= Z [Piagu][ﬂw Pil] .

i=1
Let C™' = (&,,). We then have

e

- Lipe 12 &, [9. B].

Since [P,,Q,] = d,, and [2,, P;] = d,, this shows that X = DC™'D".
Define the (e + 1,e + 1) matrix ¥ = (y,,)1 <y v<es1 DY

Yao = 7 (8,,(me + 1)m, — sigT,sigT,).

We want to show that X = Y. To do this we first show that YD = D, as we
obviously have XD = D. For this, we have to show X¢*1y,.d,, = d,,. Let v be
fixed, and consider the corresponding projective module P,. Let 7, and 7, be
the vertices of the edge corresponding to P,. We clearly have sigl, = —sigT,..
If u +# vy, v,, we have

e+1

Z yui“jiv =
i=1

e + 1 (—sigTusigTv1 - sigTusigTvz) =0,

and in this case also 4, = 0. If u = v, we have

e+1
21 Yoriip = My + ———— (—sigT,sigT, — sigT,sigT,)
i
1
=d

The calculation for u = v, is the same, so that we have YD = D.

Interpreting X and Y as maps from an (e + 1)-dimensional rational vector
space V' to itself relative to the natural basis n;,...,n,,;, we next want to
prove that Ker X = KerY.
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D and~ D haye rank e since C = D”D. X has rank e since X = DC~'D".
Since XD = YD, we have rank Y > rank X = e. Since

. 1
ry= (mg]};j)l 1
<j<e+

is in Ker D, hence in Ker X, we need to show that r; is in Ker Y. We have

(rOY)j=j2::11 mlisigT,.(Sijmi— y— 1s1gT51gT)
e+1 m 1
=sig7}—- Z gT/me+ r_n‘
i= o
= sig]}(l - ; ;)
: m
- sig]}(l a me+ g —m—)
= 0.

Hence we conclude that Ker X = KerY.

Since D has rank e, KerD has dimension 1. Clearly the vector
($18T) < jc sy I8 in KerD. Let y, = n,(X — Y). Since we have XD = D =
YD, then y,D = 0, hence y, = (a(i)sigTj), < ;< ..1- Then we have

X=7Y+(a(i )51gT)

1<i,j<e+1°
Since C is a symmetric matrix, X and Y are symmetric matrices. Hence
a(i)sigT; = a(j)sig(T;),
so that a(i) = asigT;. This shows that
X = Y + a(SigT}SigY})lsi,jse+l‘
We now have
0 = rpa(sigT;sigT))
e+1 1

-21 —osigTasigTsig T,
i= i

e+1 1
( > ;)aSIgY},

i=1 i

Il

so that a = 0, and hence X = Y. This finishes the proof of the lemma.
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We now have the following expression for our form.

PROPOSITION 2.5. Let S be a k-algebra given by a Brauer tree T different
from

If M and N are indecomposable in A°(S), then

(M,N)= =8, v+ +1s1gM51gN
Proof. We have shown that
Z[Pi’N][MaPil]=61jm1_ +ISIgM51gN
i=1

if M belongs to 7, and N belongs to 7. The result then follows from Lemma
2.2(c).

We have the following consequence.

PROPOSITION 2.6. If T is a Brauer tree and S an associated k-algebra, then
{ , ) is nondegenerate on A°(S)/A(S).

Proof. If T is
1 1

T

there is only one indecomposable nonprojective module in A°(S), and it is
easy to see that ( , ) is nondegenerate on A°(S)/A'(S). For T otherwise,
we arrange the 2e indecomposable nonprojectives in %°(S) such that sig is

+1 for the first e ones and —1 for the others, and get the following associated
matrix by using Proposition 2.5:

1
1 1 1 1 0
m 1 1 -1 -1] _
me+1]| —1 -1 1 1 0
-1 -1 1 1 1
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By elementary operations this is reduced to:

-1

2m
me + 1

Since we have assumed that (e, m) # (1, 1), the determinant is not zero.
We get the following main result by combining Propositions 1.5 and 2.6.

THEOREM 2.7. Let T be a Brauer tree and S an associated k-algebra. Then
[ , 1 is nondegenerate on A°(S).

We end this section by pointing out the relationship with stable equivalence.
Let S be a k-algebra over an algebraically closed field k given by a Brauer tree
T. We recall that the indecomposable nonprojective objects M in A°(S) are
uniquely determined by B(M) < 1, where (M) denotes the number of
nonprojective indecomposable summands in the middle term L of an almost
split sequence 0 - N - L - M — 0 [13]. Since B is an invariant of stable
equivalence [2], a correspondence is induced between the nonprojective inde-
composables in A°(S) and A°(S’) when S and S’ are stably equivalent
k-algebras given by Brauer trees. Now S and S’ are known to be stably
equivalent if and only if e = ¢’ and m = m’, where e’ is the number of
simples for S’ and m’ the multiplicity of the exceptional vertex [7]. In
particular, any k-algebra given by a Brauer tree is stably equivalent to a
k-algebra given by a star with the exceptional vertex in the middle, that is, to a
Nakayama algebra. Combining with Proposition 2.5 we therefore have the
following.

THEOREM 2.8. Let S and S’ be stably equivalent algebras over an algebrai-
cally closed field k, given by Brauer trees. The stable equivalence induces an
isomorphism A°(S)/A(S) - A°(S")/A(S"), and the isomorphism commutes
with { , ).

3. Examples

Let k be an algebraically closed field and S and S’ stably equivalent
k-algebras given by Brauer trees. In Section 2 we showed that the form {( , )
is invariant under stable equivalence when restricted to the additive subcate-
gory generated by a special Q-orbit of indecomposable modules. In the proof
we used strongly properties of this Q-orbit. We show here that the result is not
necessarily true for any Q-orbit, in particular, it does not necessarily hold for
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the whole module category. We also show that the form [ , ] being nonde-

generate may fail on arbitrary Q-orbits by studying the situation for Nakayama
algebras.

Let T be the Brauer tree

- 2.

(It should be noted that T is the Brauer tree of the principal 7-block of PSL
(2.7).) Then the Cartan matrix C, of an associated algebra is

2 1 0
1 2 1],
0 1 3
so that
5 =3 1
Crl=1/7| -3 6 -2]1.
1 -2 3

We then have
P*t=1/7(5P, — 3P, + P;), P,>=1/7(—3P, + 6P, — 2P;),
and
P=1/7(P, — 2P, + Py),
where P,, P,, P, are the indecomposable projectives corresponding to the

edges, from left to right. We have a stable equivalence with an algebra given by
the tree T,
AN V%

2,
since e = 3 in both cases, and the m, are the same. Here we have

3 2 2
2 3 24,

2 2 3

Cp =

so that
5 -2 =2
Cl=1/7| -2 5 =2
-2 =2 5

If Q,, Q,, Q, denote the indecomposable projectives, given in anticlockwise
order, we have

Q1l= 1/7(5Q1 -20, - 2Q3)’ Q2l= 1/7(—2Q1 +50, — 2Q3)
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and
Q3J'= 1/7(_2Q1 - 20, + 5Q3)-

Let P,/tP,= U, and Q,/rQ; = V.. It is not hard to see that if F is a stable
equivalence between algebras given by T’ and 7, and we also denote by F the
induced correspondence between the indecomposable modules, then we can
have the following:

U
F(V))=U,, F(QV,)=QU, = (Uj)

U.
F(V,) = F(QZVI) = Q°F(V,) = (U3)’
2
U U.
V; 1 3
F| ! =tP,= N / ,
V2 U,

Vs
12} v

1
v, ’(V) =0-1/7(52-2-22-22+5-22)=—-1/7,
v, 2
Vl

U, U, U, Uy
SN /7 > N/

U Uy 2
=1-1/71(5-3+2-1-346-2-2+1-2+2-1)
=3/7.

Hence ( , ) is not invariant under stable equivalence on the -orbit of

@l
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Now let A be an algebra given by a star with the exceptional vertex in the
middle, that is, A is a basic symmetric Nakayama algebra. Let P,,..., P, be
the indecomposable projective modules and U,,...,U, the corresponding
simple modules. Let C be an indecomposable module and % the additive
category generated by the P, and the syzygies Q'C of C. We can clearly assume
that /(C) < (me + 1)/2, where [/ denotes length, and we write /(C) = te + a,
where t <m/2,1 < a < e. Let A4, be the indecomposable A-module of length
te + o with 4,/rA, = U, and B, the indecomposable A-module of length
(m—1t—1)e+ (e+1~— a),with B,/rB;, = U, Then the indecomposable ob-
jects of € are the P, A,= B, if e and m are odd and ¢t = (m — 1)/2,
a = (e + 1)/2, and the P,, A,, B, otherwise, 1 < i < e. Using the structure of
indecomposable modules over Nakayama algebras and that length considera-
tions determine whether a map factors through a projective module, we get the
following values for [ , I

[4,,4,] =0 foralli,

_ +1 fori=j
[P"’P'] B {mm fori + j,

_ _fe+1 dfielj,j+a+l]
[P 4;] = [4,. P] {t otherwise.

Furthermore, if A; # B;, we have

[Pi,Bj]={m_t forzEO[J,j+e——a],
m—t—1 otherwise

[Bi.4,] =0=[4,,B] foralli,j,
[B.B|=m—-2t+x+y,

where x =0if j€[i+ a, i + e]and x = —1 otherwise, y = 01if j € [i + 1,
i+ (e —a)] and y= —1 otherwise, and all additions are considered
modulo e.

Denoting the P, by 2, the 4, by &/ and the B; by %, we get the following
matrices associated with the form in the two cases

My | M
M= | —= ,
VAR

AW AN

My=\|\ M2 #3] 0
ME| 0 0
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where .# 7 denotes the matrix relative to x and y. Hence det M, # 0 if and
only if det # % + 0 and det M, # 0 if and only if det # % + 0 and det # % + 0.
We see that if a = e, then

o _ t+1 ¢r+1
3 (z+1 t+1)’

so that det .# % = 0. So in this case the form is degenerate.

The case we have studied before is t = 0, « = 1. Assume more generally that
a=1and ¢t {(m/2. Then
t+1 t s t

o _ :
t e t+1

has determinant te + 1 # 0 so that det M; # 0 when ¢ = (m — 1)/2 and
a=1=(e+ 1)/2. If

(t,e) # ((m—-1)/2,1)

then
(m =21 = 1)(m - 21) (m - 21)
ago|(mmWmm2=D) 20
(m—20)(m-21)  (m-2-1)

has determinant

(m—2t—1) +(e—1)(m - 21) if e isodd
—(2m—4t—-1) —(e—2)(m —2t) if eiseven.

Therefore det # 2 is not zero.

4. Construction of Backstrom orders associated with a given Brauer tree

Let T unequal to

be a Brauer tree with e edges and e + 1 vertices, and let m be the multiplicity
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of the exceptional vertex. Let kK = R/p with R and p as before. We know that
there is some k-algebra S where the structure of the indecomposable projec-
tives is given by the Brauer tree 7. We give an analogue of this result for
orders, in showing that there is some R-order A associated with 7" in a natural
way. Even though this turned out not to be needed to prove our main result,
we include the construction of this order, since it should be of interest in itself.

When S denotes a k-algebra given by T, we let S, be a simple S-module
corresponding to an edge, one of whose vertices is a nonexceptional end point
of the tree. Let

ﬁs*o: v 20 2 201200285~ 0

be a minimal projective resolution of S,. As we have mentioned, the syzygy
modules S, = Q,,2,,...2,,_, are all indecomposable and nonisomorphic.
The edges to which the Q belong only depend on the edge of S,,.

We recall that an R-order A is said to be a Backstrom order provided there
is a hereditary R-order A with rad A = rad I". The representation theory of
Backstrom orders is well understood [15], and for details on Backstrom orders
we refer to [14].

We have the following main result of this section.

THEOREM 4.1. With the above notation there exists a Bickstrom R-order A
satisfying:

(1) A/bA =S, where S is given by the tree T.

(i) A has exactly 3e nonisomorphic indecomposable R-free modules, which
are the syzygies of one irreducible lattice.

(iii) If M € \M° is indecomposable, then so is M/pM. In particular, there
exists S, € \M° with S,/pS, and the minimal projective resolution of S, reduces
to a minimal projective resolution of S, modulo p.

Proof. We first define a map
H:{ @ ocicoe = {1,...,e+ 1)

where {1,...,e + 1} represent the vertices of 7. The minimal projective
resolution .@S of S, is constructed by walking around the Brauer tree. So as
one walks from Q, , to Q one passes exactly one vertex which we define to be
A (Q,). Then card(o ~1(j)) = n(j) is the number of edges meeting in j. If j
is not the exceptional vertex, we associate with j the following hereditary order

R R P
p
R R R R/ n(i)xn(p)
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and we label the indecomposable I'; — lattices in the following way:

p

i—1

p . .
Q= R 1 <i<n(j).

R n(j)x1

Then radr(Q; ;) = Q, ;.+1, Where i + 1 is taken modulo n(j). For the excep-
tional vertex j, let R with radical § be the totally ramified extension of R of
degree m, let

R »p b
R :

rjo = -b‘ . . . N
R p

R - R | nijoyxnGio)

and label the indecomposable I’jo-lattices as above. Let ' = l_[}’: 11I‘j We note
that for each indecomposable projective I-module P we have P/rad P =
R/p = k. Before we give the rather technical definition of our Backstrom order

T, we illustrate the situation by means of two examples.

Example 1. Let T be a star with the exceptional vertex in the centre:

The exceptional vertex has multiplicity m and gets the number e + 1, and i is
the other end point of the edge corresponding to the indecomposable projec-
tive module P;,1 < i < e. Then we have

R

o
.=

I =TIR, x| " . , R,=R.
i=1 - R

ot
ot

eXe
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In I'/radI" we consider the e-dimensional k-algebra
ki X - Xk,, k,=k,
where k; is diagonally embedded in
Qj,x/fad 0.9 Qe+1,//rad Q.41

Then A is the pullback of the diagram

A T
e+1 n(j)
ky X -+ Xk, l_[ HQj,i/rade,i'
j=1i=1

Example 2. [14]. The Mathiew group M,;, at p = 11 has for the prin-
cipal block the Brauer tree

where 5 is the exceptional vertex and has multiplicity 2.

Hence
R p b »p
F=Rx(R p)>< R R b p X R X R X R.
R R R R R »p
R R R R

We embed k; X --- X kg into I'/rad I in the following way, denoting
Qi,j/radI‘Qi,j
by -Q,., ,» Where each map is a diagonal embedding:

ki = Q118 0y, ky—>0Q,,8 63,1,
ky = 03,9041, ks> 0330051, ks 03,9 Q-
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Again, A is the pullback in the diagram
A > T

\ l
ky X -+ Xks———T' /radT,

where the embedding k; X --- Xk, is induced from the above.
In both examples it is not hard to see that the claimed statements are true.
We now want to define A in general. We label the vertices and edges, with
the associated projectives, as we meet them on our walk around the tree,

starting with vertex 1 corresponding to S,. We give an inductive definition of
the embedding

e
[Tk, - T/radT, k,=k.
i=1

Corresponding to the edge 1 associated with P, we have the diagonal embed-
ding k, = Q;,/radQ;; ® Q,,/radQ, ;. Assume that we have embedded
k;, i <iy,<e,into I'/rad T’ as we followed the walk around the tree. Since T
is a tree, the i,th edge meets the vertex i, + 1, and the other vertex of this
edge is i; with i; < i,. Assume we have already passed r edges meeting in the
vertex i;. Then we define the diagonal embedding

kio - Qi,,r+1/rain1,k+1 ® 0, ;.
We define A as the pullback of

A———>T

! l

[1k,———T/radT.
i=1

We want to show that A satisfies the desired properties. A is a Backstrom
order [15] with associated species a disjoint union of e copies of A4,, and so
there are 3e indecomposable modules in ,M°® which all occur as syzygy
modules of any nonprojective indecomposable. We prove that A/pA is given
by T by induction on the number of edges of T. Let T be

with the exceptional vertex of multiplicity m(> 1). Then § is uniserial of
length m + 1 over k. Moreover, if R is a totally ramified extension of R of
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degree m, then A is the pullback of the diagram

A - RXR
l !
k - kXk

where k — k X k denotes the diagonal embedding, and so A/pA is uniserial
of length m + 1 over k, thatis A/pA is given by T.

Now let e be the last edge we meet on our walk that has not been met
before. Then one end point i, of e must be an end point of T. Let T’ be the
tree obtained from 7' by omitting e and i,. Let m; be the multiplicity of i,.

Let j, be the other end point of e, with muluphcny m,. We then have the
following picture:

Let S, be an algebra of T’ and A the constructed order of T’. Then
passing from S, to some S given by T means leaving the structure of the
projective P, for i # n; ; invariant and changing P, by inserting m; copies of
the simple module S, at the appropriate places in "the compos1t10n series. We
add a new 1ndecomposable projective module P,. For the order we have

R p - p|bd
r =|: : ,
Jo R R b

R . ‘ R ng+1)X(n,+1)

where the framed region is Iy, corresponding to 7. Here R=R, p=1pif j,
is not exceptional and R = R, p = p if j; is exceptmnal

. Moreover, we have to add I, = R, where R = R if i is not exceptional and
R = R if i, is exceptional. Now it is easily seen that A/pA is given by T.
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