SOME GEOMETRIC CONSEQUENCES OF THE WEITZENBÖCK FORMULA ON RIEMANNIAN ALMOST-PRODUCT MANIFOLDS; WEAK-HARMONIC DISTRIBUTIONS

by A.H. Rocamora¹

0. Introduction

In this paper, we prove some geometric consequences obtained from certain linear relations among linear invariants of Riemannian almost-product manifolds. We also define and study weak-harmonic distributions.

In Section 1, we obtain a consequence of the Weitzenböck formula, (Theorem 1.2), which will be used in the next section.

Section 2 begins with general concepts on Riemannian almost-product manifolds.

A Riemannian almost-product manifold is a triplet (\mathcal{M}, g, P) , where (\mathcal{M}, g) is a Riemannian manifold and P is a (1,1)-tensor field on \mathcal{M} satisfying $P^2 = I$ and g(PM, PN) = g(M, N), $M, N \in \mathcal{X}(\mathcal{M})$. The eigenspaces of P corresponding to the eigenvalues 1 and -1, at each point, determine two distributions \mathcal{V} and \mathcal{H} , respectively called vertical and horizontal.

Next, we get a linear relation among linear invariants of Riemannian almost-product manifolds, (Theorem 2.8), by using Theorem 1.2, from which we deduce some geometric consequences. Among these it is necessary to note that:

THEOREM. A Riemannian almost-product manifold (\mathcal{M}, g, P) with non-negative sectional curvature in which \mathscr{V} and \mathscr{H} are foliations whose mean curvatures, restricted to each horizontal and vertical leaf respectively, have zero divergence, is necessarily locally a product.

Received November 10, 1986.

¹Partially supported by a grant from CAICYT.

One thus generalizes two results obtained in [1], where this conclusion is proved, when $\mathscr V$ and $\mathscr H$ are both foliations with minimal leaves, or both totally umbilical foliations with mean curvatures as in the theorem.

It is shown in [12] that one cannot find two complementary and orthogonal totally umbilical foliations on compact Riemannian manifolds with non-positive sectional curvature, unless each one of them is 1-dimensional or a totally geodesic foliation. As a consequence of Theorem 2.8, we get, in Corollary 2.11, an improvement of this result for non-integrable distributions.

In the last section we generalize the concept of harmonic foliation that appears in [7] and [8]. The distribution $\mathscr V$ of a Riemannian almost-product manifold is said to be weak-harmonic if the canonical projection $k: T\mathcal M \to \mathscr H$ from the tangent bundle onto horizontal bundle is an $\mathscr H$ -valued 1-form orthogonal to $\Delta^{\mathscr H}$, with $\Delta^{\mathscr H}$ the Laplacian operator induced by the following connection on $\mathscr H$:

$$\nabla_A^{\mathscr{H}} X = \mathscr{k}[A, X], \quad A \in \mathscr{V}, \ X \in \mathscr{H},$$
$$\nabla_Y^{\mathscr{H}} X = \mathscr{k}(\nabla_Y X), \quad X, Y \in \mathscr{H},$$

where ∇ is the Levi-Civita connection of \mathcal{M} .

We prove that some of the main results of [8] on harmonic foliations (Corollary 2.27, Theorem 2.34) remain valid for weak-harmonic distributions. (On the other hand, these results are consequences of Theorem 2.8.) Furthermore, we show some new results about weak-harmonicity, among which are the following:

- (i) A weak-harmonic distribution with the property AF (Definition 2.3) is a totally geodesic foliation.
- (ii) Let (\mathcal{M}, g, P) be a Riemannian almost-product manifold with non-negative sectional curvature in which the horizontal distribution is a foliation with minimal leaves. Then, if the distribution \mathscr{V} is weak-harmonic, the manifold is locally a product.

All geometric objects considered throughout the paper will be of class C^{∞} . The author wishes to thank V. Miquel and A.M. Naveira for useful comments.

1. A consequence of the Weitzenböck formula

Let (\mathcal{M}, g) be an *n*-dimensional Riemannian manifold and \mathscr{E} a vector bundle over \mathcal{M} with a covariant differentiation D.

We shall denote $\Lambda^p(\mathscr{E}, \mathscr{M})$ the vector space of all \mathscr{E} -valued differential p-forms on \mathscr{M} .

It is a well known fact that the covariant differentiation D induces the following operators on \mathscr{E} -valued p-forms: the covariant differential acting on forms, D, the exterior differential operator, d^D , the exterior codifferential, δ^D , and the Laplacian operator, Δ^D .

Furthermore, if $\mathscr E$ is a vector bundle over $\mathscr M$ with a metric $\langle \ , \ \rangle$, we have on $\Lambda^p(\mathscr E,\mathscr M)$ the metric induced by the metrics $\langle \ , \ \rangle$ and g:

If $\theta, \eta \in \Lambda^p(\mathscr{E}, \mathscr{M})$, then $\langle \theta, \eta \rangle$ is the function on \mathscr{M} given by

$$\langle \theta, \eta \rangle (x) = \frac{1}{p!} \sum_{i_1, \dots, i_p = 1}^n \langle \theta (e_{i_1}, \dots, e_{i_p}), \eta (e_{i_1}, \dots, e_{i_p}) \rangle$$

where $\{e_1, \ldots, e_n\}$ denote an orthonormal basis of $T_x \mathcal{M}$.

Let $\mathscr E$ be a vector bundle over $\mathscr M$ with a metric $\langle \ , \ \rangle$ and a metric covariant differentiation D. If the manifold $\mathscr M$ is compact and oriented, we can define the inner product

$$(\theta, \eta) = \int_{\mathscr{M}} \langle \theta, \eta \rangle *1, \quad \theta, \eta \in \Lambda^{p}(\mathscr{E}, \mathscr{M}),$$

for which the operator δ^D is the adjoint operator of d^D ; that is,

$$(d^D\theta, \eta) = (\theta, \delta^D\eta), \quad \forall \theta \in \Lambda^p(\mathscr{E}, \mathscr{M}), \eta \in \Lambda^{p+1}(\mathscr{E}, \mathscr{M}).$$

Consequently, for $\theta \in \Lambda^p(\mathscr{E}, \mathscr{M})$,

$$(\Delta^{D}\theta,\theta)=(d^{D}\theta,d^{D}\theta)+(\delta^{D}\theta,\delta^{D}\theta).$$

THEOREM 1.1 (WEITZENBÖCK'S FORMULA). Let $\mathscr E$ be a vector bundle over $\mathscr M$ with a metric $\langle \ , \ \rangle$ and a metric covariant differentiation D. If θ is an $\mathscr E$ -valued 1-form, then

$$\langle \Delta^{D} \theta, \theta \rangle = \frac{1}{2} \Delta \langle \theta, \theta \rangle + \langle D \theta, D \theta \rangle + A$$

where Δ is the Laplacian operator of the Riemannian manifold $\mathcal M$ and A is a function on $\mathcal M$ defined by

$$A(x) = \sum_{i=1}^{n} \langle \theta(S(e_i)), \theta(e_i) \rangle - \sum_{i,j=1}^{n} R^{D}(e_i, e_j, \theta(e_i), \theta(e_j))$$

where $\{e_1, \ldots, e_n\}$ is an orthonormal basis for $T_x \mathcal{M}$, S is the endomorphism of $T_x \mathcal{M}$ defined by Ricci tensor of \mathcal{M} , that is, $S(e_i) = \sum_{k=1}^n S_{ki} e_k$, and

$$R^{D}(M, N, \phi, \psi) = \langle D_{[M, N]} \phi - D_{M}(D_{N} \phi) + D_{N}(D_{M} \phi), \psi \rangle,$$

$$M, N \in \mathcal{X}(\mathcal{M}), \phi, \psi \in \Gamma(\mathcal{E}).$$

THEOREM 1.2. Let & be a vector bundle over the Riemannian manifold (\mathcal{M}, g) , with a metric $\langle \cdot, \cdot \rangle$, and a metric covariant differentiation D. If θ is an &-valued 1-form satisfying

$$\langle \theta(M), \theta(N) \rangle = g(M, N), \quad M, N \in \mathcal{X}(\mathcal{M}),$$

then

$$\tau - \tau^{\theta} = 2\delta\mu^{\theta} + \langle d^{D}\theta, d^{D}\theta \rangle + \langle \delta^{D}\theta, \delta^{D}\theta \rangle - \langle D^{*}\theta, D^{*}\theta \rangle,$$

where μ^{θ} is the 1-form defined by $\mu^{\theta}(M) = -\langle \delta^{D}\theta, \theta(M) \rangle$, τ is the scalar curvature of \mathcal{M} and τ^{θ} the function on \mathcal{M} given by

$$\tau^{\theta}(x) = \sum_{i, j=1}^{n} R^{D}(e_{i}, e_{j}, \theta(e_{i}), \theta(e_{j}))$$

with $\{e_i\}_{i=1}^n$ an orthonormal basis of $T_x \mathcal{M}$.

Proof. First, we will prove that

$$\langle \Delta^D \theta, \theta \rangle = 2\delta \mu^{\theta} + \langle d^D \theta, d^D \theta \rangle + \langle \delta^D \theta, \delta^D \theta \rangle.$$

Since $\langle \theta(M), \theta(N) \rangle = g(M, N), M, N \in \mathcal{X}(\mathcal{M})$, we have

$$\left\langle \left(\dot{D}_L\theta\right)(M),\theta(N)\right\rangle = -\left\langle \left(\dot{D}_L\theta\right)(N),\theta(M)\right\rangle, \quad L,M,N\in\mathscr{X}(\mathscr{M}).$$

Let $\{E_i\}_{i=1}^n$ be a local orthonormal frame of $T\mathcal{M}$. Then,

$$\langle \Delta^{D} \theta, \theta \rangle = -\sum_{i, k=1}^{n} \left\langle \left(\mathring{D}_{E_{k}} d^{D} \theta \right) (E_{k}, E_{i}), \theta(E_{i}) \right\rangle + \sum_{i=1}^{n} \left\langle D_{E_{i}} (\delta^{D} \theta), \theta(E_{i}) \right\rangle.$$

Now,

$$\begin{split} &\sum_{i,\,k=1}^{n} \left\langle \left(\mathring{D}_{E_{k}} d^{D}\theta \right) (E_{k}, E_{i}), \theta(E_{i}) \right\rangle \\ &= \sum_{i,\,k=1}^{n} \left\{ \left\langle D_{E_{k}} \left(\mathring{D}_{E_{k}} \theta \right) (E_{i}) \right, \theta(E_{i}) \right\rangle \\ &- \left\langle D_{E_{k}} \left(\mathring{D}_{E_{i}} \theta \right) (E_{k}) \right, \theta(E_{i}) \right\rangle + \left\langle \left(\mathring{D}_{E_{i}} \theta \right) (\nabla_{E_{k}} E_{k}), \theta(E_{i}) \right\rangle \\ &- \left\langle \left(\mathring{D}_{E_{k}} \theta \right) (\nabla_{E_{k}} E_{i}), \theta(E_{i}) \right\rangle \\ &+ \left\langle \left(\mathring{D}_{\nabla_{E_{k}} E_{i}} \theta \right) (E_{k}), \theta(E_{i}) \right\rangle \\ &= \sum_{i,\,k=1}^{n} \left\{ - \left\langle \left(\mathring{D}_{E_{k}} \theta \right) (E_{i}), \left(\mathring{D}_{E_{k}} \theta \right) (E_{i}) \right\rangle - \left\langle \left(\mathring{D}_{E_{k}} \theta \right) (E_{i}), \theta(\nabla_{E_{k}} E_{i}) \right\rangle \\ &- E_{k} \left\langle \left(\mathring{D}_{E_{i}} \theta \right) (E_{k}), \theta(E_{i}) \right\rangle + \left\langle \left(\mathring{D}_{E_{i}} \theta \right) (E_{k}), \left(\mathring{D}_{E_{k}} \theta \right) (E_{i}) \right\rangle \\ &+ \left\langle \left(\mathring{D}_{E_{i}} \theta \right) (E_{k}), \theta(\nabla_{E_{k}} E_{i}) \right\rangle - \left\langle \left(\mathring{D}_{E_{i}} \theta \right) (E_{i}), \theta(\nabla_{E_{k}} E_{k}) \right\rangle \\ &+ \left\langle \left(\mathring{D}_{E_{k}} \theta \right) (E_{i}), \theta(\nabla_{E_{k}} E_{i}) \right\rangle - \left\langle \left(\mathring{D}_{\nabla_{E_{k}} E_{i}} \theta \right) (E_{i}), \theta(E_{k}) \right\rangle \right\} \\ &= - \left\langle d^{D}\theta, d^{D}\theta \right\rangle + \sum_{k=1}^{n} \left\{ - E_{k} \langle \delta^{D}\theta, \theta(E_{k}) \rangle + \left\langle \delta^{D}\theta, \theta(\nabla_{E_{k}} E_{k}) \right\rangle \right\} \end{split}$$

since,

$$\sum_{i,k=1}^{n} \left\{ \left\langle \left(\stackrel{\star}{D}_{E_{k}} \theta \right) (E_{i}), \left(\stackrel{\star}{D}_{E_{k}} \theta \right) (E_{i}) \right\rangle - \left\langle \left(\stackrel{\star}{D}_{E_{i}} \theta \right) (E_{k}), \left(\stackrel{\star}{D}_{E_{k}} \theta \right) (E_{i}) \right\rangle \right\}$$

$$= \left\langle d^{D} \theta, d^{D} \theta \right\rangle$$

and,

$$\sum_{i, k=1}^{n} \left\{ \left\langle \left(\mathring{D}_{E_{i}} \theta \right) (\nabla_{E_{k}} E_{i}), \theta(E_{k}) \right\rangle + \left\langle \left(\mathring{D}_{\nabla_{E_{k}} E_{i}} \theta \right) (E_{i}), \theta(E_{k}) \right\rangle \right\}$$

$$= \sum_{i, k, j=1}^{n} g(\nabla_{E_{k}} E_{i}, E_{j}) \left\{ \left\langle \left(\mathring{D}_{E_{i}} \theta \right) (E_{j}), \theta(E_{k}) \right\rangle + \left\langle \left(\mathring{D}_{E_{j}} \theta \right) (E_{i}), \theta(E_{k}) \right\rangle \right\}$$

$$= \sum_{i, k, j=1}^{n} \left\langle \left(\mathring{D}_{E_{i}} \theta \right) (E_{j}), \theta(E_{k}) \right\rangle \left\{ g(\nabla_{E_{k}} E_{i}, E_{j}) + g(\nabla_{E_{k}} E_{j}, E_{i}) \right\}$$

$$= 0.$$

It follows that

$$\begin{split} \langle \Delta^D \theta, \theta \rangle &= \langle d^D \theta, d^D \theta \rangle + \sum_{i=1}^n \left\{ E_i \langle \delta^D \theta, \theta(E_i) \rangle - \langle \delta^D \theta, \theta(\nabla_{E_i} E_i) \rangle \right. \\ &+ \left\langle D_{E_i} (\delta^D \theta), \theta(E_i) \rangle \right\} \\ \\ &= \left\langle d^D \theta, d^D \theta \right\rangle - \left\langle \delta^D \theta, \delta^D \theta \right\rangle + 2 \sum_{i=1}^n \left\langle D_{E_i} (\delta^D \theta), \theta(E_i) \right\rangle. \end{split}$$

On the other hand,

$$\begin{split} \delta\mu^{\theta} &= -\sum_{i=1}^{n} \left(\nabla_{E_{i}} \mu^{\theta} \right) (E_{i}) = -\sum_{i=1}^{n} \left\{ \nabla_{E_{i}} \left(\mu^{\theta}(E_{i}) \right) - \mu^{\theta} (\nabla_{E_{i}} E_{i}) \right\} \\ &= -\sum_{i=1}^{n} \left\{ -E_{i} \langle \delta^{D} \theta, \theta(E_{i}) \rangle + \langle \delta^{D} \theta, \theta(\nabla_{E_{i}} E_{i}) \rangle \right\} \\ &= \sum_{i=1}^{n} \langle D_{E_{i}} (\delta^{D} \theta), \theta(E_{i}) \rangle - \langle \delta^{D} \theta, \delta^{D} \theta \rangle. \end{split}$$

Therefore, we have

$$\langle \Delta^D \theta, \theta \rangle = 2 \delta \mu^{\theta} + \langle d^D \theta, d^D \theta \rangle + \langle \delta^D \theta, \delta^D \theta \rangle.$$

Now, by using the Weitzenböck formula, and considering that, in this case, $A = \tau - \tau^{\theta}$ and $\Delta \langle \theta, \theta \rangle = 0$, we have the required result.

2. A linear relation among linear invariants of Riemannian almost-product manifolds: geometric consequences

A Riemannian almost-product manifold is a triplet (\mathcal{M}, g, P) , where (\mathcal{M}, g) is a Riemannian manifold and P is a (1,1)-tensor field on \mathcal{M} satisfying

$$P^2 = I$$
 and $g(PM, PN) = g(M, N)$ for $M, N \in \mathcal{X}(\mathcal{M})$.

A Riemannian almost-product structure P, determines two distributions $\mathscr V$ and $\mathscr H$ corresponding to the eigenvalues of P, 1 and -1, respectively called vertical and horizontal. In turn, a distribution $\mathscr D$ determines, on a Riemannian manifold, a complementary distribution $\mathscr D^{\perp}$, and hence, a Riemannian almost-product structure whose vertical and horizontal distributions are $\mathscr D$ and $\mathscr D^{\perp}$ respectively; this structure will be called Riemannian almost-product structure associated to $\mathscr D$.

LEMMA 2.1 [11]. In any Riemannian almost-product manifold (\mathcal{M}, g, P) , we have

- (i) $g((\nabla_L P)M, N) = g((\nabla_L P)N, M)$ and
- (ii) $g((\nabla_L P)PM, PN) = -g((\nabla_L P)M, N)$ for $L, M, N \in \mathcal{X}(\mathcal{M})$.

The proof is immediate.

It is shown in [11] that there are 36 different classes of Riemannian almost-product manifolds, each one of which is characterized by some algebraic condition on ∇P . This classification was obtained by decomposition of the space of covariant tensors of order 3 that have the same algebraic properties as the tensor γ , given by $\gamma(L, M, N) = g((\nabla_L P)M, N)$ (Lemma 2.1), under the action of the structural group of (\mathcal{M}, g, P) , $0(p) \times 0(q)$, where p and q = n - p are the respective dimensions of the distributions \mathscr{V} and \mathscr{H} . Some non-trivial examples for every one of these classes are given in [10]; and in [4] the algebraic conditions, which define the classes, are interpreted in terms of geometric properties of the vertical and horizontal distributions.

In Definition 2.3, we describe the algebraic conditions on ∇P which characterize the properties of $\mathscr V$ and $\mathscr H$ in the different classes of Riemannian almost-product manifolds.

DEFINITION 2.2. A foliation \mathcal{D} on a Riemannian manifold (\mathcal{M}, g) is said to be a totally geodesic or totally umbilical foliation if all the maximal integral manifolds of \mathcal{D} are totally geodesic or totally umbilical submanifolds of \mathcal{M} respectively.

DEFINITION 2.3 [4], [11]. Let \mathcal{D} be a distribution on a Riemannian manifold and P the almost-product structure associated to \mathcal{D} .

- (i) \mathscr{D} is a foliation (property F) if and only if $(\nabla_A P)B = (\nabla_B P)A$, $A, B \in \mathscr{D}$.
- (ii) \mathscr{D} is a distribution with the property ${}_{A}F$ if $(\nabla_{A}P)A=0,\ A\in\mathscr{D}$.
- (iii) A foliation with the property AF is a totally geodesic foliation (property TGF).
- (iv) \mathcal{D} is a totally umbilical foliation (property F_2) if and only if

$$(\nabla_A P)B = \frac{1}{p}g(A, B)\alpha^{\mathcal{D}}, A, B \in \mathcal{D}$$

where $\alpha^{\mathcal{D}} = \sum_{a=1}^{p} (\nabla_{E_a} P) E_a$, $\{E_a\}_{a=1}^{p}$ is a local orthonormal reference of \mathcal{D} . (v) \mathcal{D} is a distribution with the property D_2 if

$$(\nabla_A P)B + (\nabla_B P)A = \frac{2}{p}g(A,B)\alpha^{\mathcal{D}}, \quad A,B \in \mathcal{D}.$$

If \mathcal{D} is a foliation on a Riemannian manifold, it is obvious that $\alpha^{\mathcal{D}}$ is, up to a constant, its mean curvature. So:

- (vi) A foliation \mathcal{D} is a foliation with minimal leaves (property F_1) if and only if $\alpha^{\mathcal{D}} = 0$.
- (vii) A distribution \mathcal{D} which satisfies $\alpha^{\mathcal{D}} = 0$ will be said to be a distribution with the property D_1 .

It is evident that a distribution has the property AF if and only if it has the properties D_1 and D_2 .

A Riemannian almost-product manifold (\mathcal{M}, g, P) will be said to be of type (α, β) if the vertical distribution has the property α and the horizontal one has the property β .

Observe that in a Riemannian almost-product manifold (\mathcal{M}, g, P) , the almost-product structure associated to \mathscr{V} is P, and the one associated to \mathscr{H} is -P

DEFINITION 2.4 [5], [13]. We define the configuration tensors T and O of a Riemannian almost-product manifold (\mathcal{M}, g, P) by

$$T_M N = \frac{1}{2} (\nabla_{vM} P) PN, \quad O_M N = \frac{1}{2} (\nabla_{AM} P) PN$$

for $M, N \in \mathcal{X}(\mathcal{M})$, where v = 1/2(I + P) and k = 1/2(I - P) are the projectors onto \mathcal{V} and \mathcal{H} respectively.

It is obvious that T (resp. O) vanishes if and only if $\mathscr V$ (resp. $\mathscr H$) is a totally geodesic foliation.

DEFINITION 2.5. On a Riemannian almost-product manifold we can define

$$S_1(M, N) = k[vM, vN], S_2(M, N) = v[kM, kN]$$

for $M, N \in \mathcal{X}(\mathcal{M})$.

Evidently, S_1 (resp. S_2) vanishes if and only if $\mathscr V$ (resp. $\mathscr H$) is a foliation.

LEMMA 2.6. In any Riemannian almost-product manifold we have:

(i)
$$||T||^{2} = \frac{1}{2} \sum_{a,b=1}^{p} g((\nabla_{E_{a}} P) E_{b}, (\nabla_{E_{a}} P) E_{b}),$$

$$||O||^{2} = \frac{1}{2} \sum_{u,v=p+1}^{n} g((\nabla_{E_{u}} P) E_{v}, (\nabla_{E_{u}} P) E_{v});$$

(ii)
$$\|\nabla P\|^2 = 4(\|T\|^2 + \|O\|^2);$$

(iii)
$$4||S_1||^2 = 2||T||^2 - A_1, \quad 4||S_2||^2 = 2||O||^2 - A_2$$

where A_1 and A_2 are the linear invariants [1] given by

$$A_1 = \sum_{a,b=1}^{p} g((\nabla_{E_a} P)E_b, (\nabla_{E_b} P)E_a), A_2 = \sum_{u,v=p+1}^{n} g((\nabla_{E_u} P)E_v, (\nabla_{E_v} P)E_u);$$

(iv)
$$\|\nabla P\|^2 - \|dP\|^2 = A_1 + A_2;$$

(v)
$$||dP||^2 = \frac{1}{2} ||\nabla P||^2 + 4(||S_1||^2 + ||S_2||^2);$$

(vi)
$$\|\delta P\|^2 = \|\alpha^{\mathscr{V}}\|^2 + \|\alpha^{\mathscr{H}}\|^2$$
;

where $\{E_a\}_{a=1}^p$ and $\{E_u\}_{u=p+1}^n$ are local orthonormal frames of $\mathscr V$ and $\mathscr H$ respectively.

The proof is immediate.

DEFINITION 2.7. On a Riemannian almost-product manifold (\mathcal{M}, g, P) , we can define

$$\begin{split} \tau^{\mathscr{S}} &= \sum_{a,\,b=1}^{p} R\big(E_a,\,E_b,\,E_a,\,E_b\big), \\ \tau^{\mathscr{H}} &= \sum_{u,\,v=p+1}^{n} R\big(E_u,\,E_v,\,E_u,\,E_v\big), \\ \tau^{\mathscr{SH}} &= \sum_{a=1}^{p} \sum_{u=p+1}^{n} R\big(E_a,\,E_u,\,E_a,\,E_u\big) \end{split}$$

where R is the Riemannian curvature operator of the manifold, and $\{E_a\}_{a=1}^p$ and $\{E_u\}_{u=p+1}^n$ are local orthonormal frames of $\mathscr V$ and $\mathscr H$ respectively.

It is obvious that the scalar curvature of (\mathcal{M}, g, P) , τ , can be written as

$$\tau = \tau^{\mathscr{V}} + 2\tau^{\mathscr{V}\mathscr{H}} + \tau^{\mathscr{H}}.$$

THEOREM 2.8. Let (\mathcal{M}, g, P) be a Riemannian almost-product manifold. Then

$$4\tau^{\mathscr{VH}} = ||dP||^2 - ||\nabla P||^2 + 2\operatorname{div}_{\mathscr{V}}\alpha^{\mathscr{H}} + 2\operatorname{div}_{\mathscr{H}}\alpha^{\mathscr{V}}$$

where $\operatorname{div}_{\mathscr{V}} \alpha^{\mathscr{H}} = \sum_{a=1}^{p} g(\nabla_{E_a} \alpha^{\mathscr{H}}, E_a)$, $\operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{V}} = \sum_{u=p+1}^{n} g(\nabla_{E_u} \alpha^{\mathscr{V}}, E_u)$, and $\{E_a\}_{a=1}^{p}$ and $\{E_u\}_{u=p+1}^{n}$ are local orthonormal frames of \mathscr{V} and \mathscr{H} respectively.

Proof. By applying Theorem 1.2 to the TM-valued 1-form P, we obtain

$$\tau - \tau^P = 2\delta\mu^P + ||dP||^2 + ||\delta P||^2 - ||\nabla P||^2.$$

Now, $\tau - \tau^P = 4\tau^{\mathscr{V}\mathscr{H}}$, and

$$\begin{split} \delta\mu^{P} + \|\delta P\|^{2} &= \sum_{i=1}^{n} g\left(\nabla_{E_{i}}(\delta P), PE_{i}\right) \\ &= -\sum_{a=1}^{p} g\left(\nabla_{E_{a}}\alpha^{\mathscr{S}}, E_{a}\right) + \sum_{a=1}^{p} g\left(\nabla_{E_{a}}\alpha^{\mathscr{H}}, E_{a}\right) \\ &+ \sum_{u=p+1}^{n} g\left(\nabla_{E_{u}}\alpha^{\mathscr{S}}, E_{u}\right) - \sum_{u=p+1}^{n} g\left(\nabla_{E_{u}}\alpha^{\mathscr{H}}, E_{u}\right) \\ &= \frac{1}{2} \sum_{a=1}^{p} g\left(\left(\nabla_{E_{a}}P\right)E_{a}, \alpha^{\mathscr{S}}\right) + \operatorname{div}_{\mathscr{S}} \alpha^{\mathscr{H}} \\ &+ \operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{S}} - \frac{1}{2} \sum_{u=p+1}^{n} g\left(\left(\nabla_{E_{u}}P\right)E_{u}, \alpha^{\mathscr{H}}\right) \\ &= \frac{1}{2} \|\alpha^{\mathscr{S}}\|^{2} + \operatorname{div}_{\mathscr{S}} \alpha^{\mathscr{H}} + \operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{S}} + \frac{1}{2} \|\alpha^{\mathscr{H}}\|^{2} \end{split}$$

which implies the result.

COROLLARY 2.9. Let (\mathcal{M}, g, P) be a Riemannian almost-product manifold.

(i) If (\mathcal{M}, g, P) is of type (AF, AF), then

$$\tau^{\mathscr{VH}} = \frac{1}{8} ||\nabla P||^2.$$

(ii) If (\mathcal{M}, g, P) is of type (F, F), then

$$4\tau^{\mathscr{V}\mathscr{H}} = -\frac{1}{2} \|\nabla P\|^2 + 2 \operatorname{div}_{\mathscr{V}} \alpha^{\mathscr{H}} + 2 \operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{V}}.$$

(iii) If (\mathcal{M}, g, P) is of type (F_1, F_1) , then

$$\tau^{\mathscr{VH}} = -\frac{1}{8} \|\nabla P\|^2.$$

(iv) If (\mathcal{M}, g, P) is of type (F, AF), then

$$2\tau^{\mathscr{V}\mathscr{H}} = -\|T\|^2 + \|O\|^2 + \operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{V}}.$$

(v) If (\mathcal{M}, g, P) is of type (D_2, D_2) , then

$$2\tau^{\mathscr{S}} = \frac{1}{4} \|\nabla P\|^2 - \frac{1}{p} \|\alpha^{\mathscr{S}}\|^2 - \frac{1}{q} \|\alpha^{\mathscr{H}}\|^2 + \operatorname{div}_{\mathscr{K}} \alpha^{\mathscr{H}} + \operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{V}}.$$

(vi) If (\mathcal{M}, g, P) is of type (AF, D_2) , then

$$2\tau^{\mathscr{SH}} = \frac{1}{4} \|\nabla P\|^2 - \frac{1}{q} \|\alpha^{\mathscr{H}}\|^2 + \operatorname{div}_{\mathscr{V}} \alpha^{\mathscr{H}}.$$

(vii) If (\mathcal{M}, g, P) is of type (F, D_2) , then

$$2\tau^{\mathscr{V}\mathscr{H}} = -\frac{1}{q} \|\alpha^{\mathscr{H}}\|^2 - \|T\|^2 + \|O\|^2 + \operatorname{div}_{\mathscr{V}} \alpha^{\mathscr{H}} + \operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{V}}.$$

Proof. Results (i) through (iv) follow immediately from Theorem 2.8 and Lemma 2.6.

For the remaining results, it is sufficient to consider that if \mathscr{V} (resp. \mathscr{H}) is a distribution with the property D_2 , then

$$A_1 = \frac{2}{p} \|\alpha^{\mathscr{S}}\|^2 - 2\|T\|^2 \quad \left(\text{resp. } A_2 = \frac{2}{q} \|\alpha^{\mathscr{H}}\|^2 - 2\|O\|^2\right).$$

COROLLARY 2.10. Let (\mathcal{M}, g, P) be a compact, oriented Riemannian almost-product manifold. Then

$$4 \int_{\mathcal{M}} \tau^{\gamma \mathcal{H}} * 1 = \int_{\mathcal{M}} ||dP||^2 * 1 + \int_{\mathcal{M}} ||\delta P||^2 * 1 - \int_{\mathcal{M}} ||\nabla P||^2 * 1.$$

The proof follows from Theorem 2.8 by considering that

$$\int_{\mathscr{M}} \operatorname{div}_{\mathscr{C}} \alpha^{\mathscr{H}} * 1 = \frac{1}{2} \int_{\mathscr{M}} \|\alpha^{\mathscr{H}}\|^2 * 1 \text{ and } \int_{\mathscr{M}} \operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{C}} * 1 = \frac{1}{2} \int_{\mathscr{M}} \|\alpha^{\mathscr{C}}\|^2 * 1.$$

Of course, the formulas of Corollary 2.10 which contain $\operatorname{div}_{\mathscr{V}} \alpha^{\mathscr{H}}$ or $\operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{V}}$, can be reformulated in compact manifolds.

COROLLARY 2.11. Let (\mathcal{M}, g, P) be a Riemannian almost-product manifold.

- (i) If (\mathcal{M}, g, P) is of type (AF, AF), then $\tau^{\mathscr{VH}} \geq 0$, with equality holding only if the manifold is locally a product.
- (ii) If (\mathcal{M}, g, P) is of type (F, F) and the mean curvatures of the vertical and horizontal foliations, restricted to each horizontal and vertical leaf respectively, have zero divergence, then $\tau^{\mathscr{VH}} \leq 0$, with equality holding only if (\mathcal{M}, g, P) is a locally-product manifold.

(iii) If (\mathcal{M}, g, P) is of type (D_2, D_2) , compact and oriented, then

$$\int_{\mathscr{M}} \tau^{\mathscr{VH}} * 1 \ge 0,$$

and the equality is satisfied if and only if each distribution, $\mathscr V$ and $\mathscr H$, is of dimension one or a totally geodesic foliation.

(iv) If (\mathcal{M}, g, P) is compact and oriented, dim $\mathcal{H}=1$ and \mathcal{V} is a foliation with minimal leaves, then $\int_{\mathcal{M}} \tau^{\mathscr{V}\mathscr{R}} * 1 \leq 0$, with equality holding if and only if \mathcal{V} is a totally geodesic foliation.

Proof. Results (i) and (ii) are deduced immediately from results (i) and (ii) of Corollary 2.10 respectively.

(iii) Considering that

$$\begin{split} &\int_{\mathcal{M}} \operatorname{div}_{\mathscr{S}} \, \alpha^{\mathscr{H}} * 1 = \frac{1}{2} \int_{\mathcal{M}} \|\alpha^{\mathscr{H}}\|^2 * 1, \\ &\int_{\mathcal{M}} \operatorname{div}_{\mathscr{H}} \, \alpha^{\mathscr{S}} * 1 = \frac{1}{2} \int_{\mathcal{M}} \|\alpha^{\mathscr{S}}\|^2 * 1 \end{split}$$

and by using (v) of Corollary 2.10, we deduce

$$2\int_{\mathcal{M}} \tau^{\mathscr{S}} * 1 = \frac{1}{4} \int_{\mathcal{M}} ||\nabla P||^2 * 1 + \frac{p-2}{2p} \int_{\mathcal{M}} ||\alpha^{\mathscr{S}}||^2 * 1 + \frac{q-2}{2q} \int_{\mathcal{M}} ||\alpha^{\mathscr{B}}||^2 * 1$$

and so, if dim $\mathscr{V} \ge 2$ and dim $\mathscr{H} \ge 2$, we have $\int_{\mathscr{M}} \tau^{\mathscr{V}\mathscr{H}} * 1 \ge 0$, equality holding only if the manifold is locally a product.

If dim $\mathscr{V} = 1$, \mathscr{V} is a totally umbilical foliation. Therefore

$$2||T||^2 = A_1 = \frac{2}{p}||\alpha^{\gamma}||^2 - 2||T||^2$$

and the last formula can be written in the following form:

$$2\int_{\mathcal{M}} \tau^{\mathscr{VH}} * 1 = \int_{\mathcal{M}} ||O||^2 * 1 + \frac{q-2}{2q} \int_{\mathcal{M}} ||\alpha^{\mathscr{H}}||^2 * 1.$$

So, if $q \ge 2$, then $\int_{\mathscr{M}} \tau^{\mathscr{V}\mathscr{H}} * 1 \ge 0$, equality holding if and only if \mathscr{H} is a totally geodesic foliation. And if q = 1, the integral vanishes.

For dim $\mathcal{H}=1$, the argument is analogous.

(iv) If (\mathcal{M}, g, P) is of type (F_1, F_2) , compact and oriented, we have

$$2\int_{\mathcal{M}} \tau^{\mathscr{SH}} * 1 = \frac{q-1}{2q} \int_{\mathcal{M}} ||\alpha^{\mathscr{H}}||^2 * 1 - \int_{\mathcal{M}} ||T||^2 * 1$$

which implies the result.

Comments. Result (i) in Corollary 2.9 (and consequently the result (i) in Corollary 2.11) was obtained in [1] by using a different method.

Result (ii) in Corollary 2.11 generalizes two results obtained in [1]. There, it was shown for a manifold of type (F_2, F_2) instead of (F, F). Furthermore, in [1], it was also shown that, on manifolds of type (F_1, F_1) , we have $\tau^{\mathscr{VH}} \leq 0$, the equality holding only if the manifold is locally a product.

Result (iii) in Corollary 2.11 generalizes a result obtained in [12]. There, the same conclusion is obtained for a manifold of type (F_2, F_2) .

3. Weak-harmonic distributions

In [7], F.W. Kamber and Ph. Tondeur analyzed some properties of harmonic foliations and in [8] the same authors examined the relation between the harmonicity property of a foliation with bundle-like metric and the sectional curvature of the manifold, obtaining the following result: Let (\mathcal{M}, g, P) be a Riemannian almost-product manifold of type (F, TGF) with non-negative sectional curvature. If \mathscr{V} is a harmonic foliation, then it is a totally geodesic foliation [8, Corollary 2.27].

We shall begin this section by extending the concept of harmonicity which appears in [7] and [8], obtaining afterwards a generalization of the above result. Furthermore, we shall obtain, among other results, some generalizations of several other conclusions found in [8].

DEFINITION 3.1. Let (\mathcal{M}, g, P) be a Riemannian almost-product manifold. We define the following connection on the vector bundle \mathcal{H} :

$$\nabla_A^{\mathscr{H}} X = h[A, X], \quad A \in \mathscr{V}, \ X \in \mathscr{H}$$
$$\nabla_Y^{\mathscr{H}} X = h(\nabla_Y X), \ X, Y \in \mathscr{H}.$$

Its torsion, $T^{\mathcal{H}}$, is the \mathcal{H} -valued 2-form on \mathcal{M} defined by

$$T^{\mathscr{H}}(M,N) = \nabla^{\mathscr{H}}_{M}(\mathbb{A}N) - \nabla^{\mathscr{H}}_{N}(\mathbb{A}M) - \mathbb{A}[M,N], \quad M,N \in \mathscr{X}(\mathscr{M}).$$

Writing this expression for vertical and horizontal vector fields, we have

$$T^{\mathscr{H}}(A,B) = -\mathbb{A}[A,B], \quad T^{\mathscr{H}}(A,X) = 0, \quad T^{\mathscr{H}}(X,Y) = 0$$

with $A, B \in \mathscr{V}, X, Y \in \mathscr{H}$.

It is evident that $\nabla^{\mathcal{H}}$ is torsion free if and only if \mathscr{V} is integrable, and in this case, $\nabla^{\mathcal{H}}$ is the basic connection which is used in [7] to define the concept of harmonic foliation.

PROPOSITION 3.2. $\nabla^{\mathscr{H}}$ is a metric connection (with respect to the metric induced by g in \mathscr{H}) if and only if \mathscr{H} is a distribution with the property AF.

The proof is immediate.

The connection $\nabla^{\mathscr{H}}$ determines the operators $\nabla^{\mathscr{H}}$, $d^{\mathscr{H}}$, $\delta^{\mathscr{H}}$ and $\Delta^{\mathscr{H}}$ on \mathscr{H} valued forms, which, in this section, will be applied to the \mathscr{H} valued 1-form k.

LEMMA 3.3

(i)
$$\left(\stackrel{\star}{\nabla}_{A}^{\mathscr{H}} \stackrel{\star}{h}\right) B = -\frac{1}{2} (\nabla_{A} P) B, \quad A, B \in \mathscr{V};$$

$$\left(\stackrel{\star}{\nabla}_{A}^{\mathscr{H}} \stackrel{\star}{h}\right) X = \left(\stackrel{\star}{\nabla}_{X}^{\mathscr{H}} \stackrel{\star}{h}\right) A = -\frac{1}{2} (\nabla_{X} P) A, \quad A \in \mathscr{V}, X \in \mathscr{H};$$

$$\left(\stackrel{\star}{\nabla}_{X}^{\mathscr{H}} \stackrel{\star}{h}\right) Y = 0, \quad X, Y \in \mathscr{H}.$$

(ii)
$$\delta^{\mathscr{H}}h = \frac{1}{2}\alpha^{\mathscr{V}}.$$

(iii)
$$d^{\mathscr{H}}(M, N) = T^{\mathscr{H}}(M, N), M, N \in \mathscr{X}(\mathscr{M}).$$

The proof is immediate.

DEFINITION 3.4. (i) We will say that the distribution $\mathscr V$ is harmonic if the $\mathscr H$ -valued 1-form k is $\nabla^{\mathscr H}$ -closed and $\nabla^{\mathscr H}$ -coclosed, that is, $d^{\mathscr H}k = \delta^{\mathscr H}k = 0$.

(ii) We will say that $\mathscr V$ is a weak-harmonic distribution if the $\mathscr H$ -valued 1-form $\mathscr A$ satisfies $g(\Delta^{\mathscr H},\mathscr A)=0$.

It is evident that if $\mathscr V$ is a harmonic distribution, then it is a weak-harmonic distribution.

Theorem 3.5. (i) h is $\nabla^{\mathcal{H}}$ -coclosed if and only if \mathscr{V} is a distribution with the property D_1 .

- (ii) k is $\nabla^{\mathcal{H}}$ -closed if and only if \mathscr{V} is a foliation.
- (iii) \mathscr{V} is a harmonic distribution if and only if it is a foliation with minimal leaves.

The proof follows immediately from Lemma 3.3.

THEOREM 3.6. Let (\mathcal{M}, g, P) be a Riemannian almost-product manifold. Then:

(i)
$$g(\Delta^{\mathscr{H}}h, h) = \frac{1}{2}\operatorname{div}_{\mathscr{H}}\alpha^{\mathscr{V}} + ||S_1||^2.$$

(ii)
$$g(\Delta^{\mathscr{H}}, \mathscr{A}) = \frac{1}{8} \|\nabla P\|^2 - \|S_2\|^2 - \frac{1}{2} \operatorname{div}_{\mathscr{V}} \alpha^{\mathscr{H}} + \tau^{\mathscr{V}\mathscr{H}}.$$

(iii) If (\mathcal{M}, g, P) is of type (-, AF), then

$$g(\Delta^{\mathcal{H}}h, h) = \frac{1}{2}||T||^2 - \frac{1}{2}||O||^2 + \tau^{\mathcal{Y}}.$$

Proof. (i) Let $\{E_a\}_{a=1}^p$ and $\{E_u\}_{u=p+1}^n$ be local orthonormal frames of $\mathscr V$ and $\mathscr H$ respectively.

$$\begin{split} g\left(\Delta^{\mathscr{H}}_{h}, \mathscr{A}\right) &= \sum_{u=p+1}^{n} g\left(\left(\Delta^{\mathscr{H}}_{h}\right) E_{u}, E_{u}\right) \\ &= -\sum_{i=1}^{n} \sum_{u=p+1}^{n} g\left(\left(\overset{\star}{\nabla}_{E_{i}}^{\mathscr{H}} d^{\mathscr{H}}_{h}\right) \left(E_{i}, E_{u}\right), E_{u}\right) + \frac{1}{2} \sum_{u=p+1}^{n} g\left(\nabla^{\mathscr{H}}_{E_{u}} \alpha^{\mathscr{Y}}, E_{u}\right) \\ &= \sum_{a=1}^{p} \sum_{u=p+1}^{n} g\left(d^{\mathscr{H}}_{h} \left(E_{a}, v \nabla_{E_{a}} E_{u}\right), E_{u}\right) + \frac{1}{2} \operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{Y}} \\ &= \sum_{a=1}^{p} \sum_{u=p+1}^{n} \left\{ -\frac{1}{2} g\left(\left(\nabla_{E_{a}} P\right) \nabla_{E_{a}} E_{u}, E_{u}\right) + \frac{1}{2} g\left(\left(\nabla_{v \nabla_{E_{a}} E_{u}} P\right) E_{a}, E_{u}\right)\right\} \\ &+ \frac{1}{2} \operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{Y}} \\ &= \frac{1}{4} \sum_{a=1}^{p} \sum_{u=p+1}^{n} g\left(\left(\nabla_{E_{a}} P\right) E_{u}, \left(\nabla_{E_{a}} P\right) E_{u}\right) \\ &+ \frac{1}{2} \sum_{a, b=1}^{p} \sum_{u=p+1}^{n} g\left(\left(\nabla_{E_{b}} P\right) E_{a}, E_{u}\right) g\left(\nabla_{E_{a}} E_{u}, E_{b}\right) + \frac{1}{2} \operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{Y}} \\ &= \frac{1}{2} \|T\|^{2} - \frac{1}{4} A_{1} + \frac{1}{2} \operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{Y}}. \end{split}$$

(ii) By using (i), Lemma 2.6 and Theorem 2.8, we have

$$\begin{split} 4g(\Delta^{\mathcal{H}_{h}}, \mathcal{L}) &= 4\|S_{1}\|^{2} + 2\operatorname{div}_{\mathcal{H}}\alpha^{\mathcal{V}} \\ &= 2\|T\|^{2} + \|dP\|^{2} - \|\nabla P\|^{2} + A_{2} + 2\operatorname{div}_{\mathcal{H}}\alpha^{\mathcal{V}} \\ &= 2\|T\|^{2} + 4\tau^{\mathcal{VH}} - 2\operatorname{div}_{\mathcal{V}}\alpha^{\mathcal{H}} + A_{2} \\ &= \frac{1}{2}\|\nabla P\|^{2} - 4\|S_{2}\|^{2} - 2\operatorname{div}_{\mathcal{V}}\alpha^{\mathcal{H}} + 4\tau^{\mathcal{VH}}. \end{split}$$

Evidently, if \mathcal{H} is a distribution with the property AF, this formula is that given in (iii).

The formula given in (iii) of the last Theorem was obtained in [8] in the case that \mathscr{V} is a foliation.

COROLLARY 3.7. Let (\mathcal{M}, g, P) be a Riemannian almost-product manifold.

- (i) If (\mathcal{M}, g, P) is of type (-, TGF) and \mathscr{V} is a weak-harmonic distribution, then $\tau^{\mathscr{VH}} \leq 0$, with equality holding only if the manifold is locally a product.
- (ii) If (\mathcal{M}, g, P) is of type (F, TGF) and $\operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{V}} = 0$, then $\tau^{\mathscr{VH}} \leq 0$, where the equality holds only if the manifold is locally a product.
- (iii) If (\mathcal{M}, g, P) is of type (AF, -), then \mathscr{V} is not a weak-harmonic distribution, unless it is a totally geodesic foliation.
- (iv) A distribution with the property D_1 is weak-harmonic if and only if it is harmonic.
- (v) If (\mathcal{M}, g, P) is compact and oriented, then \mathscr{V} is a weak-harmonic distribution if and only if it is a harmonic distribution.
- (vi) If \mathscr{V} is a weak-harmonic distribution and \mathscr{H} is a foliation satisfying $\operatorname{div}_{\mathscr{V}} \alpha^{\mathscr{H}} = 0$ (in particular if \mathscr{H} is a foliation with minimal leaves), then $\tau^{\mathscr{VH}} \leq 0$, with equality holding only if the manifold is locally a product.
- (vii) If $\mathscr V$ is a weak-harmonic distribution, $\dim \mathscr H=1$ and $\alpha^{\mathscr H}$ has zero divergence, then $\tau^{\mathscr V\mathscr H}\leq 0$, the equality holding if and only if $\mathscr V$ is a totally geodesic foliation.

Proof. Result (i) is an immediate consequence of part (iii) of the theorem above.

- (ii) If \mathscr{V} is a foliation and $\operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{V}} = 0$, then, from part (i) of the last theorem, $g(\Delta^{\mathscr{H}}_{h}, h) = 0$, and the result follows from (i).
- (iii) If \mathscr{V} is a distribution with the property AF, then, by using (i) of Theorem 3.6, we deduce $g(\Delta^{\mathscr{H}}_{h}, h) = ||T||^2$ and the result follows.
- (iv) This follows immediately from Theorem 3.6(i).
- (v) By integrating formula (i) of Theorem 3.6, we have

$$\int_{\mathcal{M}} g(\Delta^{\mathcal{H}}h, h) * 1 = \int_{\mathcal{M}} ||S_1||^2 * 1 + \frac{1}{4} \int_{\mathcal{M}} ||\alpha^{\mathcal{V}}||^2 * 1$$

which implies the result.

- (vi) This is a direct consequence of Theorem 3.6(ii).
- (vii) If dim $\mathcal{H}=1$, then $||S_2||^2=0$ and $||O||^2=1/2||\alpha^{\mathcal{H}}||^2$. So we deduce from Theorem 3.6(ii) that

$$g(\Delta^{\mathscr{H}}_{h}, h) = \frac{1}{2}||T||^2 - \frac{1}{2}\operatorname{div}\alpha^{\mathscr{H}} + \tau^{\mathscr{VH}}$$

and the result follows.

We observe that the result (ii) in the last corollary is clearly more general than Corollary 2.27 in [8]. In any case, this result is an immediate consequence of Corollary 2.11(ii).

Furthermore, we must note that if \mathscr{V} is a foliation satisfying $\operatorname{div}_{\mathscr{H}} \alpha^{\mathscr{V}} = 0$, then it is a weak-harmonic distribution, but it is not necessarily a harmonic distribution.

The harmonic foliations of codimension one are also analyzed in [8], where the following result is obtained.

If $\mathscr V$ is a transversally orientable foliation of codimension one on a compact and oriented Riemannian manifold $\mathscr M$ with non-negative Ricci-curvature then:

- (i) If the Ricci operator is positive for at least one point in \mathcal{M} , the foliation \mathcal{V} is not harmonic.
- (ii) If \mathscr{V} is harmonic, then \mathscr{V} is totally geodesic.

Since a harmonic distribution is a foliation with minimal leaves, this result is a consequence of the formula

$$\int_{\mathcal{M}} \tau^{\mathscr{VH}} * 1 = -\frac{1}{2} \int_{\mathcal{M}} ||T||^{2} * 1$$

which is true if dim $\mathcal{H}=1$ and \mathcal{V} has the property F_1 (Corollary 2.11(iv)). Furthermore, the result can be stated without the hypothesis of integrability of \mathcal{V} (nevertheless, we must note that harmonicity implies integrability), and considering the assumption on $\tau^{\mathcal{V}}$, instead of that on the Ricci-curvature.

On the other hand, part (vii) in Corollary 3.7 can be considered as a version of this result for non-compact manifolds.

REFERENCES

- F.J. CARRERAS, Linear invariants of Riemannian almost-product manifolds, Math. Proc. Cambridge Philos. Soc., vol. 91 (1982), pp. 99-106.
- J. EELLS AND L. LEMAIRE, A report on harmonic maps, Bull. London Math. Soc., vol. 10 (1978), pp. 1-68.
- 3. ______, Selected topics in harmonic maps, C.B.M.S. Regional Conference Series in Math., no. 50, 1983.
- O. GIL-MEDRANO, Geometric properties of some classes of Remannian almost-product manifolds, Rend. Circ. Mat. Palermo, vol. 32 (1983), pp. 315-329.
- A. Gray, Pseudo-Riemannian almost-product manifolds and submersions, J. Math. Mech., vol. 16 (1967), pp. 715-737.
- F.W. KAMBER AND PH. TONDEUR, Feuilletages harmoniques, C.R. Acad. Sci. Paris, vol. 291 (1980), pp. 409-411.
- Harmonic foliations, Proc. National Science Foundation Conference on Harmonic Maps, Tulane, 1980, Lecture Notes in Mathematics, no. 949, Springer-Verlag, N.Y., 1980, pp. 87-121.
- 8. _____, Curvature properties of harmonic foliations, Illinois J. Math., vol. 28 (1984), pp. 458-471.
- 9. Y. MATSUSHIMA, Vector bundle valued harmonic forms and immersions of Riemannian manifolds, Osaka J. Math, vol. 8 (1971), pp. 1-13.

- 10. V. MIQUEL, Some examples of Riemannian almost-product manifolds, Pacific J. Math., vol. 111 (1984), pp. 163-178.
- 11. A.M. NAVEIRA, A classification of Riemannian almost-product manifolds, Rend. Mat., vol. 3 (1983), pp. 577-592.
- 12. A.M. NAVEIRA AND A.H. ROCAMORA, "A geometrical obstruction of the existence of two totally umbilical complementary foliations in compact manifolds" in *Proc. Differential Geometric Methods in Mathematical Physics*, Clausthal, 1983, Lecture Notes in Mathematics, no. 1139, Springer-Verlag, N.Y., 1985, pp. 263-279.
- 13. B. O'NEIL, The fundamental equations of a submersion, Michigan Math. J., vol. 13 (1966), pp. 459-469.
- 14. W.A. Poor, Differential geometric structures, McGraw-Hill, Hightstown, New Jersey, 1981.

University of Valencia Valencia, Spain.