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Introduction

Building up semi-algebraic geometry, H. Dells and M. Knebusch relied
almost entirely on geometric arguments (cf. [5]). To develop algebraic meth-
ods appropriate for the purposes of semi-algebraic geometry the rings of
sections of the structure sheaves of semi-algebraic spaces must be studied.
First steps in this direction were taken in [13], [14], [15], [16], [17] (see also
[2]). An attempt to develop an algebraic version of semi-algebraic geometry
with a sufficient degree of generality and at the same time keeping the
connections with geometry leads to a category of locally ringed spaces, called
real closed spaces [13], [15], [16]. This class of spaces generalizes locally
semi-algebraic spaces much in the same way as schemes generalize classical
algebraic varieties.
Using weakly semi-algebraic spaces [10], M. Knebusch has been particu-

larly successful developing algebraic topology for semi-algebraic spaces. These
spaces are obtained from affine semi-algebraic spaces by glueing them
together on closed semi-algebraic subspaces. From a purely algebraic point of
view these spaces are nothing new since their rings of sections are also real
closed rings [16, Chapter I, 4]. However, to keep close connections between
algebra and geometry the development of an algebraic version of the weakly
semi-algebraic spaces requires the construction of a new class of spaces:
affine real closed spaces have to be glued together on closed constructible
subspaces.

Recall that an affine real closed space is a pro-constructible subspace of
the real spectrum of a ring together with a sheaf of real closed rings [15], [16].
To glue two such spaces together on closed constructible subspaces and still
be able to use the usual sheaf theoretic techniques, the notion of openness is
redefined: The inverse topology on the pro-constructible subset K of the real
spectrum Sper(A) of the ring A has the closed (in the usual topology)
constructible subsets of K as its basis. If K with the inverse topology is
denoted by K*, then K* can be equipped with a structure sheaf of real
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closed rings to become a ringed space, an affine inverse real closed space.
These spaces form a category which is equivalent to the category of affine
real closed spaces. So, affine phenomena can be studied equally well in both
categories. In [15] and [16], affine real closed spaces are glued together along
open subspaces to yield real closed spaces. Similarly, if one glues affine
inverse real closed spaces together along open subspaces then one obtains
inverse real closed spaces. According to the different meaning of openness
both procedures lead to different spaces.
The general theory of inverse real closed spaces is developed only so far as

is necessary to establish the precise relationship with M. Knebusch’s weakly
semi-algebraic spaces. Subspaces (Section 2) can be defined exactly as for
real closed spaces [15, Chapter V, 2], [16, Chapter II, 2]. Also, for the
notions of quasi-compactness and quasi-separatedness of morphisms (Section
3) the most basic formal properties are exactly those familiar from schemes
[7, I, 6.1] or real closed spaces [15, Chapter V, 3], [16, Chapter II, 4].
However the geometric meaning of these notions may be different. A case in
point is the affineness result of Theorem 3.7: A quasi-compact and quasi-sep-
arated space is affine (cf. [15, Theorem V 4.8], [16, Theorem II 5.8]). In
Section 4 the equivalence between the categories of affine real closed spaces
and affine inverse real closed spaces is extended to a much larger category,
containing for example all paracompact spaces. In Sections 5 and 6 the
notions of completely quasi-separated spaces and of finitely presented mor-
phisms are discussed. These are exactly the notions required for the charac-
terization of those inverse real closed spaces which correspond to weakly
semi-algebraic spaces under a natural functor (Theorem 7.1). In fact, the
weakly semi-algebraic spaces over a real closed field R may be considered as
a full subcategory of the category of inverse real closed space over Sper(R).

1. The category of inverse real closed spaces

Let A be a real closed ring with real spectrum Sper(A) [1], [3], [11], [15],
[16], K c Sper(A) a pro-constructible subset [7, I 7.2.2], [15, Chapter II, 1],
[16, Chapter I, 1]. If C c K is a (relatively) constructible subset then Ca(C)
denotes the real closure of A on C [15, Definition III 2.6], [16, Definition I
2.8]. In [15] and [16] the locally ringed spaces (K, Ca,r) with Ca,r(U)
Ca(U) (U K open constructible) are used as affine building blocks of real
closed spaces.

If C Sper(A) is pro-constructible and C C t2 u C is a closed
constructible cover and if a Ca(Ci), 1,..., r, are such that ailC N Cj
alC C for all i, j, then there is a unique a Ca(C) such that

a lC a for every i. For, a is a constructible section [16, p. 8] since every a
is a constructible section on the constructible subset C c C. Moreover, a is a
compatible section [16, Definition I 2.1] since every C is closed in C and ai
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is a compatible section on Ci. Theorem I in [16, 2.7] now proves that a is a
semi-algebraic function. This can be reformulated by saying that the abstract
semi-algebraic functions have a sheaf property which, however, does not
refer to the usual weak topology of the real spectrum. First of all we give a
name to the appropriate topology:

DEFINITION 1.1. Let K c Sper(A) be pro-constructible, let (K) be the
lattice of closed constructible subsets of K. (K) is the basis of a topology of
K which is called the inverse topology.

If denotes the weak topology on K then * denotes the inverse
topology. Instead of (K, *) we will often write K*. If it is not clear from the
context which topology some topological term is referring to we will say, for
example, weakly open or inversely open. If X c K* is a subset then the
inverse topology on X is the restriction of the inverse topology on K. In case
X is pro-constructible in K it is clear that the inverse topology on X (as
defined in Definition 1.1) and the restriction of the inverse topology of K
both coincide. If K Sper(A) we will write Sper*(A) instead of K*.

According to [9], Proposition 8, K* is a spectral space. So, in K* there is
the notion of constructible subsets. These are exactly the same as the
constructible subsets of K. Therefore the pro-constructible subsets of K and
K* are also the same.

If we set C*(a, r)(C) Ca(C) for C a(K) then the above mentioned
sheaf property says that C’a, r) is a sheaf of rings on K*, given on a basis of
open subsets [7, 0 3.2.1]. Thus, (K*, C(*a, r) is a ringed space. In the theory of
schemes mostly locally ringed spaces are considered. In our situation we must
deal with another special class of ringed spaces:

DEFINITION 1.2. A ringed space (X, 0x) is integrally ringed if all the
stalks Ox, x are integral domains. If (X, Ox), (Y, Og) are integrally ringed
spaces and

(f f*)" ( X, Ox) (Y, Oy)

is a morphism of ringed spaces, then (f, f’) is a morphism of the integrally
ringed spaces if every homomorphism fx: Oy,f(x) Ox, x of stalks is a
monomorphism.

In a sense locally ringed spaces and integrally ringed spaces are dual to
each other. If x is a point in a lo.cally ringed space X then the stalk Ox, has
a unique maximal ideal. On the other hand, if y is a point in an integrally
ringed space Y then the stalk Oy, r has a unique minimal ideal. With x we
associate a canonical homomorphism from the stalk into a field, namely from
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Ox, x to its residue field. Similarly, with y we associate a canonical homomor-
phism from the stalk at y into a field, namely the injection of Oy, into its
quotient field. So, the quotient field of Oy, y plays the same role for Y as
does the residue field of Ox, x for X. Accordingly the following notation will
be used: If a Ox(U) (for U c X open) and x U then the image of a
under the canonical homomorphism

Ox(U) Ox, x Ox, x/Mx, x

is denoted by a(x). If a Oy(V) (for V c Y open) and x V then the
canonical image of a under

will be denoted by a(x).
It is immediately clear that the integrally ringed spaces form a category.

First we show that the spaces (K*, C(, r)) belong to this category.

PROPOSITION 1.3. With the notation above, (K*, CA r)) is integrally ringed.

Proof By definition,

CA,K), x lim CA,K)(C) lim C(A,K)(C)

where C runs over the weakly closed constructible subsets of K containing x.
The evaluation maps C(A,r)(C) --, p(x) form a direct system. (Here, and also
throughout the paper, p(x) denotes the real closed residue field of the ring
A at the point x Sper(A).) Hence there is a natural homomorphism
CA,K), x "- p(x). Suppose that a C(A,K), x is mapped to 0. Let b
CA,K)(C) be a representative of a. The set D {a Clb(a)= 0} is in-
versely open constructible and contains x. Thus, the restriction b ID of b is 0
in CA K)(D), and so is the canonical image a CA r), x"

rq

The proof of Proposition 1.3 also shows that, if x K and Y K is the
closure of x, then CA,K), x C(A,r)(Y). Moreover, p(x) is the quotient field
of CA r), x.
By [15, Theorem III, 3.2, Theorem III 3.5] or [16, Theorem I 4.5, Theorem

1 4.8] the stalks of the space (K*, C(, r)) are real closed integral domains. As
such they are also local rings (observe that the specializations of a point in
the real spectrum form a chain [1, 7.1.23) and apply [15, Proposition II 4.10]
or [16, Theorem I 3.10]. So, (K*, CA,r)) is a locally ringed space and an
integrally ringed space. We must consider it as an integrally ringed space to
obtain the same kind of correspondence between morphisms of these spaces
and homomorphisms of their global rings of sections as we have in the theory
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of schemes [7, I 1.6.3] or in the theory of real closed spaces [15, Proposition V
2.20, Definition V 2.24], [16, Proposition II 2.17].

DEFINITION 1.4. An integrally ringed space which is isomorphic to a space
(K*, CA r)) is called an affine inverse real closed space. An integrally ringed
space (X, 0x) is an inverse real closed space if there is an open cover
X iiXi such that every (Xi, OxIXi) is an affine inverse real closed
space. The inverse real closed spaces are considered as a full subcategory of
the category of integrally ringed spaces.

We return again to the spaces K (K, C(A,r)), K* (CA,r)) considered
above. By [15, Theorem II 4.17] or [16, Theorem I 3.25] we may assume that
A F(K). By definition of K*, the rings of global sections of K and K*
agree. It was mentioned above that the constructible topologies on K defined
by the weak topology and by the inverse topology both coincide. Let c be
the constructible topology and set Kc (K, ). Setting. Cc(A,r)(C) CA(C)
we define a presheaf of rings on Kc. If I: K - K, J: Kc - K* denote the
identity maps then the direct images I, (C(,r)) and J, (C,r)) are exactly
the sheaves CA,K on K and CA,K on K*.
We see that each one of the three spaces Kc, K and K* determines the

other two. This gives us a very easy way to pass back and forth between K
and K*. The same kind of connection exists between morphisms: First note
that the stalk of CA,r) at x K is the real closed field p(x). Now let

f" (K, C(a,r)) (L, C(S,L))
be a morphism of affine real closed spaces. Then f is continuous in the
constructible topology. Using the functor defined in [16, p. 10/11] we see
that, for C c L constructible, there is a canonical homomorphism

C(B,L)(C ) --* C(A,K)(f-I(c)).
Altogether this gives us a morphism

fc. (Kc, CA K)) (L C(B,L))
of pre-ringed spaces. Applying the direct image functors I. and J. we get
the morphisms

f I. (f)" (K, CA,I,:))
I. (Kc, CA,r)) (L, CB,L)) I. (L, CB,L)),

f* J.(fc): (K*,Ca,r))
J. (Kc, C(A. to)) (L* C.. I)) J. ( Lc, Cc(n.L))
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Conversely, we can start from a morphism g: (K*,CA,r)) - (L*,Cs,))
and repeat the same arguments. This gives us a morphism

gC. (Kc, CA,I))
_

(L, C(C,L))

of the pre-ringed spaces and morphisms

g j. (gC). (K*, CA,I)) (L*, Cn,L)),
gW I. (gC)" (K, CA,/)) (L, CO,L)).

It is also clear that fc (f.)c and gC (gW)C. This almost proves:

THEOREM 1.5. The category of affine real closed spaces is equivalent to the
category of affine inverse real closed spaces.

Proof Let (X, 0x) be an affine real closed space, qx: (X, 0x)
(K, CA,r)) an isomorphism. We set F(X)---(K*, CA,r)). Let (Y, Oy) be
another affine real closed space, qy: (Y, Oy) (L, CB,L)) an isomorphism,
f: X Y a morphism. Then there is a unique morphism fl: K L such
that flqx qyf. We set F(f)=f. Clearly, F is a functor from the
category of affine real closed spaces to the category of affine inverse real
closed spaces. Now we define a functor G in the opposite direction: Let
(X, 0x) be an affine inverse real closed space,

an isomorphism. We define G(X) (K, C(A,K)). If (Y, Oy) is another space,

qJy: (Y, Oy) (L*, Cl,L))

an isomorphism, g" X Y a morphism, there is a unique morphism gl."
K* - L* with glx Yg" We set G(g) g. Again this is a functor, and it
is clear that F and G are quasi-inverse to each other. D

In Section 4 the equivalence of Theorem 1.5 is extended to larger cate-
gories of real closed spaces and inverse real closed spaces.

If we are only interested in affine spaces, Theorem 1.5 tells us that, from
the categorical point of view, it does not make any difference if we work with
real closed spaces or with inverse real closed spaces. However, if X is an
affine real closed space then there are big differences between X and F(X)
on the topological level. So, glueing spaces together on open subspaces
means completely different things in the two categories. The effect of this is
that in the non-affine theory completely different spaces can be constructed.
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On the categorical level, Theorem 1.5 in connection with results from [15]
or [16] gives us the following information about inverse real closed spaces:

COROLLARY 1.6 (cf. [15, p. 135], [16, p. 40]). Let Ro be the field of real
algebraic numbers. Then Sper(R0) Sper*(R0) is the final object in the
category of inverse real closed spaces.

COROLLARY 1.7.
spaces.

Fiber products exist in the category of inverse real closed

Proof. For affine spaces this is a consequence of Theorem 1.5 and [16,
Theorem II, 3.1] or [15, Theorem V 2.26]. By a standard argument this can be
extended to the non-affine case (cf. [8, Proof of Theorem II 3.3]. t3

2. Subspaces

As with real closed spaces (cf. [15, Chapter V, 2], [16, Chapter II, 2]), for
inverse real closed spaces there is a very general notion of subspaces. The
definition is practically identical to [15, Definition V 2.5] or [16, Definition II
2.2]. However it should be noted that, even in the affine case, the subspaces
of (K, CA,r)) are not the same as those of (K*, CA,r)) (see Example 2.25).
This is due to the fact that the topology is used in defining the notion of a
subspace.

First we define open subspaces:

DEFINITION 2.1. Let (X, 0x) be an inverse real closed space, X’ c X an
open subset. Then (X’, OxlX’) is called an open subspace of X.

Of course we want to prove that an open subspace is an inverse real closed
space. For this we need:

LEMMA 2.2. If (X, 0x) is an affine inverse real closed space and X’ X is
an open constructible subset then (X’, OxIX’) is an affine inverse real closed
space.

Proof. We may assume that (X, 0x) (K*, C’., r)) and X L* c K* is
open constructible. By definition of the space K* it is clear that

CA, r))lL* CA,

PROPOSITION 2.3. An open subspace X’ X in an inverse real closed space
is an inverse real closed space.
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Proof. This is an immediate consequence of Lemma 2.2 and the defini-
tion of inverse real closed spaces, rq

DEFINITION 2.4. An open subspace X’ c X is an open affine subspace if it
is an aftine inverse real closed space. By Definition 1.4 every inverse real
closed space can be covered by open afline subspaces. We call this an open
affine cover.

In an affine space we can recognize easily if an open subspace is itself
affine. This result is extended to the non-affine situation in Theorem 3.7.
(The obvious proof is omitted.)

PROPOSITION 2.5. Let X be an affine inverse real closed space, X’ X an
open subspace. X’ is affine if and only if X’ is quasi-compact.

Now we define the notion of a subspace:

DEFINITION 2.6. (a) Let X be an affine inverse real closed space, X’ c X
a subset. X’ is a subspace if there is an open cover X’ U i IX with each
X’ pro-constructible in X.

(b) Let X be an inverse real closed space, X’c X a subset. X’ is a
subspace if for every open affine subspace X X, X’ N X is a subspace of
the affine inverse real closed space X1.

Observe that an open subspace (Definition 2.1) is a subspace in the sense
of this definition.

First we record the following fact about subspaces:

PROPOSITION 2.7. The set of subspaces of an inverse real closed space is
closed under finite intersections.

Proof Same proof as [15, Proposition V 2.18] or [16, Proposition II 2.8].

The corresponding statement about unions is false. (Also, the correspond-
ing part of [15, Proposition V 2.18] and [16, Proposition II 2.8] is false.) See
however Proposition 2.16.
There is a natural way to endow subspaces with a structure sheaf so that

they become inverse real closed spaces. First we do this for a subspace X’ of
an affine space X: Let X’= JiiX; be a cover as in Definition 2.6(a).
Since every X[ is pro-constructible in X, X[ has a natural structure sheaf
which makes it an affine inverse real closed space. Now consider X[ X].
This is pro-constructible in X, hence also in X[ and X]. By [16, Theorem I
3.25], the structure sheaves induced on X/’ X] by X, X[, X] all coincide. So
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these sheaves can be glued together to give a sheaf on X’. X’ is an inverse
real closed space with U i IX an open affine cover. It is an easy matter to
show that this construction is independent of the cover used.
To extend this construction to the non-aftine case we need:

LEMMA 2.8. Let X be an inverse real closed space, X1, X2 c X open affine
subspaces, Y c X a subspace such that Y c X N X2. Then Y is a subspace of
X and X2. The structure sheaves induced by X and X2 agree.

Proof. It is clear from Definition 2.6 ,that Y is a subspace of both X and
X2. Pick an open cover Y LI j Y such that Y c X is pro-constructible
for every j. We choose an open affine cover X X2 U k r Xk" For j J
there is a finite subset K. c K such that Y. c LI k r: Xk X (by quasi-com-
pactness of Y/). By Proposition 2.5, X is an open a/fine subspace of X and
X2 which contains Y.. [16, Theorem I 3.25] shows that X1 and X induce the
same structure sheaf on Y., and also X2 and X induce the same structure
sheaf on Y..
LEMMA 2.9. IfX is an inverse real closed space and X’ c X is a subspace

and X, X2 c X are open affine subspaces, then X’ q X X2 is a subspace of
X and X2.

Proof This is a trivial consequence of Definition 2.6 and Proposition 2.7.

Now we can prove:

THEOREM 2.10. If X is an inverse real closed space and X’ c X is a
subspace then X’ carries a natural structure sheaf which makes it an inverse real
closed space.

Proof If X c X is open and affine then we have already defined a
structure sheaf on X’ X1. We must see that these sheaves can be glued
together. So, let X2 c X be another open affine subspace. Again, X’ X2

already has a structure sheaf. By Lemma 2.9, X’ N X X2 is a subspace of
X and X2. Lemma 2.8 shows that the structure sheaves induced by X and
X2 on X’N X X2 both agree. Now it is clear that these sheaves glue
together, giving the desired structure sheaf for X’. o

Before discussing general properties of subspaces we record a few exam-
pies.

Example 2.11. We noted already that open subspaces are subspaces.
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Example 2.12. Let Y c X be a subset in an inverse real closed space such
that, for all open affine subspaces X’ c X, X’ X’ is a pro-constructible
subset. Y is a subspace, called a locally pro-constructible subspace. As special
cases of this we note the following:

(a) If Y X is closed then Y is a closed subspace.
(b) If Y c X is finite then Y is a finite subspace. In particular, if B c R is

a convex subring of a real closed field and if x Sper*(B) is the generic
point, y Sper*(B) the closed point, then {x, y} is a finite subspace of
Sper*(B). {x, y} is called a valuative inverse real closed space.

(c) If Y X is locally pro-constructible and quasi-compact then Y is
called pro-constructible. In particular, if f: Z X is a morphism of affine
inverse real closed spaces then f(Z) X is pro-constructible, f(Z) is called
the image of f.

Example 2.13. Let Y c X be a subset such that, for all open affine
X’c X, the subspace X’ Y c X’ is constructible. Then Y is a locally
constructible subspace. Y is constmctible if it is, in addition, quasi-compact.

Both the notion of locally pro-constructible subspaces and the notion of
locally constructible subspaces are defined by referring to all open affine
covers of a space. However, an easy argument shows that Y c X is locally
(pro-)constructible if and only if there is an open affine cover X U i iXi
such that Y 3 X c X is (pro-)constructible for all I. Note that similarly
in [16, Corollary 4.17] the hypothesis "quasi-separated" is unnecessary.
Now we mention a few general facts about subspaces.

PROPOSITION 2.14. For a subset X’ X of an inverse real closed space the
following statements are equivalent:

(a) X’ is a subspace.
(b) There is an open affine cover X 10i Xi such that X’3 X is a

subspace ofX for all i.

PROPOSITION 2.15. Let X’ Xbe a subspace, X" X’ a subset. Then X" is
a subspace ofX’ if and only if it is a subspace ofX.

It was mentioned above that finite unions of subspaces need not be
subspaces. However we have:

PROPOSITION 2.16. In an inverse real closed space X the locally pro-con-
structible (locally constructible ) subspaces form a lattice (Boolean lattice).

Proof This follows immediately from the fact that in an affine space the
pro-constructible (constructible) subspaces form a lattice (Boolean lattice).
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For the further discussion of subspaces it is useful to have the following
characterization of monomorphisms:

PROPOSITION 2.17. Let f: X- Y be morphism of inverse real closed
spaces. Then f is a monomorphism if and only iff is injective on the underlying
spaces and if, for every x X, the homomorphism p(f(x)) p(x) of real
closed fields is an isomorphism.

The proof is identical to the proof of [15, Proposition V 2.17] or [16,
Proposition II 2.13]. The same kind of arguments shows:

PROPOSITION 2.18. A morphism f: X Y is an epimorphism if it is
surjective on the underlying spaces.

Example 2.19. If X’ c X is a subspace we have the morphism inclusion.
This is a monomorphism.

PROPOSITION 2.20. Let f: X- Y be a morphism of inverse real closed
spaces, Z Y a subspace with f(X) Z. Then there is a unique morphism g:
X Z with f ig (i: Z - Y the inclusion).

Proof. Uniqueness is clear since is a monomorphism. To show existence
we may assume that X, Y, Z are all affine. Then the functors F and G of 1
can be used to transfer the corresponding property ([16, Proposition II 2.15]
or [15, Proposition V 2.28]) from affine real closed spaces to affine inverse
real closed spaces. 13

For the rest of this section more examples are discussed.

Example 2.21. Let x X be a point in an inverse real closed space and
let Gen(x) be the set of generalizations of x. Pick some open affine subspace
X0 c X with x X0. Then Gen(x) X0 is a pro-constructible subspace. By
Proposition 2.15, Gen(x) is a subspace of X, called the local subspace of
xX.

Example 2.22. If f: X Y is a morphism of inverse real closed spaces
and Y’ c Y is a subspace, then so is f-l(y,) c X. This subspace is called the
inverse image of Y’. In particular, the inverse image of the subspace {y} c Y
is denoted by f-l(y) and is called the fibre of f at y. Inverse images can also
be described in terms of fibre products: If i" Y’ Y is the inclusion we
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consider the cartesian square

X XyY’ Y’

X Y

Using Proposition 2.20 we can show that there is a canonical isomorphism
f-l(y,) _. S XyY’. In particular, we have f-l(y)

Example 2.23. For any morphism f: X ---> Y of inverse real closed spaces
we have the diagonal morphism A: X---> X yX (by the existence of fibre
productsmsee Corollary 1.7). We will see now that A is an isomorphism onto
a subspace. We start with an open affine cover Y (.JiY/and set X
f- l(y/). Then

x ,x U xi x,xi
il

is an open cover. For each let X U iXij be an open affine cover.
Then

x xx U U x,] x,xi
iJ j,kJ

is an open affine cover. We must show that A(X)n (Xij X yiXik) is a
subspace of Xi Xi for all i, ], k (Proposition 2.14). We have

a(x) n (x,+ x,,, x,,) a(x, xi,,).

If Xij n Xik U l LijkXijkl is an open aftine cover then

A ( gi ("} Xik) U m( gkjkl )

is a cover with the following properties:

m(Xijkl) m(xij I"1 Xik) I’l p? l(Xijkl) is open in m(xij i’ gik).
A(Xukl) c Xi, y..Xik is pro-constructible, being the image of a morphism

of aflin spaces’(Exmple 2.12(c)).

This proves that A(X) X yX is a subspace. We must now show that the
restriction A’: X---> A(X) (cf. Proposition 2.19) is an isomorphism. Let i:
A(X)---> X yX be the inclusion. Since idx pliA’ it follows that A’ is a
monomorphism. Since A’ is surjective it is an epimorphism (Proposition 2.18).
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We have

(Pli) A’ plA idx.

To show that A’ is an isomorphism we must prove A’(Pli) ida(x). Now A’ is
an epimorphism and we have (Pli)A’ pl A p2A (P2i)A’, thus, pl p2
holds. This shows that (pli, p2i): A(X) X yX factors through A’:

i’A(X)Xa_ A(X) XyX.

Since is a monomorphism and ida(x) we conclude that A’(pli)
ida<x).

Example 2.24. Let X, Y be inverse real closed spaces over an inverse real
closed space Z, let f: X Y be a morphism over Z. Then the graph
morphism F: X X zY is an isomorphism onto a subspace. For, F is
obtained by base extension from A: y y z [7, 0 1.4.9].

The final example shows that in the real spectrum Sper(A) of a ring there
can be subsets X and Y such that X is a subspace of the real closed space
Sper(A), but not of the inverse real closed space Sper*(A) and Y is a
subspace of Sper*(A), but not of Sper(A).

Example 2.25. Let M be a totally ordered set with a nontrivial cut
M M k3 M2, M1 < M2 such that M has no largest element and M2 has
no smallest element. We order G Q(M) lexicographically. If v: G \ {0} M
maps g to the largest element in the support of g, then we have g > 0 if and
only if g(v(g)) > 0. There is an injective order-preserving map from M into
the set of convex subgroups of G: x M is mapped to

Cx= {0} Ll {g Glv(g) <_x}.

Let C be the convex subgroup

U Cx {o} u {g GIv(g) M1}
x.Mi

Now let H be the formal power series field R((G)). Let w: H G t {} be
the natural valuation, W c H the corresponding valuation ring. Thus, H is a
real closed field, W a convex subring [12, Chapter II, {}5; Chapter III, 4],
hence a real closed valuation ring [6], [7]. So, we may identify Sper(W)=
Spec(W) [15, Proposition II 4.10], [16, Theorem I 3.1.0]. The convex sub-
groups of G correspond with the (convex) prime ideals of W. So, for every
convex subgroup Cx there is a prime ideal P, c W. Let P be the prime ideal
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corresponding to C. We set

X {a e Sper(W)lsupp(a) P}, Y= {a e Sper(W)lsupp(a) P}.

Then X is a union of open constructible subspaces of Sper(W), Y is a union
of closed constructible subspaces of Sper(W). By construction Y does not
have a generic point. Therefore is not a subspace of Sper(W). On other
hand, in Sper*(W), Y is a union of open constructible subspaces and X is a
union of closed constructible subspaces. Again by construction, X does not
have a generic point with respect to the inverse topology, hence is not a
subspace of Sper*(W). On the other hand, X c Sper(W) and Y c Sper*(W)
are clearly subspaces.

3. Quasi-compactness and quasi-separatedness

We say that a morphism f: X--, Y of inverse real closed spaces is
quasi-compact if f-l(y,) is quasi-compact for every open affine subspace
Y’ c Y [7, I 6.1.1], [15, Definition V 3.2], [16, Definition II 4.1]. It is easy to
see that this is equivalent to: There is an open affine cover Y LI i IY/such
that f-l(y/) is quasi-compact for every [7, p. 290], [15, Proposition V 3.5,
[16, Proposition II 4.4]. f is quasi-separated if the diagonal morphism Af is
quasi-compact [7, I 6.1.3], [15, Definition V 3.2], [16, Definition V 4.1]. As in
[15, Proposition V 3.9] or [16, Proposition II 4.12] one sees that each of the
following two statements is equivalent to f being quasi-separated.

For every open a/fine subspace Y’ c Y the restriction f’: f-l(y,) ._> y, of f
is quasi-separated.
There is an open a/fine cover Y U i IY/ such that every restriction

L: f-l(y/)
__

y/

of f is quasi-separated.

We will now collect a few basic properties of quasi-compact and quasi-sep-
arated morphisms (cf. [7, I 6.1], [15, Chapter V, 3], [16, Chapter II, 4]).
This will be done without proof since the proofs are virtually identical to
those in the references.
The following terminology will be used: let ’ be a class of morphisms of

inverse real closed space. We say that the class has property

(A) if it is stable under composition,
(B) if it is stable under base extension,
(C) if it is stable under products.
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PROPOSITION 3.1. (a) Morphisms of affine spaces are quasi-compact.
(b) If X c Y is a locally pro-constructible subspace then the inclusion is

quasi-compact.
(c) Quasi-compact morphisms have properties (A), (B), (C).
(d) If f: X- Y, g: Y Z are morphisms, gf is quasi-compact and g is

quasi-separated, then f is quasi-compact.
(e) If f: X Y, g: Y Z are morphisms, gf is quasi-compact and f is

surjective, then g is quasi-compact.

PROPOSITION 3.2. (a) Morphisms of affine spaces are quasi-separated.
(b) Monomorphisms are quasi-separated.
(c) Quasi-separated morphisms have properties (A), (B), (C).
(d) If f: X- Y, g: Y- Z are morphisms such that gf is quasi-separated,

then f is quasi-separated.
(e) If f: X- Y, g: Y--> Z are morphisms, gf is quasi-separated and f is

quasi-compact and surjective, then g is quasi-separated.

In Example 2.12(c) we saw that morphisms of affine spaces have images.
This is not true for arbitrary morphisms. But we have:

PROPOSITION 3.3 (Cf. [16, Proposition II 4.2], [15, Proposition V 3.4]).
f: X --, Y is quasi-compact then f(X) c Y is a locally pro-constructible sub-
space.

Proof This follows directly from Example 2.12(c) and Proposition 2.16.

If X is an affine inverse real closed space and C c X is pro-constructible
then the closure of C is the set of all specializations of elements C (cf. [15, p.
27], [16, p. 4]). Just as in [15, Proposition V 3.3 or [16, Corollary II 4.3], this
can be used to prove:

PROPOSITION 3.4. For a quasi-compact morphism f: X --, Y the following
conditions are equivalent:

(a) f is closed.
(b) For every x X and every y’ {f(x)} there is some x’ {x} with

ffx’) y’.

We call a space X quasi-separated if the unique morphism X Sper*(R0)
is quasi-separated. By Proposition 3.2, a morphism f: X -> Y into an affine
space is quasi-separated if and only if the space X is quasi-separated. So (by
the remarks at the beginning of this section) quasi-separatedness of mor-
phisms can be reduced to quasi-separatedness of spaces. Similar to [7, I
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6.1.12] and [16, Theorem II 4.16] or [15, Proposition V 3.16] this can be
characterized in the following way.

PROPOSITION 3.5. Let X U iXi be an open aflfine cover. The following
statements are equivalent:

(a) X is quasi-separated.
(b) For all i, j I, X N Xj is quasi-compact.
(c) For all quasi-compact open subspaces U, 1/c X, U 1/" is quasi-com-

pact.

As a consequence, quasi-separated spaces can be characterized by the
property that every open affine subspace is constructible. Another immediate
consequence of the definitions and Proposition 3.2 is that arbitrary subspaces
of quasi-separated spaces are quasi-separated. We also see that the quasi-
separated spaces with the quasi-separated morphisms form a full subcategory
of the category of inverse real closed spaces.

All the properties of quasi-compact and quasi-separated morphisms that
have been mentioned so far can be summarized by saying that the formal
properties of these notions are the same as in the case of schemes or real
closed spaces. But when we look at the geometric meaning of these notions
then things are different:

THEOREM 3.6.
space X is affine.

A quasi-separated and quasi-compact inverse real closed

For the proof of Theorem 3.6 we need the following generalization of [16,
Theorem I 4.5].

LEMMA 3.7. IrA is a ring, K Sper(A) is pro-constructible and C c K is
closed then the canonical restriction map CA(K) --, CA(C) is surjective.

Proof We may assume that A CA(K) [16, Theorem I 3.25]. If the
statement is true for all closed irreducible subsets C c K then the proof of
the general statement is identical to the proof of [16, Theorem I 4.5]. So, it
remains to prove the claim if C is closed and irreducible. This corresponds to
[16, Lemma I 4.4]. Although the proof is similar to the one in the reference
we repeat it here since a few changes have to be made.

Suppose that C= {x}, a CA(C), 0 <a. For every y C there
is a neighborhood Uy c K of y and there is some ar CA(U) with at(y)
a(y). Then

Fy {z C Uylay(z) a(z)}
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is closed and constructible in C n Uy and contains y. This shows that
C I,.J, cFy is a constructible cover. By compactness of the constructible
topology there is a finite subcover C U ’=IFi, where we set F. Fr and
a ayi.

Altogether this shows that there is a finite cover C c U i= 1Gi with Gi U/
n Hi, U/c K open constructible, H c K closed constructible, and elements
a Ca(Ui) such that ailG C alG t3 C. Suppose that such a cover has
been chosen with minimal r.
Suppose that r 1. There is some 0 < u A such that

Vl KlUl( ) > o}.

Let z C be the closed point. Then A Ca(K) ---> p(z) is surjective.
Pick b p(z), c A with c(z)= b and b > 1 + a(z)u{l(z). Then d
sup(c, 1) A*, hence

and

{a Kl(dUl)(a ) > O}

( dUl ) ( y ) > Ul( y ) + al( y ) > al( y ) for all yC.

The set D {a U1 la(a) > (dul)E(a)} is closed in U and has empty
intersection with C. [16, Corollary 1 3.28] or [15, Corollary II, 4.16] shows the
existence of some 0 < v < 1, v C.(U) such that riD O, vlC 1. For
va CA(U1) this implies ualIC alIC a, (val)(a) <_ (dulXa) if a U1.
If we define e(a) (val)(a) for a U1, e(a) 0 for a K\ U1, then [15,
p. 31] or [16, p. 14], shows that e A, and it is clear that A ---> Ca(C) maps

Now suppose that r > 1. We will show that this leads to a contradiction.
First note that every C Gi C is a constructible interval in C. Between
these sets there is no inclusion possible (since r is minimal). We enumerate
the C such that C c 2c ac c r C. Now we define V U
b al[V bE aE[V c bE b 1. Then C n V= C t U2. By constructibil-
ity of V, C V has a closed point y, C\V has generic point z. Since
c[C V can be extended to a compatible family " VIcp(a)with (a)
0 for aC\V, [15, p. 31] or [16, p. 14] shows that ’CA(C). Let
P CA(C) be the convex prime ideal generated by ’. Then

supp(y) c P c supp(z).

If ’n’: A ---> Ca(C) is canonical then

supp(y) 7r- l(supp(y) ) c 7r- 1(p) c 7r- l(supp(z) ) supp(z)
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are convex prime ideals of A. Hence supp(z) contains some 0 < v A with

Ic(y)l I(y)l < v(y).

If vlK\ V CA(K\ V), then S {a K\ Vl(a) 0} is closed con-
structible in K\ V and contains ]-= C\ V. The sets G(K\ V S) and
G(C\ V) of generalizations of K\V S and C\V in K are both pro-con-
structible and have empty intersection. Therefore there is some open con-
structible W c K with

w z a(c\ v), w a(I\V S) .
Now K\W is closed constructible and C t3 (K\ W) . By [15, Corollary
II 4.16] or [16, Corollary I 3.28] there is some w cA, 0 < w < 1 with
w lC 1, wlK\W= 0. Then we also have vw A, vwlC v lC and, for
a V, (vw)(a) O.
So far we have shown that there exists some 0 _< v A with

and with

V KIv( a) > O}

v(y) > I(y)l Ic(y)l.

(Replace v by the vw in the above computation.) The set

F= {a VIv(a) < Ic(a)l}

is closed constructible in V and F (V C)= . Again there is some
w CA(V) with 0 _< w < 1, wlF O, wlV C 1 [15, Corollary II 4.16],
[16, Corollary 1 3.28]. We have cwlV q C clV C and (cw)(a) < v(a) for
all a V. By [15, p. 31] or [16, p. 14], there is some d A such that dlV c
and dlK\ V 0. We let

e dIUI Ca(U1), f e + al.

If a C\U2 then

f(a) =e(a) +al(a) =al(a) =a(a).

If a G2 C then

f(a) =e(a) +al(a) =c(a) +bl(a) =b2(a) =a(a).

Now we set Uo= U1,Ho=H2,Go= UoHoand ao=fCA(Uo).Then

C (G L] G2) C ( GO
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and

a01G0 n C alG0 n C,

and the cover C c Go u U =3Gi has the same properties as the original
cover C c U ’_-G, but is shorter. This contradicts the minimality of r.

Proof of Theorem 3.6. X has an open affine cover X X I,A I,A Xn. If
we prove the claim for n 2 then it follows for arbitrary n by induction. So
let X X X2. We consider the following rings of sections:

A F(X), A F(X1) A2 F(X2) A12 I’(X o/2)

with restriction maps /91: Z ---)A i, o"i" Z Z12. These are all real closed
rings [16, Theorem 1 3.25, Theorem I, 4.12]. A is the fibre product A A12A2.
Since tr and r2 are surjective (Lemma 3.7) the same is true for Pl and P2.
This gives us isomorphisms

1: X c Sper* ( A 1) Sper*(A), i2: X2 c Sper* ( A2) Sper*(A)

onto pro-constructible subspaces Y1, Y2 c Sper*(A). We want to glue and

2 together on X N X2. First note that X is a spectral space (by Proposition
3.5). The map

i: X Sper*(A): x (A Ox, x p(x))

is a morphism of spectral spaces: If C c Sper*(A) is open constructible then
there is some a A such that C {a Sper*(A)la(a) 0} [15, Proposi-
tion II 4.13], [16, Proposition I 3.17], and this implies

X i-l(C) {x XllPl(a)(x ) 0},
X2 t’l i-l(C) {x X2lP2(a)(x ) 0},

i.e., i-1(C) is open and constructible. It is clear that ilg 1, ilg2 z. By
[16, Proposition I 3.27] there are a’ A such that

X n {x S la’g(x) 0}.

The sheaf property shows that there are al, a 2 A with pl(a 1) a,
Pl(a2) 0, PE(a1) 0, PE(a2) az. If Y i(X) this shows that i" X Y is
injective and

i(Xl) {o Yla2(a) 0}, i(X2) {a Ylal(a ) O}

are open constructible subsets of Y. Thus i: X Y is an isomorphism of
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spectral spaces. From 0.1Pl 0"2/92 it follows immediately that

i.e., and 2 glue together to the morphism i: X Y of inverse real closed
spaces, and is an isomorphism. Since Y is affine we conclude that X is
affine, r

COROLLARY 3.8. Quasi-compact quasi-separated morphisms of inverse real
closed spaces are affine; i.e., inverse images of open affine subspaces are open
affine.

These results correspond to [15, Theorem V 4.8; Corollary V 4.9] or [16,
Theorem II 5.8 and Corollary II 5.10. However, in the references the
additional hypothesis of regularity was required. Regularity of a real closed
space means that the specializations of a point form a chain. Translating this
into the language of inverse real closed spaces it says that the generalizations
of a point form a chain. But this is true in every inverse real closed space.
The results of this section give us some additional information about

diagonal morphisms (hence also about graph morphisms): By Proposition 3.2,
diagonal morphisms are quasi-separated. Corollary 3.8 shows that the diago-
nal morphism of a quasi-separated morphism is affine. In this case the image
of the diagonal (Example 2.23) is a locally pro-constructible subspace.

4. Connections between real closed spaces and inverse real
closed spaces

We saw in 1 that the categories of affine real closed spaces and of affine
inverse real closed spaces are equivalent via two functors F, G. This equiva-
lence is extended in this section.

Recall that real closed spaces are a generalization of locally semi-algebraic
spaces [5], [15], [16]. Similarly weakly semi-algebraic spaces [16] are general-
ized by the inverse real closed spaces (see 7). In [10, Chapter V 3] it is
shown that a locally semi-algebraic space is weakly semi-algebraic if and only
if it is paracompact. Here we will prove a related result. We start with a
definition from 14].

DEFINITION 4.1. Let X be a real closed space or an inverse real closed
space. X is taut if it is quasi-separated and every x X belongs to some
closed constructible subspace.

THEOREM 4.2. The equivalence between the category of affine real closed
spaces and the category of affine inverse real closed spaces can be extended to
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an equivalence between the category of taut regular real closed spaces and the
category of taut inverse real closed spaces.

Proof First let X be a taut inverse real closed space. Extending the
notation of 1 we let (X) be the set of closed constructible subspaces of X.
Since X is taut, "-(X) is a cover of X. Every C ’-(X) is contained in some
quasi-compact open subspace Uc c X. By Theorem 3.6, Uc is affine, and
G(Uc) has already been defined in 1. Since C c Uc is a closed constructible
subspace, G(C) c G(Uc) is an open constructible subspace. We want to glue
the G(C) together to obtain a real closed space. If D (X) and D c C
then G(D) can be canonically identified with an open constructible subspace
of G(C). This shows that the G(C), C ’(X) can be glued together to give
a real closed space G(X). By construction, G(X)= U c(x)G(C) is an
open affine cover and G(C1) N G(C2) G(C f’) C2). By [16, Theorem II
4.16], G(X) is quasi-separated.
For every C ’-(X)we have a bijection rc" C G(C)which is a

homeomorphism with respect to the constructible topology. These ’c fit
together to give a bijection z" X G(X). If X’c X is open (closed)
constructible then -(X’)c G(X) is closed (open) constructible. To prove
regularity of G(X) we pick a, fl, 3’ G(X), fl, y {a} Then
--1(3,) are generalizations of ’-l(a) in X. But in X the generalizations of a
point form a chain; i.e.,

This implies 3’ - or /3 }-, proving that G(X) is regular. Finally,
G(X) is also taut: Pick a G(X). There is some C (X)with a G(C);
i.e., --l(t) C Uc. Therefore a z(Uc), and -(Uc) is a closed con-
structible subspace of G(X).
So far we have defined the functor G on the objects. Now let f: X Y be

a morphism of taut inverse real closed spaces. If C (X) then f(C) is
quasi-compact and this implies that there is some open constructible sub-
space U c Y containing f(C). By tautness, we can find some D a(y) with
U c D. So, altogether this gives a morphism

G(fIC)" G(C) ----, G(D) c G(Y).

If C’ (X), C’ c C then it is clear that G(fl C’) G(fl C)[ G(C’). So the
G(flC) glue together to give a morphism G(f): G(X) G(Y). This com-
pletes the definition of the functor G.

Exactly in the same way the functor F from the category of taut regular
real closed spaces to the category of taut inverse real closed spaces is defined.
From 1 it follows that G and F are quasi-inverse to each other, r



INVERSE REAL CLOSED SPACES 557

In a quasi-separated space (real closed or inverse real closed)we can
define the constructible topology just as in the affine case (cf. [7, I 7.2.2]).
From the proof of Theorem 4.2 we see that, starting with a taut inverse real
closed space X, we may identify X and G(X)with the constructible topolo-
gies via the map z. So, one may say that the taut spaces are exactly those
spaces which can be covered equally well by weakly open constructible
subsets and by inversely open constructible subsets.

5. Complete quasi-separatedness

In [10, p. 4], weakly semi-algebraic spaces are defined by use of special
covers. In 7 we will characterize those inverse real closed spaces which
correspond to weakly semi-algebraic spaces. To be able to do this we must
consider spaces having the same kind of special covers. This causes us to
make the following definition"

DEFINITION 5.1. Let X be an inverse real closed space, .za a lattice of
subsets covering X..’ is locally constructible if every C .’ is locally
constructible. If .za is locally constructible and a complete Boolean lattice
then .’ is called completely locally constructible. A cover X IJi iXi is
called completely locally constructible if the complete Boolean lattice gener-
ated by {Xili I} is completely locally constructible.

We saw in 3 that X is quasi-separated if and only if there is a locally
constructible lattice of open affine subspaces (Proposition 3.3, Theorem 3.6).

DEFINITION 5.2. An inverse real closed space is completely quasi-separated
if it has a completely locally constructible open affine cover. A morphism f:
X- Y between inverse real closed spaces is completely quasi-separated if
f-l(y,) is completely quasi-separated for every open affine subspace Y’ c Y.

It is clear from the definition that every completely quasi-separated space
is quasi-separated. By the results of 3, the same is true for morphisms.

Before giving examples we prove the following characterization of com-
pletely locally constructible covers.

THEOREM 5.3. Let X UX be a cover of the inverse real closed space X.
The following statements are equivalent"

(a) The cover is completely locally constructible.
(b) For every open affine subspace X’ c X the set {X N X’[i I} is finite

and X X’ is constructible.

Proof. (b) = (a). Let B belong to the complete Boolean algebra gener-
ated by {Xili I}. Then B X’ belongs to the complete Boolean algebra of
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subsets of X’ generated by {Xi N X’li I}. Since this Boolean algebra is
finite and every X X’ is constructible in X’, B tq X’ is a constructible
subset of X’.

(a) = (b). We may assume that {Sli I} is a complete Boolean algebra.
By definition, X c X’ is constructible in X’ for every I. Since the
constructible topology is compact, the Boolean algebra {X X’li I} has
both the ascending and the descending chain conditions. Therefore it con-
tains finitely many atoms and every element is a finite union of these atoms.
Therefore {X ca X’li I} is finite. El

An immediate consequence is:

COROLLARY 5.4. Every finite union of completely locally constructible
covers is a completely locally constructible cover.

Example 5.5. Every locally constructible partion X UX is a completely
locally constructible cover.

Example 5.6. Every affine space is completely quasi-separated.

Example 5.7. Let X be quasi-separated and paracompact [4, p. 18]. Then
X is completely quasi-separated. For, every locally finite open affane cover
X tdX is completely locally constructible.

Example 5.8. Let X be a completely quasi-separated space, Y c X a
locally pro-constructible subspace. Then Y is completely quasi-separated.

To emphasize the analogy with weakly semi-algebraic space we note:

PROPOSITION 5.9. Let X be completely quasi-separated. Then there is an
open affine coverX t.J i I Xi which is a lattice and has the properties El-E6
of [10, p. 4].

Proof. Let X J i 1Si be a completely locally constructible open affine
cover. The lattice generated by this cover is another completely locally
constructible open affine cover. Therefore we assume that {Sili I} is a
lattice. If we set < j if X c_ Xj, then I is a lattice.

(El) X is covered by (Xi) I"
(E2) < j implies X

_
Xj by definition.

(E3) For I the set {j IIj < i} is finite by Theorem 5.3.
(E4), (E5) For i,jI there are k,lI with k<i,j<l. Set k=

inf(i, j), sup(i, j).
(E6) X is the direct limit of the subspaces (Xi) i. El
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Now we need a few basic properties of completely quasi-separated mor-
phisms.

PROPOSITION 5.10. For a morphism f: X Y the following properties are
equivalent:

(a) f is completely quasi-separated.
(b) There is an open affine cover Y= UY such that each f-l(y/) is

completely quasi-separated.

Proof We must only prove (b) = (a). Let Y U Y/ be a cover as in (b),
let Y’ c Y be open affine. We set Y/= Y’ c3 Y and choose an open affine
cover

Then Y/. c Y/ is an open affine subspace, f-l(r/)cf-l(y/) is a locally
constructible subspace. Thus f-l(y/) is completely quasi-separated (Example
5.8). Since Y’ U i, jY/ is an open affine cover there is a finite subcover

r

We have

f-l(y,) 6 f-l(r,),
k=l

and each f-l(r,) has a completely locally constructible open affine cover

(Zkt)tL. Since f-l(y,) is quasi-separated (Proposition 3.2), every Zkt is
locally constructible in f-X(y,) (remark after Proposition 3.5). It remains to
show that, for any open affine subspace Z c f-l(y,), the set {Z n Zkt]k, l} is
finite (Theorem 5.3): For every k 1,..., r, f-l(y,) is open and locally
constructible in f-l(y,). Then Z n f-l(y,)c Z is open and constructible,
i.e., Z f-l(r/,) is affine. Since f-X(r,)= U lZk is a completely locally
constructible open affine cover, the set

{Z C3 Zklll L} {Z C1 f-l( y,) C1 Z,II L}
is finite. This proves the claim.

PROPOSITION 5.11. (a) Every affine morphism is completely quasi-sep-
arated. In particular, if X Y is a locally pro-constructible subspace then the
inclusion is completely quasi-separated. If f: X Y is a quasi-separated
morphism then Af is completely quasi-separated.
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(b) Completely quasi-separated morphisms have properties (A), (B), (C) (see
3).

(c) Iff: X Y, g: Y Z are morphisms, gf is completely quasi-separated
and g is quasi-separated, then f is completely quasi-separated.

For the proof we need the following extension property for completely
locally constructible open attine covers:

LEMMA 5.12. Suppose that X is a completely quasi-separated space, X’ c X
is an open locally constructible (hence completely quasi-separated--see Exam-
ple 5.8) subspace. Let X’ [.J i IX[ be a completely locally constructible open
affine cover, {X[i I} a lattice. Then there is a completely locally constructible
open affine cover X 13 e jXj, {Xy[j J} a lattice with the following proper-
ties:

{Xli I} c {Xylj J} for every j J, Xy X’ {Xli I}.

Proof. Let X U krYk be a completely locally constructible open
affine cover by a lattice. For every k K, Yk N X’ is open and affine. So
there is a finite subset I(k) c I with

Y nX’ U x;.
iI(k)

If we set Zk Yk IJ .J i I(k)X; then X U k.KZk is a completely locally
constructible open affine cover (Theorem 5.3). If .’ is the lattice generated
by

{X[li I} {Zklk K}

then Theorem 5.3 implies that

_
is a completely locally constructible open

affine cover. Clearly, {S[li I}

_
and . is a lattice. Since _zac X’ is the

lattice generated by

{X[li I} {Z, caX’lk K} {X[li I}

and {Xli I} is a lattice by hypothesis, we see that .za is the desired cover.

Proof of Proposition 5.11. Part (a) is trivial. To prove (b) (A) let f:
X - Y, g: Y Z be completely quasi-separated. If Z’ c Z is open affine it
must be shown that (gf)-l(z’) is completely quasi-separated. Since g is
completely quasi-separated, g-I(Z’) is completely quasi-separated. We must
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prove: If f is completely quasi-separated and Y is completely quasi-sep-
arated then so is X. Let Y U i IY/ be a completely quasi-separated open
affine cover and a lattice. For every I we define

Proposition 5.9 shows that this is a nonnegative integer. For every I we
set X --f-l(y/), a completely quasi-separated space. By induction we will
define on every Xi a completely locally constructible open affine cover

x,= Ux,
JJi

which is a lattice and such that the following holds:

If Xk c X then {Xkjlj Jk} c {Xijlj
_

Ji} and for every j . Ji there is
some Jk with Xk C Xu Xkl.

If n(i)= 1 then we choose an arbitrary completely locally constructible
open affine lattice cover. Now suppose the construction has been done for all
with n(i) <_ n. Now pick I with n(i) n + 1. We must distinguish two

cases:

Case 1. If Y/= {rlr r/} and if Xk U jjkXkj are the covers
already defined then the lattice _a generated by {Xkylk, j} is a completely
locally constructible open affine lattice cover of Xi. If Xm X then
{XmjlJ Jm} C..’ holds by definition. Moreover, Xm f3 .’ is the lattice
generated by {Xm N XgjIYk Y/}. By definition we know that every Xm t Xky
belongs to {Xmtll Jm}. Since this is a lattice we are done.

Case 2. If Y/ U{YIYY/} we set Y= U{YY/}. Then n(l)=n
and there is a cover X U m Jl Xlm" Applying Lemma 5.12 one obtains the
desired cover of Xi.

This finishes the induction. Now we consider the open affine cover

x=U Ux,j.
il JJi

Since every Xi is clearly locally constructible it remains to show that
{Z Si]i, j} is finite for every open affine subspace Z c X (cf. Theorem
5.3). First of all, quasi-compactness of Z implies that there is some I with
Z c Xi. Then {Z n XilJ Ji} is finite. Now let k I, Jk be arbitrary and
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set m inf{i, k}. Then

Z nSkl z nx l
z nXm nXl {Z nXm,,In ],.} c {Z nXulj ]}.

This proves property (A).
To prove (B)we let f: X--, Y be completely quasi-separated and g:

Z Y arbitrary, f’: X yZ Z the projection. To prove that f’ is com-
pletely quasi-separated we may assume that Y and Z are both aftine
(Proposition 5.10). If X U i ISi is a completely locally constructible open
affine cover, then so is X yZ U i,Xi yZ. To finish the proof of (b)
we note that property (C) follows from (A) and (B) [7, 0 1.3.9]. Finally, (c)
follows from [7, I 5.17]. El

Obviously a space X is completely quasi-separated if and only if the
morphism X Sper*(R0) is completely quasi-separated. By Proposition
5.11 every morphism of completely quasi-separated spaces is completely
quasi-separated. So the completely quasi-separated spaces with the com-
pletely quasi-separated morphisms are a full subcategory of the category of
inverse real closed spaces.

In the homotopy theory of weakly semi-algebraic spaces [10, Chapter V]
patch decompositions play an important role as substitutes for triangulations.
We conclude this section by showing that the completely quasi-separated
spaces are exactly those inverse real closed spaces having patch decomposi-
tions.

DEFINITION 5.13 (cf. [10, Chapter V, 1, Definition 1]). A constructible
decomposition of the inverse real closed space S is a partition X U i iXi
with every X constructible.

By Example 5.5 every constructible decomposition is a completely locally
constructible cover.

If X uX is a constructible decomposition we call Xj a face of X if
Sj n S . We write X < S in this case. We define the depth of Xi to be
the number

d(Xi) sup{n NolJo,..., Jn
NoU{}

i" XjO .=Xjl .
(cf. [10, Chapter V, 1]).

DEFINITION 5.14 (cf. 1OC. cit.). A constructible decomposition
U i ,Xi is called a patch decomposition if d(Xi) NO for every I.
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THEOREM 5.15. Let X be a quasi-separated inverse real closed space. The
following statements are equivalent:

(a) X is completely quasi-separated.
(b) X has a patch decomposition.

Proof (a) = (b). If X U iiSi is a completely locally constructible
open affine lattice cover then we set

C Xi U {XjlXj c:: Xi}

for every I. Obviously, X U i I Ci is a constructible decomposition.
We must show that every d(Ci) is finite. But we clearly have

c,) <_ x,} I,
which is finite.

(b) = (a). Let X U i iCi be a patch decomposition. Fix some Cj. Then
Cj is contained in some open affine subspace U. c X. On the other hand, by
compactness of the constructible topology, there is a finite subset J c I with

U. c U ijCi. If k I is such that C1 < Ck then k must belong to J and
d(Ck) < d(Ci). By induction we see that

K( j) {i I[i Jo, Js J" Ci Cj ::> ::> Cjs Cj}

is finite. So, st(Cy) U i K(j)Ci, the star of C is constructible. To prove that
st(Cy) is also open we must show that it is closed under generalization. So
pick x st(Cy), y X with x {}-. Then there are k, I with x Ck,

y Cl. By definition k K(j). Since x C we see that Ck C or Ck < C1.
In either case K(j) and C c st(C.). This shows that st(Cy) is an open
affine subspace of X. Of course, X U j st(C.). This cover is completely
locally constructible since it belongs to the lattice generated by the com-
pletely locally constructible cover X u Ci. r3

6. Finiteness conditions

As in [15, Definition V 6.1], [16, Definition II 7.1] the following notions of
finiteness are introduced:

DEFINITION 6.1. A morphism f: X - Y of inverse real closed spaces is of
finite type at x X if there are open affine neighborhoods x U c X,
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f(x) V c Y and a commutative diagram

X ’Y
O O
U

z

where Z is a pro-constructible subspace of V XRoR0 f is locally of finite
type if it is of finite type at every point of x. f is of finite type if it is locally of
finite type and quasi-compact, f is finitely presented at x X if it is of finite
type at x and the subspace Z in (,) is constructible, f is locally finitely
presented if it is finitely presented at ever x X. f is finitely presented if it is
locally presented, quasi-compact and quasi-separated.

Note that finitely presented morphisms are affine (Corollary 3.9).

Example 6.2. For every morphism f: X Y, A: X X yX is locally
of finite type. To see this let x X, z A(x), y f(x). Let x U c X and
y V c Y be open affine neighborhoods with f(U) c V. Then U v U c
X yX is an open affine neighborhood of z. Since A: U U vU is a
morphism of affine spaces, it has a pro-constructible image. By Example 2.23,
A is an isomorphism onto A(U). So, we have the commutative diagram

A
X ,XXyX
O U
U UvU

A(U) U XvU.

We collect a few basic properties of morphisms locally of finite type. The
proof is omitted since no special properties of inverse real closed spaces are
needed.

PROPOSITION 6.3. (a) IfX c Y is a locally pro-constmctible subspace then
the inclusion is locally offinite type.

(b) Morphisms locally offinite type have properties (A), (B), (C) (see {}3).
(c) Let f: X- Y, g: Y--, Z be morphisms such that gf is locally of finite

type. Then so is f.
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Now we turn to locally finitely presented morphisms.

Example 6.4.
presented.

If f: X Y is locally of finite type then A is locally finitely

PROPOSITION 6.5. (a) If X c Y is locally constructible subspace then the
inclusion is locally finitely presented.

(b) Locally finitely presented morphisms have properties (A), (B), (C).
(c) Iff: X - Y, g: Y Z are morphisms, g is locally offinite type and gf is

locally finitely presented, then f is locally finitely presented.

Combining these properties with the corresponding properties for quasi-
compact and quasi-separated morphisms we get similar lists for morphisms of
finite type and for finitely presented morphisms.
The same notions of finiteness were defined for real closed spaces in [15,

Definition VI 6.1] and [16, Definition II 7.1]. In view of the connections
between real closed spaces and inverse real closed spaces established in 1
and 4 we claim:

PROPOSITION 6.6. Let f: X - Ybe a morphism of affine real closed spaces.
f is finitely presented if and only if F(f): F(X) F(Y) is finitely presented.

Proof We choose a finite presentation

X Y
U U
U V

C VXRI0

of f in the neighborhood of x X. Since Y is affine we may assume that
V Y. If y }- is the closed point then we may choose U such that
y U. By an easy compactness argument there is a closed constructible set
K with x K c U. Now we apply F to the diagram

X Y

K ’Y

g(K) c C -% Y R0g.
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to obtain a finite presentation of F(f) in the neighborhood F(K) c F(X) of
x. The other implication of the equivalence is proved similarly. D

As a consequence of Proposition 6.6 we note that a finitely presented
morphism of affine inverse real closed spaces has a global finite presentation
[15, Proposition V 6.6], [16, Proposition II 7.6].

7. Weakly semi-algebraic spaces

We fix a real closed field R and consider a weakly semi-algebraic space M
with a lattice exhaustion M U i z3ti [10, Chapter IV, 1]. For every I,
there is an affine real closed space/i over Sper(R) corresponding to M [15,
Chapter IV], [16, Chapter III, 1]. Applying the functor F of Section 1, we
obtain an affine inverse real closed space F(]i) over Sper*(R). Under this
functor the closed constructible subsets of M correspond to the open
constructible subsets of F(3i). Thus, if M c M then the corresponding
morphism F(/r.) -o F(li) of inverse real closed spaces is an isomorphism
onto an open affine subspace. This implies that the F(llTli), I can be glued
together to give an inverse real closed space F(). The construction shows
that F()= U iiF(li) is a completely locally constructible open affine
cover, and F(Ar) is completely quasi-separated. It is clear that the struc-
tural morphisms F(/Qi)--* Sper*(R) glue together to a morphism
F(/r) -o Sper*(R). Since i Sper(R) is finitely presented for every I
[15, Theorem VI 1.1; Theorem III 1.2], Proposition 6.6 implies that
F(iri) -o Sper*(R) is finitely presented for every i. So F(ir) is locally finitely
presented over Sper*(R).
To make a functor out of F(’)we must define it on the morphisms: If

M, N are weakly semi-algebraic spaces with lattice exhaustion M O i IMi,
N U jN. and f: M-o N is a morphism, then for every I there is
some j J with f(Mi) c N., and the restriction fi: Mi-o N. of f is
semi-algebraic [10, Theorem IV 2.3]. So, from [15, Chapter VI 1] or [16,
Chapter III, 1] and the functor F in 1 we obtain morphisms

F(/) F(i)
r(gp

If Mk c Mi, then fi extends fjk and therefore F(j) extends F(J). This
shows that the F(j) can be glued together to give a morphism F(f):
F(/r) F(A?). From the construction it is clear now that F(’) is a functor.

Conversely, let X be a completely quasi-separated inverse real closed
space over Sper*(R) which is locally finitely presented over Sper*(R). There
is a completely locally constructible open affine cover X IO i IXi which is
a lattice. Then every Xg is finitely presented over Sper*(R), and hence G(X)
is finitely presented over Sper(R) (Proposition 6.6). By [15, Theorem VI 1.1]
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or [16, Theorem III 1.2], the space G(Xi)(R) of R-rational points of G(Xi) is
an affine semi-algebraic space over R. We want to glue the G(Xi)(R)
together to obtain a weakly semi-algebraic space. To do so we let X(R) be
the set of R-rational points of X. The sets Xi(R) X(R) t X form a cover
of X(R). Identifying the sets Xi(R) and G(Xi)(R) we have the structure of
an affine semi-algebraic space on Xi(R). If X c X then the results of 1
show that G(Xj)(R) may be identified with a closed semi-algebraic subspace
of G(Xi)(R). We see that X(R)= I,J iIG(Xi)(R) is a cover fulfilling the
hypotheses of [10, Theorem IV 1.6]. So X(R) has the structure of a weakly
semi-algebraic space. We denote this space by G(X)(R).
Now let f: X--. Y be a morphism between completely quasi-separated

spaces over Sper*(R) which are locally finitely presented. We choose com-
pletely locally constructible open affine lattice covers X I,J iiXi, Y
t.J jjY.. For every i I there is some j J with f(Xi) c Y.. Let fi:
X Y. be the restriction of f. Then we have morphism

G(fii)(R)
G(fi)(R)" G(Xi)(R) -- G(Y.)(R) c G(Y)(R).

These morphisms can be glued together to give the morphism

G( f )( R)" G( X)( R) G(Y)( R).

Clearly, G( )(R) is a functor from the category of those completely
quasi-separated inverse real closed spaces over Sper*(R)which are locally
finitely presented over Sper*(R) to the category of weakly semi-algebraic
spaces over R. From 1 and the results of [15, Chapter III], [16, Chapter III,
1] it is clear that the functors F(’) and G( )(R) are quasi-inverse to each
other. This proves:

THEOREM 7.1. The category of weakly semi-algebraic spaces over R is
equivalent to the category of those completely quasi-separated inverse real closed
spaces over Sper*(R) which are locally finitely presented over Sper*(R).

Because of this equivalence of categories we can consider the category of
weakly semi-algebraic spaces over R as a full subcategory of the category of
inverse real closed spaces over Sper*(R). This is the analogue of the
connections between locally semi-algebraic over R and real closed spaces
over Sper(R) exhibited in [15, Chapter VI, 1] and [16, Chapter III, 1].
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