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FINITE 2-GROUPS OF CLASS 2 IN WHICH EVERY
PRODUCT OF FOUR ELEMENTS CAN BE REORDED

BY

P. LONGOBARDI AND S.E. STONEHEWER

1. Introduction

If n is an integer greater than 1, then a group G belongs to the class Pn if
every ordered product of n elements can be reordered in at least one way; in
other words, to each n-tuple (x 1, x2,..., xn) of elements of G there corre-
sponds a non-trivial element tr of the symmetric group E such that

XlX2 Xn Xtr(1)Xtr(2 Xtr(n).

The union of the classes Pn, n > 2, is denoted by P. It was shown in [4] that
P consists precisely of the finite-by-abelian-by-finite groups.

Clearly P2 is the class of abelian groups, while G P3 if and only if
[G’[ < 2 [3]. Graham Higman [6] characterised finite groups of odd order in

P4 and also proved that a group G with G’ V4 (the 4-group) always belongs
to P4. Then in [8], improving a result in [1], it was shown that all P4-groups
are metabelian. Finally in [9] the non-nilpotent Pa-groups were classified and
the nilpotent Pa-groups were shown to have class at most 4. We recall the
details of these results in 2.
The present work is a further contribution to the classification of P4-groups.

We determine precisely which finite 2-groups of class 2 belong to P4.
Combining this work with the results of [9] it has been possible to classify all
Pa-groups and a complete description by M. Maj and the present authors will
appear elsewhere. The finite 2-groups of class 2, however, are most conve-
niently treated independently. If G is such a group in P4, we shall see that
G’ has exponent at most 4. Our main results are:

THEOREM A. Let G be a finite 2-group of class 2 with G’ of exponent 4.
Then G P4 if and only if G’ C4 and G has a subgroup B of index 2 with
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THEOREM B. Let G be a finite 2-group of class 2 with G’ of exponent 2.
Then G P4 if and only if

(i) G has an abelian subgroup of index 2, or
(ii) G’I <4, or
(iii) IG’I 8 and G/Z(G) can be generated by 3 elements, or
(iv) IG’I 8, G/Z(G) can be generated by 4 elements and G is not the

product of two abelian subgroups.

Notation is as follows.
C a cyclic group of order n,
V4 the 4-group,
E,, the symmetric group of degree n,
G’ derived subgroup of G,
Z(G) centre of G,
C centraliser in G,
(G) Frattini subgroup of G,

Igl order of element g,
gX x- gx,
[x, y] x-ly-Ixy,
exp G exponent of G.

2. Known results

First we state Higman’s two contributions [6].2

2.1. Let G be a group with G’ =- V4. Then G P4.

2.2. Let G be a finite group of odd order. Then G P4 if and only if one of
the following holds"

(i) G is abelian;
(ii) G’I =3;
(iii) Ia’l 5 and IG/Z(G)I 25.

The result which first suggested that a complete description of the class P4
might be possible is:

2.3. [8]. If a group G belongs to P4, then G is metabelian.

A useful result from [9] (namely 2.1.3) is:

2Since the proofs of 2.1 and 2.2 are not yet published, Professor Higman has kindly allowed
M. Maj and the authors to include them in their complete description of the class P4 which
exists in the form of a set of typed notes and is available from the authors. We wish to record our
gratitude to Professor Higman.



200 P. LONGOBARDI AND S.E. STONEHEWER

2.4. Let G be a finite 2-group belonging to P4 and let A be an abelian
subgroup of G containing G’. If G --A(x), then one of the following holds:
() [A,x] 1;
(2) G’ =- V4;
(3) G C4 and G’ < Z(G).

Finally the main theorem of [9], which characterizes the non-nilpotent
groups in P4, is"

2.5.
(i)
(ii)
(iii)
(iv)

A group G belongs to P4 if and only if one of the following holds:
G has an abelian subgroup of index 2;
G is nilpotent of class < 4 and G P4;
G’= ;
G B(a, x), where B < Z(G), lal 5 and ax a 2.

3. Proofs of Theorems A and B

Throughout

G denotes a finite 2-group of class < 2.

Our objective is to find necessary and sufficient conditions for G to belong to

P4. If G P4, then since each element of G belongs to an abelian subgroup
containing G’, it follows from 2.4 that exp G’ < 4. In 3.1 we study the case
where exp G’= 4. It turns out then that G’-= C4 (3.1.2) in which case
necessary and sufficient conditions for G P4 are founded in Theorem A.
The case when exp G’ 2 is considered in 3.2. If G P4, then either G has
an abelian subgroup of index 2 or a’l < 8. The complete description of this
case is given in Theorem B.

3.1. G’ of exponent 4.

Following Philip Hall we call a group diabelian if it is the product of two
abelian subgroups. Then we have:

3.1.1. Let G be diabelian with exp G’ 4. If G P4, then G’ C4o

Proof We have G AX with A and X abelian and Z(G) < A f3 X. Let
a A, xX such that I[a,x]l =4. Then [a, x214= 1 and so, by 2.4,
[A, x] < ([a, x]). Similarly [a, X] < ([a, x]). Now for each Xl X, either
I[a, Xl][ 4 or I[a, xxx]l 4. Thus either [A, x1] < ([a, X1]) or [A, XX1]
([a, XXl]). Therefore G’ [A, X] ([a, x]). ffl

Now we can dispense with the hypothesis that G is diabelian.
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3.1.2. Let G P4 and exp G’= 4. Then G’ C4.

Proof Let a, x G such that [[a, x][ 4. Then

(a, x, y)’ ([a, x]) for all y G. (1)

For, write X (a, x, y) and b [x, y]. Suppose that Ibl < 2. By 3.1.1, it
suffices to show that

X is diabelian. (2)

Thus we may assume that b 4: 1. If [a, X 2] (b), then [x, a2y] 1 and (2)
follows. Assume therefore that [a,x 2] (b). Since X/(b) is diabelian,
3.1.1 gives (X/(b))’= ([a, x](b)) and so

[a, y] ([a,x],b) --C4 x C2.

If [a, y [a, x ]i for some integer i, then [a, y- lxi] 1 and

X (a, y-l, xi)(x)Z(X)

is diabelian, If a, y a, x ]ib, then xa- 1, a -iy 1 and again

X= (x)(xa-l,a-iy)Z(X)

is diabelian.
Now suppose that bl 4. Then I[x, y 21t 2 and by the previous case

[x, y2] (a,x, y2)’ ([a,x]).

Therefore x, y2] a 2, X and x, ay ]2
(with y replaced by ay)

1. Thus again by the previous case

X’ (a, x, ay)’ ([a, x]).

Now we have established (1).
Let g, z G. It suffices to show that [g, z] ([a, x]). By (1),

a, g and x, z belong to ( a, x ).

If I[a, g]l 4, then again by (1)

(a g,z ([a g]) ([a x])
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and so [g, z] ([a, x]). If [[a, g]l < 2, then [[a, xg]l 4 and (1) gives

and hence [g, z] [x, z]-l[xg, z] ([a, x]). []

If G’ C4, then G does not necessarily belong to P4. The following result
(which we need for our classification purposes anyway)will enable us to
construct an example of this fact.

3.1.3. Suppose that G’ C4. Then the following are equivalent"
(i) G
(ii) there are elements Xl, x2, x3, x4 G such that [x 1, x2] [x2, x3]

[x3, x4] of order 4 and [x 1, x3] [x 1, x4] [x2, x4] 1.

Proof Suppose that G P4 and that the product X1X2X3X4 cannot be
reordered. Then

X1X2X3X4 x4x1x2x3a x4x3x1x2b x4x3x2xl

with G’ {1, a, b, c}. Let xix2x3x4 X4X1X3x2d. Clearly d 4: a; and if
d c, then

giving

X1X3X2 X3X2X

1 Ix1, X3X2] Xl, X2X3]

a contradiction. Therefore d b and so

X1, X3] 1.

In the same way we obtain X1X2X3X4 --X4X2XlX3b and so X2XIX3 ----X3XlX2
X1XaX2. Therefore [X2, X1X3] 1 and

IX1, X2] [X2,X3].

Since x-lx-lx-lx-I also cannot be reordered, we have, by the same
argument,

Ix2, x4] 1 and [xz, x3] [x3, x4].

Now consider XIX2X3X4 x1x4x2x3e. If e b, then X4X3XIX2
X1X4XEX3 X1XEX4X3 and 1 [XlX2, x4x3] [xix2, X3X4] a contradiction.
If e c, then X4X3X2X X1X4X2X3 X1X2X4X3 and x1x2x3x4 x3x4x2xl
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again a contradiction. Therefore e a and

Xl, X4] 1.

Finally, a [x3, x4] [x2, x3] Ix1, X2] cannot have order 2, otherwise
X1XEXaX4 XEX1X4X3. Thus (i) implies (ii).

Conversely, if (ii) is true, a routine check shows that x x2x3x4 cannot be
reordered and so (i) follows, ra

We can now construct an example of a finite 2-group G of class 2 with
G’ -= C4 and G e P4. Thus let

G---- ((x2) x (X4) X (a)) > ((x1) X (x3))

where x 1, x2, x3, x4 and a all have order 4,

and

IX1, X2] IX2, X3] IX3, X4] a

[Xl, X4] [xl, a --[x3, a 1.

Then G’ (a) < Z(G) and G’= C4. Moreover the elements x1, x2, x3, x4
satisfy (ii) of 3.1.3 and so G e P4.
The structure of the groups under consideration which belong to P4 can

now be described.

3.1.4. Suppose that G’ =- C4. Then G P4 if and only if G has a subgroup
B of index 2 with B’I 2.

Proof Suppose that G P4 and let B be a subgroup of G, maximal
subject to IB’I 2. Then Z(G) < B G. We show that lain[ 2.

Since for all g G, (B, g2), B’, we have

G/B is elementary abelian.

Suppose, to the contrary, that G has 2 independent elements modulo B, say
w, y. By choice of B, there is an element x B such that I[x,w]l--4.
Put a [x, w]. Thus G’ (a) and B’ (a2). For some integer i, we have
[w, y] [xi, w] and so [w, xiy] 1. Therefore taking xiy for y, we may
assume that [w, y] 1.
Now B CB(w)(x). If [CB(w), y] < B’ then I[x y]l 4, since (B, y

(a). Thus [x w2y 2] 1 and so (B, wy B’, again contradicting our
choice of B. Therefore there is an element z Cs(w) such that

I[z,y]l 4.
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If x, z : 1, then x, z a2 and hence Xy 2, Z 1;
[Xy 2, W] Ix, W]. Thus taking Xy 2 for x, we may assume that

and Xy 2 B,

[x,z] 1

and (replacing z by z-1 if necessary)that [y, z] a. Also replacing x by xz
if necessary, we may assume that I[x, y]l 4. Then replacing x by xz 2 if
necessary, we may assume that [x, y] a.
Taking w, x, y-l, z for Xl, x2, x3, x4 respectively, we see that (ii) of 3.1.3

holds, contradicting G P4. It follows that IG/BI 2.
Conversely, suppose that there is a subgroup B <1 G with IG/BI IB’I

2. Assume, to the contrary, that G P4. By 3.1.3 there are elements
X1, X2, X3, X4 G such that IX1, X3] IX1, X4] 1 and IX1, X2] IX3, X4] Of
order 4. Thus Ca(x1)’ G’. If Xl B, then G (B, Xl) and Ca(Xl)
( x ) Cn(x 1), giving Ca(x 1)’ Cn(x 1)’ -< B ’, a contradiction, Therefore x
B. Hence x2 B and so Ca(x1) _< B, again a contradiction. Then G P4 as
required, t

From 3.1.2 and 3.1.4 we obtain Theorem A.

3.2. G’ of exponent 2.

Throughout this section (except for 3.2.6)

G denotes a finite 2-group of class < 2 and with G’ elementary.

First we show that if G can be generated by 3 elements, then G P4. After
this we find necessary and sufficient conditions for G P4 when G is
generated by 4 elements. The general case (Theorem B) is handled by
studying the situation in which G/A is generated by 3 elements, for some
maximal normal abelian subgroup A of G.

In the proof of the following result, and occasionally thereafter, we make
use of the Burnside Basis Theorem (see, for example, [13]).

3.2.1. Let G be generated by 3 elements. Then G P4.

Proof Let B be a maximal subgroup of G. Then B/d(G) can be
generated by 2 elements and so In’l _< 2, since (G)< Z(G). Therefore
BP3.
Now let x 1, x2, x3, x4 G and suppose, for a contradiction, that x1x2x3x4

cannot be reordered. Then (x 1, x2, x3) P3 and so G (x1, x 2, x3). Thus

X4 "-XXJ2xk3 Z
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where z Z(G) and 0 < i,j, k < 1. If 0, then

1-kvjvk
3 X X-j "xk3 Z -kxXlX-Jx4x3 "2 X X J2xk3 XlX2X3X4,

a contradiction for all choices of j and k. Therefore 1 and so

-Jr kX -JrX4"2 ’3 lXX X4X2 "3 kx4z
X4Z- XX12-Jx-kx4

-kx4XlXXk3xl-JX
xx2x3x4 if j k 0 or j=l,

again a contradiction. It follows that x4 X1X3 Z and so

X1X2X3X4 X1X2X3( XIX3Z)

X3X1X2( X1X3Z)[ X1X2, X3]

X3XI(X3X2X1)Z[X2XI, X3] [XIX2, X3]

--X3(X1X3Z)X2X
X3X4X2X1

a final contradiction. Therefore G P4. t3

Now we proceed to the case when G can be generated by 4 elements and
record first some routine observations.

3.2.2. Letw, x,y,zGandputa =[w,x], b=[w,y], c=[w,z], d=
x, y ], e x, z ], f y, z ]. Then the product wxyz can be reordered if and
only if at least one of the following elements is equal to 1:

a,d,f,
ab, af bd, de, ef
abc, abd, acf bde, cef def
abcd, abcf acef bcde, cdef
abcde, abcef bcdef
abcdef

Proof. This follows by setting the product wxyz equal to each of its 23
reorderings in turn. rn
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As a straightforward corollary, we have:

3.2.3. With the same notation as 3.2.2, let r be the rank of (w, x, y, z)’.
Then the product wxyz cannot be reordered in each of the following cases:

(i)
(ii)
(iii)
(iv)
(v)
(vi)

r 5, b 1:
r=4, b=c=l;
r=4, b=e= 1;
r=3, b=c=e= 1;
r 3 b cd ade 1;
r 3, b cdf adef 1.

Using these results we can establish:

3.2.4. Suppose that G ( w, x, y, z) with [w, y x, z 1 and G’ >
8. Then G q P4.

Proof We adopt the notation of 3.2.2 with r rank G’. By hypothesis
b e 1. If r 4, then G P4 by 3.2.3(iii). Therefore suppose that r 3.
Then there are i, j, k, {0, 1}, not all 0, such that aicJdkf= 1. If i= 1,
then replacing the 4-tuple (w, x, y, z) by (w, z, y, x), c is interchanged with a
and so we may assume that j 1. Similarly if k 1, we can argue with
(x, w,z, y) and if 1 with (y, x, w, z) so that we may assume j 1 in all
cases.
Thus {a, d, f} is a basis for G’ and

c aidkf.
If c 1, then G P4 by 3.2.3(iv). For the other values of c, there are 4
elements (indicated in column 2 below), which we may substitute for
w, x, y, z, whose product cannot be reordered, again by 3.2.3 (the relevant
part being indicated in column 3).

c 4 elements 3.2.3

a w, x, y, xz (iv)
d w, x, y, wyz (v)
f wy, x, y, z (iv)
df w, xy, y, wyz (vi)
af wy, x, y, wxz (v)
ad w, wx, wy, wz (v)
adf wy, x, y, xz (iv)

ThusGP4. D

Now we can exclude from P4 those 4-generator groups G with a’l > 8.
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3.2.5. Let G be generated by 4 elements and G’I > 8. Then G P4.

Proof Since G has a quotient with derived subgroup of order 16, we may
assume that IG’ 16. Suppose that G (w, x, y, z) with [w, y] 1. By
3.2.4 we may assume that [x, z] 1. Let N (x, z)’ and write G G/N,, Ng for all g G. Then G (, x, y, z), [G’[ 8 and [, y]
[, 2] 1 and so G P4, by 3.2.4. Therefore G P4.
Thus we can assume that

among any 4 elements which generate G, no two commute. (3)

Let G (w, x, y, z) and X ([w, x], [w, y], [w, z]). By (3), IXl 8 and so
G’/XI 2. Therefore at least one of the commutators x, y ], x, z ], x, yz
belongs to X and clearly we may assume that [x, y] X. By (3) we have

Ix, r] ([w, [w, r]>;

for, if, for example, [x, y] [w, x][w, y], then [wx, xy] 1, contradicting (3).
Hence [x, y] [w, xiyjz] for some integers i,j. Then G/(x, y)’ P4 by
3.2.4. Therefore G P4. ra

If [a’[ 2, then G P3 [3] and if G’-= V4, then G P4 (2.1). Thus
among the 4-generator groups G, we have to consider only those with
G’I 8. In this case G has an abelian subgroup of index 4. For, if V is a
4-dimensional vector space over a finite field, then for any 3 antisymmetric
bilinear forms on V, there is a subspace of dimension 2 on which all 3 forms
are trivial [5]. Take G/dp(G) for V and let N/ (i 1,2,3) be subgroups of
order 4 in G’ with N10 N2 f)N3 1. Writing d(G)g for all g G,
and observing that (G) _< Z(G),

(1’ 2) Ni[ gl, g2]

defines an antisymmetric bilinear form in V for each i, and so there is a
subgroup A/dP(G) of order 4 such that, for all al, a 2 A, [al, a2] N/
(i 1, 2, 3), i.e. A is abelian.
An alternative argument suggested by Caranti may have independent

interest.

3.2.6. Let G be a 4-generator finite p-group of class 2 with G’ elementary
of rank 3. Then G has an abelian subgroup of index p2.

Proof. Since P(G) < Z(G), we may assume that G/dp(G) has rank 4 and
it suffices to show that G has 2 commuting elements which are independent
modulo P(G). Consider V G/dp(G) and G’ as vector spaces over GF(p).
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Then there is a natural linear map from the wedge product A2V to G’
namely

where g (G)g for all g G. Let K be the kernel of this map. We must
show that K contains a decomposable tensor g’l A g’2 4: 0, i.e., that K
intersects non-trivially the (affine) Grassman manifold of decomposable
elements of A2V. Now is defined by a single quadratic equation in the
6-dimensional space A2V. In fact ’ consists of all ()tl,...,)t6) such that
/1/6 /2/5 q- ,3/4 0. (See [11], page 234.) Since K has dimension 3, it is
defined by 3 linear equations. The sum of the degrees of these 4 equations is
5 < 6, and so by the theorem of Chevalley-Warning (see [12]), the 4 equa-
tions have a common non-trivial solution, t3

Remark. This result will be used later in 3.2.12 and the proof of Theorem
B, and a chain of results terminating with those proofs now follows.

Reverting to our convention that G is a finite 2-group of class < 2 with G’
elementary, we have:

3.2.7.
(i)
(ii)
(iii)

Let G be generated by 4 elements. Then G P4 if and only if
G has an abelian subgroup of index 2, or
]G’I < 4, or
a’l 8 and G is not diabelian.

Proof Let G P4. Then, by 3.2.5, a’l < 8. If IG’I 8 and G does not
have an abelian subgroup of index 2, then G is not diabelian by 3.2.4.

Conversely, if (i) or (ii) holds, then G P4 by 2.5. Thus suppose that

G’I 8 and G is not diabelian.

For a contradiction, assume that there are elements w, x, y, z in G such that

wxyz cannot be reordered.

Let H (w, x, y, z). Then

H= G. (4)

For, if H < G, then Hd(G)/d(G) H/H (G) can be generated by 3
elements and hence H/Z(H) can be generated by 3 elements. But then
H P4, by 3.2.1, a contradiction. Therefore (4) is true.
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Adopt the notation for commutators used in 3.2.2. Then the elements (*)
are all different from 1. It follows that

G’= <a> X (bcde> X <f>.
Consider the element abcef. By 3.2.2 this element is not equal to 1 or abcdef
and so it must be equal to one of a, abcde, af, bcde, bcdef or f. Therefore

(i) bcef 1, or (ii) df 1, or (iii) bce 1,

(iv) adf= 1, or (v) ad= 1, or (vi) abce= 1.

or

Since z-ly-lx-lw -1 also cannot be reordered, the situation is symmetric in
a and f, b and e and hence it suffices to consider only the cases (i)-(iv).

Case (i). bcef 1. Then G’= (a) (d) (f) and from 3.2.2 it fol-
lows that either e 1 or e ad. But if e 1, then [x, z] 1 and hence
bcef bcf [wy, wz] # 1, since G is not diabelian, a contradiction. Also if
e ad, then [x, wyz] 1 and again bcef abcdf [wy, wxz] 1 for the
same reason.

Case (ii). df y, xz 1. Now G’ (a) ( bce ) (f) and 3.2.2 gives
e a, af, bce or bcef. Each possibility implies respectively that [x, wz],
[x, wyz], [w, yz] or [wy, wz] is 1, contradicting the fact that G is not
diabelian.

Case (iii). bce= 1. We have G’= (a) (d) (f). If b=e=adf,
then [w, z c 1 and [wy, wxz] abcdf c 1, again contradicting G
not diabelian. Thus by the symmetry referred to above, we may assume that
b adf. Then the only possibility consistent with 3.2.2 is b [w, y] 1 and
hence [wx, z] ce 1, giving G diabelian.

Case (iv). adf 1. Now G’ (a) (bce) . (f). Since b [w, y and
e [x, z], b and e cannot both be 1. Thus we may assume that b 1 and
then 3.2.2 implies that b bce, i.e. [wx, z] ce 1. Also [wxy, xz] acdef

1, contradicting G not diabelian, t3

Now we move towards the general situation which involves considering G
modulo a maximal abelian subgroup under different conditions. These results
build up to a proof of Theorem B.
We need the following result from [10]:

If G is a group with proper subgroups H1, H2, H3, then

G H U H2 U H3

if and only if

H N H2 H H3 H2 H3 and G/H rl H2 V4.
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3.2.8. Let G ( A, x, y) P4 where A is a maximal abelian subgroup of
G with G/A not cyclic and suppose that [x, y] 1. Then G’I < 4.

Proof Assume first that A < C(x) u C(y) t3 C(xy). Then A is cov-
ered by the 3 proper subgroups CA(X), CA(y), CA(XY). Thus, by [10],

A/Z( G) A/CA(X ) q CA(Y) --- V4
and so A/Z(G) is generated by 2 elements. Therefore G Z(G)(a, b, x, y)
for some a, b A and [G’I < 4 by 3.2.4.
Now suppose that A C(x)t3 C(y) C(xy). Then there is an ele-

ment a A such that [(a, x, y)’[ 4. If b A, again by 3.2.4 we have
[(a, b, x, y)’[ 4. Therefore G’ [A, (x, y)] has order 4. t2

If x, y : 1, we have:

3.2.9. Let G ( A, x, y) P4 where A is a maximal abelian subgroup of
G with G/A not cyclic and [x, y] : 1. Then either G’I <- 4 or G’I 8 and
G/Z(G) can be generated by 4 elements.

Proof.
that

Arguing as in the first part of 3.2.8 and using 3.2.5, we may assume

A, C (x) C (y) C (xy)

and so for some a A,

[([a,x],[a,y])[ =4.

If x, y A, x ][ A, y ], then x, y [a, x ][ b, y for suitable a, b A and
G-- (A, ay, bx) with [ay, bx] 1. Thus, by 3.2.8, a’l _< 4. Therefore we
may assume that

[x, y] . [A, x][A, y]. (6)

Then A/([x, y]) is a maximal abelian subgroup of G/([x, y]) and so, by
3.2.8,

I(G/([x,y]))’l-< 4 and IG’I _< 8,

as required. Also I[A, x]l < 4 and I[A, y]l < 4. Therefore

IA:Ca(x)l < and IA:C,(y)I <4.
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Suppose that CA(X) CA(Y) and CA(Y) CA(X). Then there are elements
b, c A such that

[b,x]=[c,y]=l, [b, y] 4:1 :# [c,x].

Let X (b, c, x, y). Thus IX’ < 4, by 3.2.4, and hence [b, y] [c, x], by
(6). Therefore, by. (5) and (6), [b, y] [c, x] [a, xVyS], for some y, 8
{0, 1}, not both 0. Let

Y (abS(1-’r)c,, x’y 8, b8(1-)c, xS(1-V)yV).

Using (5) and (6) it is straightforward to check that Y’I 8. But

abS(1-Y)cY, XyyS] b8(1-30cy, XS(1-y)yy 1,

contradicting 3.2.4.
It follows that either CA(X) < CA(Y) or CA(Y) < CA(x) and

IA Z(G)I < 4. Thus G/Z(G) can be generated by 4 elements, ra
hence

The next 3 results deal with the case when G/A can be generated by 3
(and not 2) elements.

3.2.10. Let G (A, x1, x2, X3) ( P4 where A is a maximal abelian sub-
group of G, (x 1, x2, x3) /s abelian and G/A cannot be generated by 2
elements. Then either G has an abelian subgroup of index 2 or G’I _< 4.

Proof Suppose that G does not have an abelian subgroup of index 2. By
3.2.8, we have for any i, j, 1 < : j < 3,

I(A, Xi, Xj)’[ <__ 4; (7)

and for any a, b A, independent modulo Z(G),

[(a,b, Xl, X2,X3)’[ <_ 4, (8)

since H (a, b, x 1, x2, x3) will not be cyclic modulo a maximal abelian
subgroup B containing (Xl, x2, x3). In fact, if aB bB, then

ab -I B (a,b) <Z(G) and a,b Z(G) A <Z(H) <_B.

Assume, to the contrary, that IG’I >_ 8. Since [A, Xl]q: 1, there is an
element a cA such that [ax, x 1] 1. It is easy to see from 3.2.7 that
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A/Z(G) has rank > 2, otherwise

G=Z(G)(a, xI, x2, x3)

for suitable a A with I(a, Xl, x2, x3)’[ 8 and (a, Xl, x2, X3) diabelian. If
all elements of A, which are independent of a modulo Z(G), commute with
x2 and x3 modulo ([a, Xl]), then (A, x2, x3)’ < (A, Xx)’ and G’ (A, x)’
has order _< 4, by (7), a contradiction. Thus there is an element a2 A,
independent of a modulo Z(G), such that (interchanging x2 and x3 if
necessary)

I<[al, x1] [a2, x2]>l 4.

Now rank A/Z(G) > 3, by (8), otherwise G’ (al, a2, Xl, x2, X3)’ of order
at most 4. In the same way we find an element a3 sA with al, a2, a3

independent modulo Z(G) and

X ([al, Xl] [a2, x2], [a3, X3]) has order 8.

Hence (A, Xi, Xj’ ([ai, Xi] X ([a., xj]), for any #: j, by (7), and so
G’ =X.

Let {i, j’, k} {1,2,3}. Then [ai, xj] [ai, xi]l[aj, Xj]m for some l, m,
0 < l, m < 1. If 1, then G’ < (A, x, xk)’, contradicting (7). Thus 0.
If m= 1, then

G’ < (ai, ak, Xl, X2, X3’
contradicting (8). Therefore [ai, xj] 1 and so G’ (ala2a3, Xl, X2, X3)’
again contradicting (8). Hence G’I < 4. t3

Next we assume that I(Xl, x2, x3)’[ 2.

3.2.11. Let G (A, x l, x2, X3) P4 where A is a maximal abelian sub-
group of G, [(x 1, x2, x3)’[ 2 and G/A cannot be generated by 2 elements.
Then either [G’[ < 4 or [G’[---8 and G/Z(G) can be generated by 4
elements.

Proof suppose that G’I > 4 and without loss of generality

[Xl, X2] 1, IX1, X3] [X2, X3] 1. (*)

Let X (A, Xl, X2)’ Y (A, Xl, X2X3)’ T (A, x2, XlX3)’. Suppose that
IXI, YI, TI <4. Then IXc3TI <2, otherwise X=T and G’=X, a
contradiction. Thus [A, x2] < X C3 T ([Xl, x2]) and so G’ Y, again a
contradiction. Hence at least one of X, Y, T has order 8 (using 3.2.9) and we
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may assume without loss of generality that

[(A,xI, x2)’[ =8 (9)

Let H (A, x 1, x2). If [x 1, x2] [a 1, xl]i[a2, x2] for some a 1, a2 A,
0_<i, j_< 1, then [a2xl, ax2]= 1. Therefore H= (A,a2xl, ax2) and
[H’[ < 4, by 3.2.8, contradicting (9). Thus

[A, (10)

We claim that there is an element a A such that

[(a, xl, Xa, X3)’[ "-8. (11)

For, certainly I(a, Xl, x2, x3)’[ < 8 for all a A, by 3.2.5. Thus suppose to
the contrary that [(a, Xl, Xa, x3)’[ < 4 for all a A. Then, by (10), [([a,
[a, Xa])[ < 2 and so

A <_ CA(X1) U CA(X2) 1,3 CA(XIX2).

Hence A/Z(H)-- V4 (by [10]) and H= (Z(H),hl, ha, Xl, Xa) for some
hi, h a A. Moreover we can choose hi, h a such that [hi, x 1] [ha, xa] 1.
But then H’ (hi, ha, Xl, xa)’ has order 8, by (9), contradicting 3.2.4. Thus
(11) holds for some a A.
From 3.2.4, (10) and (,)we obtain

(a, x1, x2, x3)’= (Ix1, x2] [a, xl], [a, x2]) K say. (12)

Now using 3.2.4 and (.) again, it follows that [a,x3] ([Xl, X2]). Thus
suppose first that [a, x3] 1. Since A is a maximal abelian subgroup, it
follows from (.) that there is an element b A such that [b, x3] 4: 1. Also,
by 3.2.5, (11) and (12),

(a, b, Xl, X2)’ (a, b, Xl, X2X3)’ K of order 8.

Therefore, by (10), [b, X2] ([a, Xl],[a X2]) "-L say. Since (9) holds with

x2 replaced by X2X3, SO does (10), i.e. [Xl, X2] [A,(xI, X2X3)]. Thus
[b, X2X3] L and therefore [b, x3] L. Write [b, x3] [a, xl]i[a, x2]j,
0 _< i, j _< 1, i, j not both 0. Then one checks (using (10)) that

(ax3 bx1X J2, X{X-j

has derived subgroup of order 8 and so does not belong to P4, by 3.2.4, a
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contradiction. Therefore

[a, x3] Ix1, x2]. (13)

Now by 3.2.8, I(A, xi, x3)’l 4, for 1, 2, and by (11) and (13)

(A, X1, X3>’ =# < A, X2,

Thus

[A,x3] <[a, x3]> and

[A, Xl] ([a, X1]>, [A, x2] ([a, x2]> by (10). (14)

Since (9) holds with x replaced by XlX2X3, in the same way we obtain
I[A, XlX2X3]l 2 and hence

A, XIX2X3] ([ a, x1x2x3]).

Therefore A <a, CA(X1X2X3)>. Finally, from (11)-(14), it follows that

z(

and thus G (Z(G), a, X1, X2, X3> and [G’[ 8. l

Having considered (in 3.2.10 and 3.2.11) the situation when (x1, x2, x3)’
has order at most 2, there remains the case I(Xl, x2, x3)’l > 4.

3.2.12. Let G <A, Xl, x2, X3) e4, where A is a maximal abelian sub-
group of G, I(Xl, x2, x3)’[ > 4 and G/A cannot be generated by 2 elements.
Then either [G’I < 4 or [a’[ 8 and G/Z(G) can be generated by 4
elements.

Proof. Let X-- <X1, X2, X3>. We distinguish two cases.

Case (i).
assume that

Suppose that Ix’l 4. Without loss of generality we may

[xx, x2] 1.

Ill(a, X}’[ 4 for all a A, then [G’I 4. Therefore suppose that

I<a, X>’l =8 (15)
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for some a A (using 3.2.5). Now

[a, x3] ([ Xl, X3]) X ([ X2, X3] ) X’, (16)

otherwise [axixJ2, x3] 1 [X1, X2] for some 0 < i,j < 1,
[(X1, X2, axx2, X3)’[ 8, by (15), contradicting 3.2.4. Hence

and

(a, X)’ ([a, x3]) X (Ix1, X3] ) X (Ix2, X3] ).

Likewise, by 3.2.4,

[a, xx] = [a, x3] and [a, x2] = [a, x3]. (17)

Assume to the contrary that G/Z(G) cannot be generated by 4 elements.
Then there exists b A such that a and b are independent modulo Z(G)
and

(a, b, X1, X2)’ 1, (18)

otherwise A(x 1, X2 ) ( > A) would be abelian.

Let H (a, b, X). So [H’[ 8, by (16). We claim that

H/Z(H) cannot be generated by 4 elements. (19)

For, since Z(H) q A < Z(G), the elements a and b, which are independent
modulo Z(G), are also independent modulo Z(H); IA H/Z(H)A[ >
22, and [H/Z(H) AI > 25 since

H/A H AH/A G/A.

If H/Z(H) can be generated by 4 elements, then [H/Z(H)[ < 24 and there
is an element g Z(H) \ A. Moreover g x3 mod A, by (16), and so

G AX (A, g, xi, X3)

for 1 or 2. But ](g, xi, x3)’] 2 and thus, by 3.2.11, G/Z(G) can be
generated by 4 elements, contradicting our assumption. Therefore (19) must
be true.

Also we claim that

H does not have an abelian subgroup of index 2. (20)

For, suppose that B is such a subgroup. Suppose also that a, b B. Then, by
(16), x3 B and hence, by (17), Xl, x2 B, contradicting (18). Therefore
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H B(a, b) and B C3 (a, b) < Z(H), contradicting the independence of a
and b modulo Z(H). Thus (20) is established.

)n is abelian. Let A be aNow H= (x1,x2)n(a b,x3) and (x 1,x2
maximal abelian subgroup of H containing (x 1, x2). Thus H/A is not cyclic
(by (20)) and cannot be generated by 2 elements (by 3.2.8 and 3.2.9, using
(19)). Therefore, by 3.2.11,

I(a, b, x3)’l 4.

By 3.2.9, I(A, Xi, X3 < 8, for 1,2. If I[A, (x, x3)]l 8, then [Xi, X3]
[a 1, xi][a2, x3], for some al, a2 A, and [a2x i, alx3] 1, contradicting

3.2.8. It follows that

I[A,(xi,x3)11<4, i= 1,2.

Thus

A, (X1, X3) A, (X2, X3> (a, b, x3)’ ([a, x3]) X ([b, x3]>.
(21)

If[a, X1] [a, x2] 1, then from 3.2.9 applied to H (x1, x2, a)n(b, x3)
with (Xl, x2, a)n abelian, we see that H/Z(H) can be generated by 4
elements, contradicting (19). Therefore we may assume that

[a, x1] 1.

Thus, since [a, X1] :g= [a, x3] (by (17)), (21) gives

JR, (x1, x3) ([ a, X 1]> X ([ a, x31). (22)

It follows that

(a, Xl, x2>’ ([a, Xl] ). (23)

For, if not, then (17), (21) and (22) give [a,x2] -[a, xl][a,x 3] and so
[a, X1X2X3] 1; then, by 3.2.4, [(a, X1X2X3, X1, X2>’ __< 4, contradicting (15).
Therefore (23) holds.
Now, by (21) and (22),

[b, x3] (a,X)’= ([a, x3]) ([x1,x3]) (Ix2,x31).
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Thus, for suitable i, j, k,

[b, x3] [a, x3]i[ x1, x3]J[ X2, X3] k

and so [aibxixk2, x3] 1. Therefore

H (aibxx2, x)n(a, X1, X2)

with the first factor abelian and [(a, x x, xz)’[ 2, by (23). As we observed
before, H cannot be generated by 2 elements modulo a maximal abelian
subgroup, and so 3.2.11 shows that H/Z(H) can be generated by 4 elements,
contradicting (19). Thus G/Z(G) can be generated by 4 elements and then
[G’[ 8, by 3.2.5.

Case (ii). Suppose that Ix’l 8. By 3.2.5, (a, X)’= X’, for all a A,
and so G’ X’. Assume to the contrary that G/Z(G) cannot be generated
by 4 elements. Then there are elements a, b A which are independent
modulo Z(G). Let H= (a,b,X). As in case (i), H/Z(H) cannot be
generated by 4 elements. For otherwise there is an element g Z(H) \ A
and G (A, g, xi, xj), for suitable 4: j, 1 < i, j < 3, contradicting 3.2.11.

Let K (a,X). By 3.2.6, there are generators Yl, Y2, Y3, Y4 of K with
Y 1, Y2] 1. We claim that

a, y 1, Y2 are dependent modulo d(K). (24)

For, if.not, then K (a, Yl, Y2, Yi), 3 or 4. Thus

H (a, b)n(yl, Y2, Yi)

and I(Yl, Y2, Yi)’l -< 4. Let A be a maximal abelian subgroup of H contain-
ing (a, b). It is easy to see that H does not have an abelian subgroup of
index 2. For, assume H D(y), where D is abelian and y2 D. If, for
example, Xl, X 2 D and x3 D, then from x1D x2D it follows that
x-ix2 D and [x 1, x3] [x2, x3], a contradiction. If x 1, x2, x3 D, then
x]- ix2, x- ix3] 1, again a contradiction. So

H/A cannot be generated by 2 elements, (25)

by 3.2.8 and 3.2.9. But this contradicts 3.2.10, 3.2.11 or case (i) above.
Therefore (24) is true.
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Since y 1, Y2 are independent modulo (K) (otherwise K would be 3-gen-
erator and H 4-generator), we have (interchanging yl and Y2 if necessary)

K (a, Yl, Y3, Y4)

and [a, yl] 1. Thus without loss of generality we may assume that [a, X1]
1. Then [b, x 1] : 1, by (25). Therefore arguing analogously with
(b, x 1, x2, x3), we may assume that [b, x2 1. Thus

H (a, x1)I-I(b, x2, x3),

I(b, x2, x3)’l _< 4 and we obtain a contradiction just as we did when estab-
lishing (25). []

The classification of the groups considered in this section which belong to

P4 can now be given.

Proof of Theorem B. Suppose that G P4 and proceed by induction on
GI. Suppose that there is a maximal subgroup M of G with IM’I > 8. Then,
by induction, M has a normal abelian subgroup B (> G’)with M/B
elementary abelian of rank < 2 (using 3.2.6). Let A be a maximal abelian
subgroup of G containing B. Thus G/A can be generated by 3 elements. If
G/A is cyclic, then (i) holds. Otherwise if G/A can be generated by 2
elements, then (ii), (iii) or (iv) holds, using 3.2.7, 3.2.8 and 3.2.9. (Observe
that if G is diabelian, then so is every subgroup K of G such that
G Z(G)K). If G/A cannot be generated by 2 elements, then the result
follows using 3.2.7, 3.2.10, 3.2.11 and 3.2.12. If G can be generated by 4
elements, then 3.2.7 suffices. Therefore we may assume that every 4-genera-
tor subgroup H of G has IH’I < 4. In this case it is known that a’l < 4
(Theorem A of [2]).

Conversely if G satisfies (i) or (ii), then G P4, by 2.5. If G satisfies (iii),
then G P4, by 3.2.1; and if G satisfies (iv), then G P4, by 3.2.7. []
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