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SEVERAL RESULTS CONCERNING UNCONDITIONALITY
IN VECTOR VALUED L" AND H() SPACES

BY

PAUL F.X. Mi.LLER AND GIDEON SCHECHTMAN

1. Introduction

Recently, vector .valued versions of several results concerning basis proper-
ties of Lp spaces have been obtained for the spaces L’(E)where E is a
UMD space. In particular, T. Figiel [Fi] has shown that the Haar and
Franklin systems are equivalent in L’(E), 1 < p < . The main technical
result of the present paper, Theorem 2 below, is of a similar nature; one
shows that certain "Haar-like" sequences in LP(E), 1 < p < , are eqUiva-
lent to sequences spanning all of an LP((, r, p), E) space. The operator
used for this equivalence is closely related to the one used by Maurey in
[Mal] and [Ma2]. An argument of Herz, also used by Maurey, is then used
(Theorem 4) to show that a similar equivalence holds in H(n, E) spaces
(see notations below for the definition of these spaces).
As corollaries, one gets vector valued versions of the Gamlen-Gaudet

theorem, characterizing the isomorphic structure of subsequences of the
classical Haar functions in L p. These versions extend also to the finite
dimensional case as well as for the H case. The approach here follows the
first author’s paper [Miil]. These results are contained in Theorem 3 and
Corollary 8.
Another corollary to Theorems 2 and 4 (Corollary 7) is that, if E is UMD

then HI(, E) has an unconditional decomposition into copies of E and if
E has in addition an unconditional basis, then so does HI(, E). This
extends a result of.Maurey stated in [Mal].

2. The main technical result

Let (f, -,I I).be a given probability space. Let E be a Banach space.
Then we denote by L’(O, -, I" I,E) (or simply by LP(E)) the Banach
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space of p-Bochner integrable functions on (f/, -, I) with values in E. E
is said to have the UMD property if for 1 < p < oo there exists a such that
for each E valued martingale difference sequence in (fl, o-,I I), (dn), and
for each sequence {en} {0, 1} we have

k dkek

The infimum of all a such that (.) holds is denoted by ap(E) and will be
called "the UMD constant of E (in LP)’’.
Given a filtration of finite sub or-algebras {} of (f/, -,I I) with 0

{4’, fl} we construct another such filtration {n} with -1 ---n --- n, n
1, 2,..., in the following way:
Let ’n be the collection of atoms of nn" For A

_
let A* denote

an element of ’n such that A*
_
A and IA*I max{ In I; B

___
A, B }.

Put

d(A) {B ’n; B’c_A, B A*}

and

A Unn

LEMMA 1. Let A n-1 be such that IA * < IA /4. Then there exist
pairwise disjoint collections 71,..., ;m in ’n ( A such that, putting F
LJ B gB, we get

rn

U Fi A\A*
i=1

and

1 IFll 1 IF/+ 11 1 IA* 1
<--<1, -< 151 <1,-< iFml <-.

Proof Let A1,..., At be the atoms in n (A \ A*) and let

If

k inf(k;

(J Ai
i=k+l

Z > 2IA*I

> 4IA*I
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we put {A1,..., Ak} and continue. Otherwise we put m 1,
{A 1,. AI} and stop.
Suppose kl, ks_l and [,.. ’s-1 were already constructed, then

we put

inf(k; k

i=ks_+l
> 2SlA*l

If

.J Ai
i=k

>_ 2s+lA*

we put

" {Aks_l+l, Aks}

and continue. Otherwise we put,. {Aks_l+l,...,Al}

and stop. Finally, assuming we have m steps, put

The set F constructed above will be recorded under the name FI(A).
We now introduce the algebras n and some other notations. For A

n-1 with IA*I < IAI/4 we let a be the algebra generated by {F1,..., Fro}.
For A

_
with IA*I > IAI/4 we let (A be nn n A. n is the

algebra generated by {(A}A n-l"
We wish to define the normalized shift operator Dn for n measurable

functions f by

Dnf( ) :=DA( f" 1A)(t ) for teA, A nn-1

where DA is defined below. For A An_ let

X(A) span{ 1BXB; B d( A), xB E}

and

Y(A) (f A E; f is measurable, and fAf O)
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and define a linear operator

TA: X( A) - Y( A)

according to the following two cases:

Case 1. IA*I > IAI/4. Then

TAf f-- IA*I f 1A

Case 2. IZ*l < IAI/4. Then

(1)Tf f- E(fl) + D4E(fI) f4f 1F.

Here DA denotes the normalized shift operator defined for (4 measurable
functions supported on A by

0,

IFi_i
(DAf)IF, IF,’l fl,-’ 2 _< < rn + 1 (Fro+ A*).

Note that, by construction, fDaf ff and that Dnf is ,4 measurable so
that Ta maps into Y(A). Lemma 1 implies easily that for all f X(A) and
all 1 < p <

Ilfll,(e)-< IIOAfll,(e)<-- 411fll,(e).

From this and the fact that in Case 2,

f E(fl 4) and
1

form a 2-step martingale difference, it is easy to see (cf. [Miil], Lemma 5,
Steps 1, 2) that for some universal C, all 1 < p < , and all E,

C-111fll,(e) -< ZAfll,() <-- CIIfllLp().

This will be used later in the proof of Theorem 4. Right now we would like to
extend the T,4 s to an operator on a certain subspace of LP(E) and prove
boundedness.
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For A ’n-1 and B ea(A)we let

hB 1B (R) rn

that is, let {rn} be a sequence of independent Rademacher functions on [0, 1]
and let hB be defined on f [0, 1] by hB(S, t) 1B(s) rn(t). Let

X(E) span{hAX; A d, x E}

endowed with the LP(E)norm, and define

by

T: X(E) --* L’( E)

T( E E hnxn)= E E T(Ihnl)xn
AU’n BW(A) AU/n BW(A)

(for finite sums).
As the operators TA are surjective, the range of T contains

LP(E)’f is n measurable, ff= o}
Hence the range of T is dense in {f LP(E): ff 0}.
The main technical difficulty of this paper is contained in the following

theorem.

THEOREM 2. Let 1 < p < oo and let E be a UMD space. Then there exists a
constant C, depending only on p and the UMD constant ap(E) of E, such that

TII T-111 C.

Theorem 2 implies that the range of T is closed in LP(E). Hence, by the
previous remark, T maps X#(E) onto {f LV(E): ff 0}.

In the proof we shall use the following inequality due to E. Stein [St] in the
scalar case and J. Bourgain [Bo] in the vector valued case.
For 1 < p < oo and a UMD space E, for all sequences of increasing

o-fields {//} c_ (f,,O-) and all sequences of measurable functions {fi},

(1) Ell E/E(fil i ) []LP(E, - CEIl E 8ifi I[LP(E,
where {ei} is a sequence of Rademacher functions independent of qz-, and C
depends only on p and the UMD constant ap(E) of E.
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We shall also need the so-called contraction principle due to Kahane (cf.
[Ka] or [M.P.], p. 45, Theorem 4.9 and Remark 4.10).

Let di: - E, Ci: --) R be measurable with d . LP(E), 1 < p < and
c L. Let {ei} be an independent Rademacher sequence. Then

Proof of Theorem 2. We first prove that T-1 is bounded.
Fix xBE,B .ForA Ud’n we put

Bd(A) Bd(A)

We shall also put

{A da/; IA*I > IAI/4},
n {A ’n; IA*I < IZl/4}.

As the sequence {EA ’nTfA}=l forms a martingale difference sequence, we
get from the UMD property of E and then from (2) that

A l’J n LV(E)

>cE
n A LP(E)

C(E enAJn LP(E) n A .Zan LV(E)

We treat separately the first and second terms. For the first, put

Then

Tfn gn g

where gn and g, .are disjointly supported; hence by (2) again

(4) E
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The treatment of the second term in the righthand side of (3) is more
complicated. Now let

fn E fA, gn E gA
h ..Zan_ Z .n_

and let

Al(Tfn) gn E(gnln),

A2(Zfn) OnE( gnln) 1

(FI(A) D and the algebra Wn are introduced in Lemma 1 and the
discussion following its proof) so that Tf,, A l(Tfn) + A2(Tfn). A crucial
observation is that the sequence

m2(Zfl), Al(Zfl),A2(Zf2),ml(Zf2),...

is a martingale difference sequence with respect to the sequence
0, 1, 1, 2, Thus we get

>cE
LP(E)

EenAl(Tfn) + eAa2(Tf)l[
n LP(E)

> E EenAl(Tf,,) + E EenA2(Tf,,)
n LP(E) n LP(E)

We first treat the rightmost term. As

A2(Tf,,) DnE(gnlWn) + a disjoint term

we get from (2) that

(6) Ell EnA2(Zfn) Ell
Claim.

of E,
For some constant C depending only on p and the UMD constant

(7) C-1E enE(gnlW,)[ < E
n LP(E)

  nOnE(gn’ )l[
n LP(E)

n L(E)"
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Using the claim, (5) and (6)we get

n LP(E) n LP(E)

LP(E) LP(E)

which concludes the proof that T-1 is bounded except for the proof of the
claim. To prove the claim, fix an A .Wm_ and (assuming m of Lemma 1 is
even), consider the collection of sets F u F2, F3 tA F4,..., Fro-1 t Fm (resp.
F kA F2,... FmtD Fro+ 1, if m is odd). Let n be the algebra generated by
these sets where A ranges over _W_ 1. Using (1) and (2) and, for A _za_ 1,

letting FA [.J i, oddFi, GA [,J evenF/, we get

(8) _enE( gn[,-n)
n LP(E)

> c’ max( n A -n- IILP(E

Now the first term in the max majorizes, by E.M. Stein’s inequality (up to
constant),

E(E(gnln)lF/lln1) ILP(E)

In a similar manner, using F2 F3, F4 U Fs,... as building blocks of n2

we get that the second term in (8) majorizes

n "LP(E)

This, together with (8) proves the righthand side inequality of the claim. The



228 PAUL F.X. MOLLER AND GIDEON SCHECHTMAN

lefthand side inequality is proved similarly. Also the proof that T is bounded
is similar to the proof of the scalar case (see [Mill]), and we leave it to the
reader, m

3. A vector valued Gamlen-Gaudet theorem

Here we generalize theorems of Gamlen-Gaudet [G.G.] and the first-named
author, to the vector valued case. The proof follows the idea of [Miil].

THEOgEM 3. Let 1 < p < and let E be the UMD space. Let {nk}= be a
(finite or infinite) subsequence of the positive integers andput H span{Xn}=
where {X,}--1 is the Haar system in LP[O, 1]. Then

H (R), E {EXn,X; x, E}

is isomorphic to either LP(E) or IP(E), or lPn(E) for some n.

We may and shall assume that the first two Haar functions are not in
{x )n k=l"

Proof Let n be the algebra generated by the supports of all the Haar
functions in {Xnk}=l which have size > 2-n, n 1,2,... and let 0
{b, [0, 1]}. We first assume that given any atom A of nn-1, the supports of
the Haar functions in {Xnk}=l of size 2-" do not fill up A, i.e., A*, the
largest atom of nn contained in A, can be chosen not to be a support of a
function from {X,,}=l.

Since E is UMD, we get that IIEXnXll,<e) is equivalent, with constant
depending only on p and the UMD constant of E, to

A UZn B(A)

where x, x when Ihl IXnl. Theorem 2 then implies that H (R) E is
isomorphic to LP(Vnnn, E)which in turn is isomorphic to L’([0, 1],E),
IP(E) or l’n(E) for some n.
To remove the restrictive assumption on the sequence {X,= we remove

from the sequence one element of support size 2-" contained in A for each
atom of A of n-a which the supports of {X,} of size 2 fill up. In this way
we split {X,} into two disjoint subsequences each of which satisfy the
additional assumption and the theorem follows using the UMD property
again.
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4. The H case

We recall that given a filtration of g-algebras n _c on a probability
space (ll, B, I) the space Hl(n, E) is the subspace of Ll(fl, E) consist-
ing of all functions for which the norm

Ilfllu f supllE(fl’,,)ll
n

is finite.
Given a filtration of finite algebras n on (f, -, I), we consider a new

filtration ll [0, 1] ([0, 1] is equipped with Lebesgue measure) by letting n
be the algebra generated by 3nn and the first n Rademacher functions.
The operator T of Section 2 can be viewed as an operator from a subspace

of HI(,,E) into Hl(nn, E) (actually onto all mean zero functions in
Hl(n, E).

THEOREM 4. For a constant 0 < C < o depending only on the UMD
constant a2(E) of E,

Tll T- 111 _< C

where the operator norms are between the appropriate H spaces.

Sketch of Proof. We shall use three facts:
(a) The set Bn span{XBhB:B rig(A), A g’n-1, XB E} is mapped

to the set Fn of functions Tf which are measurable and
E(Zfl,_ 1)- 0. Moreover, if g is a real valued "nn-1 measurable
function and f nn, then T- gf gT- if.

(b) T (resp. T-1) is uniformly bounded in LI(E) on each of the spaces nn

(resp. F).
(c) T when considered in L2(E) is an isomorphism with constant de-

pending only on the UMD constant of E.
((b) is proved before Theorem 2, (c) is a special case of Theorem 2.)
The proof now follows Section 4 of [Ma2] which in turn is inspired by a

result of Herz [He]:
Assume Ilfllna(n,E) 1. Substituting absolute values by norms, we define

g and h as in Garsia [Ga], p. 92, and we put f E(gl,) and f’
E(hl ), and we let

k

dc f/ f/-I, d’ f/’ f/t__ 1, fk Z (fjl) -1/2 dj.t
j=l

Applying Abel’s transform we get

11311 -< 4( f*_ 1)1/2.
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It follows that 3 converges in LE(E) to a function 3 Applying T-1 to f, by
(a) and (c)we get

T-if E (fj*-l)-l/2T-ld;
j--1

By Doob’s inequality,

Esup E (fj*-..1)-l/2z-ld; -< 4EIIT-13I 2 -< 16K2
k j--1

where K is universal
Now, by partial summation,

k

E T-ld;
j=l

_< 2"sup E (fj*-l)-l/2r-ldj (fk*-l) 1/2

l<k j=l

and

r-1 EdjII , I-< C2Esup E (fj*-l)-l/2r-ldj
k j=l

_< 16C2K 2.

For d}’ we get

2

n n

E Ildj’[I _< 4fn*_ + 4 E E(f.* fj*_l[ j_l)
j=l j=l

(see Garsia [Ga], p. 93). We thus get from (b) that for a universal constant K

E sup , T- ldj’ _< E T- ldj’ II
k j=0 j=0

< KE Ildj’ll

< 8KEsupllfkll 8K.
k

This shows that T-1 is bounded. A similar proof shows that T is bounded.
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Remark 5. The decomposition of the martingale {fk} into {f + f’} goes
back to B. Davis IDa] in which the equivalence of the Ll-norms of the square
function and the maximal function of a real valued martingale is proved. It
turns out that B. Davis’ inequality generalizes to the appropriate vector
valued case. As the proof is basically the same as the proof given in [Bu] for
the real case, we do not repeat it here.

THEOREM 6 (l. Davis).
martingale f {f,},

Let E be a UMD space. Then for every E-valued

C-1[Ifllgl(E) Ef ][ E l’n( fn fn-1) -n=l

where {/’m}=l is a sequence of Rademacher functions independent of {fn)=l
and C depends only on the UMD constant of E.

Note also that the righthand side inequality of Theorem 6 follows from the
proof of Theorem 4.
We now state two corollaries to Theorems 4 and 6. The first deals with

unconditional bases for H1(, E).

COROLLARY 1. Let E be a UMD space and let {} be a finite or infinite
filtration of finite algebras. Then HI(, E) has an unconditional decomposi-
tion into copies of E.

If in addition, E has an unconditional basis, then so does Hl(nn, g).

Proof The fact that the Rademacher sequence is distributionally invari-
ant under changes of signs together with the contraction principle, (2), imply
that

n An_ Bd(A)

is an unconditional direct sum in Hl(,.n, E). Now apply Theorem 4.
If E has an unconditional basis {ei}_ 1, then by Theorem 6,

n Z:CCn_ Bdg(A) H

EE E E
n A.n_ B(A)

aa, irnhaeill.
(cf. [LT], p. 50). By the Maurey-Khinchine inequality (E necessarily has
cotype < ), the last expression is equivalent, with constant depending only
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on the UMD constant of E to

E E E a2 ih eiB,
n AC’n_1Bd(A)

which proves the second assertion of the corollary.

We remark that even for E R the corollary does not seem to be easy.
This case, however, was known to Maurey and is stated without proof in
[Mal].
The second corollary is a form of the vector valued Gamlen-Gaudet

theorem for H1(6). (The real valued infinite dimensional case was completely
resolved in [MiJ2].)

COROLLARY 8. For the dyadic algebras {(tn} for any (finite or infinite)
subsequence H of the Haar function, H (R) E (closure in Hl(tn, E)) is isomor-
phic to an Hl(nn, E) space, with constant of isomorphism depending on the
UMD constant aE(E) of E only.

The proof is analogous to that of Theorem 3.
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