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SOME REMARKS ON EXTENSION THEOREMS FOR
WEIGHTED SOBOLEV SPACES

SENG-KEE CHUA

1. Introduction

Let . be an open set in Rn. If a is a multi-index, a (a1, a2,... an)
Z, we will denote ET_laj by [a[ and let

A locally integrable function f on . has a weak derivative of order a if
there is a locally integrable function (denoted by D’f) such that

fJ(D) dx ( 1)llf_( D"f)q dx

for all C functions with compact support in

_
(we will write , C(.)).

By a weight w, we mean a nonnegative locally integrable function on Rn.
By abusing notation, we will also write w for the measure induced by w.
Sometimes we write dw to denote w dx. We always assume w is doubling, by
which we mean w(2Q) <_ Cw(Q) for every cube Q, where 2Q denotes the
cube with the same center as Q and twice its edgelength, Let /x be another
weight. By w//z Ap(/z), we mean

1 w w
p,( Q)

dlz - 1)/p

<Cwhenl <p<,and

w(x)< C w(Q) a.e. when p 1,

for all cubes Q in R. If Q is a cube, let l(Q) be the edgelength of Q. For
1 _< p _< 0% k N, and any weight w, LPw.k(_) and EwP, k(..) are the spaces
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of functions having weak derivatives of all orders a, lal < k, and satisfying

Ilfllz. <)llDap (fj )lipJIILw(.. D’flp dw
0<lal<k 0<lal<k

and

< oifl <p <

esssuplD"fl <
0<lal_<k -

Ilfll,) IIDfll,.)< o

respectively. Moreover, in the case when w 1, we will denote LwP, k(.) and
EPw, k(.) by L’(.,) and E’(.) respectively.
The following theorem is by now well known.

THEOREM A. If

_
is a Lipschitz domain and 1 <_ p <_ 0% then L(.q) has

a bounded extension operator; i.e., there exists A" L’(.) --* L’(Rn) such that
All f and

A.P. Calder6n [1] proved this theorem for the case 1 < p < oo and E.M.
Stein [12] extended Calder6n’s result (with a different extension operator) to
include the endpoints p 1, . P. Jones [9] then extended Theorem A to
connected (e, 8) domains1 as follows:

THEOREM B. If . is a connected (e, ) domain and 1 <_ p <_ oo, then
L(_) has an extension operator. Moreover the norm of the extension operator
depends only on e, 15, k, p, rad(_), and the dimension n.

Furthermore he proved:

THEOREM C. If _q is an (e, oo) domain in R", then E(_) has a bounded
extension operator, i.e., there exists A" E(_)- E’(Rn) such that IIAII is
bounded.
Our purpose is to extend Theorem B and Theorem C to weighted Sobolev

spaces, for example, when the weight satisfies Muckenhoupt’s Ap condition.
Indeed, we will try to extend these theorems when the weight w satisfies the
following Poincar6 type inequality

Ill- fO.,wll(a) Col(a)llVfllra V cubes Q in

_
(P)

XThe notations (e, 3) domain and rad(.q) will be defined in Section 2.
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for all f LiPloc(Rn ), the collection of all locally Lipschitz continuous
functions (of course, one could replace LiPloc(Rn) by LiPloc(

_
)) where

fa, w fQfdw/w(Q). For example, it is well known that (P) holds when
w Ap (see [2] or [7]). Moreover, (P) holds for a class of non-Ap weights [16].
Also, note that (P) implies the following Poincar6 type inequality on union of
touching cubes (i.e., a face of one cube is contained in a face of the other)

for all f Liploc(Rn) and touching cubes Q1, Q2 such that 1/4 <
l(Q1)/l(Q2) < 4. For the details, see [6].

Let Lipkol(Rn) {f: Df Liploc(Rn) for all levi < k}. Using similar
technique used by P. Jones, we prove:

THEOREM 1.1. Let _q be an (e, ) domain with rad(.) > 0 and let k be a
positive integer. If 1 < p < oo and w is a weight such that (P) holds for all
f Lipo(Rn) then there exists an extension operator A on

_
(i.e., Af f

a.e. on _q) such that Af Lipko l(Rn) and

IIAfll < CIIfllLw, k(R ,k(

for all f Lip l(Rn) where C depends only on e, 6, k, w, p, n, CO and
rad(.).2

Also, similar to Theorem C, we have"

TIJEOREM 1.2. Let . be an (e, oo) domain and let k be a positive integer. If
1 < p < oo and w is a weight such that (P) holds for all f LiPloc(Rn), then
there exists an extension operator A on . (i.e., Af f a.e. on .) such that
Af Lip l(Rn) and

IIAflle,(% _< CIIflle,( for allf e Lipl(Rn), (1.3)

where C is independent of rad(.).3
Let . be a bounded (e, oo) domain with r rad(.) and let be a

bounded open set containing _. Let W2 be the collection of cubes in the
Whitney decomposition of (.c)0 and define

{ }W3= Qe W2.I(Q) <_ 16nL

where L > 0 is chosen so that 12 c (A a w3Q) u .
AII as rad(.) 0 or as e 0 or as t 0.

3Thus C depends only on e, w, p, k, CO and n.
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By a similar argument we also prove the next result.

THEOREM 1.4. Let 1 <_ Pi < oo for 0, 1,..., N. Let f be a bounded
open set containing an (e, ) domain .. and let L and r be defined as above.
Let I be a weight and suppose that are doubling weights such that

Ilf fQ,llg(Q) Ail(Q)llVfllg(Q) VQin , (1.5)

for all f Lipo(R) and O, 1,..., N.
(I) There exists an extension operator A on

and

for all and all f LiPo l(Rn); in addition, if Wi/ Api() for some i, then
for that value of i,

Ilafll(R. Ci(llfll( + rllVfll( + +rk-lllVk-lfll()
IlVAfll(a) cg(llVfll()+ rllV2fll}()+ +rk--2llvk--lfllLg())

IlVk- 1AfllLg(a) CillVk- lfllL()
for all f Lip,S l(Rn).
(H) There exists another extension operator

Lipo (R) and

k gll
p

for all and all f Lipo (N); in addition, if wi/ Am() for some i, then
for that value of i,

IIfllgCj() ci(llfllg()+ rllVfllg()+ +rk-lllvk-lfllel()

IIVNflIa) Ci(llVeflle() + rllVe+lflle() + +r

IlVk- 1NfIILE(a) CiI[Vk- lfllLgi()

for all f

k-l- 111V-
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In either case, C depends only on wi, Ix, e, L, Pi, Ai, k and n.4 (Unfor-
tunately, L usually depends on r, but there are cases where L is independent of r
and consequently C is independent of r.)

Remarks. (a) It can be shown that the extension operators in Theorem
1.4 also satisfy

IIXT/Afllm) < Ci(llVfllr)+
0_<l <k- 2,0<i <N,

where C depends only on wi, Ix, e, L, Pi, k and n. Moreover, in the first case
we have

Here C again depends only on wi, e, L, Pi, k and n. Moreover, note that the
assertion wi/iz A,i(lz) is not needed now.

(b) In case k 1, better result could be obtained, see Corollary 4.23.
(c) Theorem 1.4 has a counterpart for infinite (e, oo) domains; see Theorem

4.26.
(d) These extension theorems, especially Theorem 1.4, have many applica-

tions; for example, they can be used to obtain Poincar6 type inequalities (see
Remark 4.15), Sobolev interpolation inequalities (see Theorem 4.34) and
imbedding theorems of Sobolev spaces on (e, oo) domains.

2. Facts about (e, 8) domains

DEFINITION. An open set . is an (e, 8) domain if for all x, y _,
Ix y < 8, there exists a rectifiable curve 3’ connecting x, y such that 3’ lies
in . and

l(y) < (2.1)
8

elx zlly zld(z, 0.) > Ix yl Vz ,. (2.2)

Here l(y) is the length of 3/and d(z, 0.) is the distance between z and the
boundary of .. Let us decompose

_ . into connected components

4Ci as L 0 or as e 0.
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and define

r=rad(_) inf inf sup Ix-y[.
x..

We will assume r > 0 in most cases. Then for any x ., there is a point
y in the same component with Ix- y > 3r/4. Note that we always have
r > 0 when

_
is an (e, ) domain since

_
is then connected.

By a cube in Rn, we mean a closed cube whose edges are parallel to the
coordinate axes. Following the terminology used in [9], we say that two cubes
touch if a face of one cube is contained in a face of the other. In particular,
the union of two touching cubes of equal size is a rectangle. If Q is a cube,
let l(Q) denote the edgelength of Q. A collection of cubes {Si}/__0 is called a
chain if S touches Si/ for all i.

Also let W be the cubes in the Whitney decomposition of

_
and W2 be

the cubes in the Whitney decomposition of (_c)0. See [12] for the definition
of the Whitney decomposition. We will write d(Q, S) infx Q, s Ix y
and d(Q) d(Q, 0..).
Next let us recall some properties of the cubes in the Whitney decomposi-

tion of the open set

_
or (_c)0. Since these properties are well known, we

will often make use of them without explicitly mentioning them.

I(Q) =2-k for somekZ,

Q1 Q2 if al 4: 02,
I(Q1)

< 4 if Q1 ( Q2 4: Q1/4< I(Q2)

d(Q 0_) 4V%-.1_< <
l(Q)

Next, let us collect some facts concerning (e, 6) domains. The reader can
find the proof in [9]. Moreover, more details could be found in [4] or [5].

Let . be an (e, ) domain. Recall that W and W2 are the Whitney
decompositions of . and (_q)0 respectively. Then there exists W3 c W2
such that the following five properties hold.

(2.3) There exists C > 0 such that if l(Q) < C and Q W2 then Q W3.
(2.4) There exists C > 0 such that for all Q W3, :IS W such that

1 < l(S)/l(Q) < 4 and d(S, Q) < CI(Q). We will choose such an S and write
S Q*.

(2.5) There exists C > 0 such that for all Q W3, and $1, S2 W such
that Sa, S2 Q*, then d(S1, $2) < Cl(Q).

(2.6) There exists C > 0 such that for all S W1, there are at most C
cubes Q W3 with Q* S.
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(2.7) There exists C > 0 such that for all Q1, Q2 w3 such that Q1 0 Q2
4: , we have d(Q Q) <_ Cl(Q ).

(2.8) There exists C > 0 such that for all Qj, Qk W3 with Qj n Qk Q,
there exists a chain F.,k {Q So, S1, $2,..., Sm Q} of cubes in W
connecting Q to Q with m _< C. (Then l(Si), l(Q) are comparable and
d(Si, Q) < CI(Q).)

Remark 2.9. Note that the constants in (2.3)-(2.8) depend only on e, 6
and n. Note also that W3 is indeed the collection of those cubes which are
sufficiently closed to .. Moreover, when is an (e, oo) domain, we can take
W3 {Q W2: l(Q) < erad(.q)/(16nL)} with L > 0 so that properties
(2.3)-(2.8) hold except that now L < l(Q*)/l(Q) < 4L for Q W3.

3. Some preliminary results

From now on, C denotes various positive constants depending only on
e, 6,p, k, w and the dimension n, and C(a, ,... ) denotes such constants
depending also on a,/3, "". Again these constants may differ even in the
same string of estimates. We denote by V the vector

O 0 O )Ox Ox2,’", Ox

and by V" the vector of all possible mth order derivatives for m Z+. By
w Ap, 1 < p < 0% we mean that w satisfies the Muckenhoupt Ap condi-
tion, i.e.,

IQI w(x) dx w(x)-l/(p-1) dx <C

cubes Q c R if 1 < p < c

and

IQI w(x) dx _< Cessinfw(x)
xQ

cubes Q c R if p 1.

Moreover, we write W Aoo if w Ap for some p > 1.
Next, let us state a theorem on polynomials [5].

THEOREM 3.1. Let E, F be unions of at most N cubes such that E, F Q
for some cube Q and IEI, IFI > ’IQI. If w is a doubling weight and p is a
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polynomial of degree m, then

This theorem is indeed the consequence of the following two lemmas.

LEMMA 3.2 [13, Chapter 3, Lemma 7]. If w is a doubling measure and m is
a positive integer, then there exists So(n, m, w) such that if s < so then for all
cubes Q, A > 0 such that

w({x Q" lp(x)l > x}) < sw(Q)

we have

sup I(x)l cA,
xQ

where p is any polynomial of degree rn and C is a constant independent of A, Q
and p.

It follows from Chebyshev’s inequality and Lemma 3.2 that given rn and a
polynomial p of degree m,

C
lip IIL<Q) < lip

w(Q)

with C independent of Q and p, since

1 f Ipldww({x Q. Ip(x)l > A}) < -1-< llPllw(a sw(a)

by taking

1 falpldwsw(a)

LEMMA 3.3. Let Q be a cube and let E be a measurable set in Q with
Igl lQI. Ifp is a polynomial of degree m, then

Ilpllz<e) C(v, m)llPllmQ).
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The reader could find the proof of this lemma in [5] or [4].

4. Main results

Let w and/x be weights such that w is doubling. Note that if w/ix Ap(/Z),
then

/x(Q) -IlIflILX(Q) Cw(Q) -1/PllfllL(a)
V cubes Q c Rn and real functions f.

Moreover it is clear that this condition is satisfied if w since 1 Ap(w)
for p > 1. If S is a compact set in an open set . and f LiPlkoS l(Rn)we let
P(S, f)be the unique polynomial of degree k 1 such that

fsD(f P( S, f ) ) dtz =0,

First, we have the following lemma regarding these polynomials.

LEMMA 4.1. Let Q be a cube and let f and P(Q, f) be as above. If
w/g Ap(g), then

<_ C(IIv’ ’TIIL O, + Z( +’’" +l( a)k-ll-l[[vk-lf

for O l#! k-1.
The proof of this lemma is quite straightfoard and is omitted. However,

details could be found in [5].
Next, the following lemma is an essential tool in the proof of extension

theorems. Note that it is similar to Lemma 2.2 in [9].

LEMMA 4.2. Let El, m {$1, $2,... Sin} be a chain of touching Whitney
cubes and let R be the cube in S td Si+ such that [R Sil [R (’1 Si+I[

min(lSil, [Si+l l) for i= 1,2, rn 1. If

Ill fa, II(a) Col(Q)llfll<a for Q S or Ri, (4.3)

for all f LiPloc(Rn), then

D(Pg( Sin’ f) Piz(S1, f))
<_ C(m, Co)l(S1) vV IILPw(FI,m),

for all f e LipkoS I(Rn).
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Proof Let us write P,(S) instead of Pg(S, f). First note that we may
assume ]fl[ < k. By the triangle inequality and Theorem 3.1 we have

U(Ptz(Sin) Ptz( S1))I[LP,S1,
m--1

< E [ID(Pu(Si+I)
i=1

m-1

i=1

by repeated applications of (4.3). Thus

since I(S), 1($2),..., I(S) are comparable. This completes the proof of the
Igmma

The following lemma is a consequence of Lemma 4.1 and the proof of the
previous lemma.

LEMMA 4.4. Under the assumption ofLemma 4.2, if we assume further that
0 I1 q < , then

C(m, Co)l(Sl)-x IIVflIL(F,,m)+ IIVPg(Si, f)llL(S,) + IIVqPg(Ri, f)llL(S,
i=1 i=1
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Furthermore, if w/l Ap(/.t,), then

[[V(Pt(Sm’ f) P(S1, -< C(m, Co)l(S1) q-Il

X ([IVaflIL(FI,) + l(Q)tl va/ lfllLw(Fl,m

+

Proof Because of the proof of the previous lemma, we only need to make
the following observations. First, if 1/31 < q then

<. Cl( S ) q-’’ll v,,(p,x f) f

by repeated applications of (4.3)

el(s,) wP ( Si, f ) llL(Si) + Vaf IlLs(S,))

Next, if I/1 =q we obtain the same estimate from the triangle inequality.
Moreover, similar arguments can be applied to the term IIDo(Pg(Ri, f)-
f)llg(,). Finally, our conclusion follows immediately from Theorem 3.1 and
Lemma 4.1.
We can now prove Theorem 1.1. However, as it is almost exactly the same

as the proof of Theorem 1 in [9] except that now we will make use of
Theorem 3.1, Lemma 4.2 and the Poincar6 type inequality (P) instead of
Lemmas 2.1, 2.2 and 3.1 in [9], we will only give a sketch of the proof.

Sketch of the Proof. Recall that W is the Whitney decomposition of .
and W2 is the Whitney decomposition of (c)0.

Step (1). Choose W3 c W. such that properties (2.3)-(2.8) hold. Note
that I(Q) <_ C for all Q W3.

Sep (2). Next let us define the extension operator. For each q1 W3,
choose 0 <_ qi < X aj, (j " C(Rn), such that

q--1 ontAW3,0_< q<l,
Qj- W3 Qj. W3
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and

ID’%.I _< CI(Qj)

Given f LiPoS 1, we define Pi(x) Pw(Q, f)(x) and

Af(x)
EQ,w3P.(x)%(x)

ifx

if x ().

We then show that if Q0 W3 then

where 0 < lal k and F(Qo) is the collection of cubes which belong to any
of the chains F0, for which Q1 n Q0 4: .

This inequality can be shown by repeated applications of (P), Theorem 3.1
and Lemma 4.2. The proof is quite technical but standard (see [9], [4] or [5]).
Next if Q0 W2 W3, 0 < lal _< k, we can show

D’Af IlLw(Qo) < C(r) E
Qi W3, QjCQo

(46)

Again, the proof of this equality can be found in [9] or [5].
Moreover, observe that

QyWz\W3 QIW3, QIV’IQjfJ L

Q.i . W3 L

Combining these facts with (4.5), (4.6) and using I(Qy) < C if Q w3, we
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have, for 0 < al < k,

IIDAf IIL,w)o) E OAf
QjW3 Oj W2\W3

E C(llofllLa + llvfll,o)
Qj W3

+ E | E C(r)
Qw\w3 \ Ql w3, QcQ

X ([1 vkf IILPw(Q’) -- E l] Dl3f ]]LPw(Q’)))P
E c(llnfll(or) / IIvfll((o,)))

Qj W3

+ E E C(r)
aW2\W3 Q1 W3, ajnol 0

ilL,<Or> + E D/3f

Hence

Step (3). We then show that D’Af is locally Lipschitz for all a, 0 <
I1 < k. Observe that we have

f II<Q| VQ W2.

QW3, QnQ* I

(4.9)

(If Q W3, we take uF(Q) ). To prove (4.9), we only need to replace p
by oo in (4.5) and (4.6) since

IIf f, w I1,) Cl( Q)II vf I1,<) for all cubes Q.

If 12 is a bounded set in (..c)O, then EIG c W2 such that ll c UG and wG
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is bounded. Thus

where K is a compact set containing toF(Q) fQ G and containing Q
/Qi w3 with Q :3 Q , Q G. We now show that DAf is continu-
ous for all a, 0 < cl < k. To this end, one only need to show that

lim D"Af(x) D"f(Xo) Vxo 0.9, 0 < Icl < k.
x--,x0, x (-@c)

Nevertheless, it suffices to show that if Q W3 and d(Q, O.@) --+ 0 then

w(Q) Q,

However, the proof is again quite standard. For the details, see [9] or [4].

Remark 4.10. (a) Let W’ be the collection of all cubes S such that either
Q* S for some Q W3 or S F:, k for some Qi, Qk W3 (see property
(2.8)). Indeed W’ is just the collection of all cubes in W near the boundary
9.. Also, let W" {R is a cube in Q1 Q2 such that IR :3 QI IR :3 Q21

1/2min(IQ1 I, 1021) for some touching cubes Qx, Q2 in W’}. Then indeed one
needs only to assume that (P) holds for all cubes in W’to W" to prove
Theorem 1.1.

(b) In case LiPlgo-l(Rn) is dense in LVw, k(_q:) and w-1/p-1 is locally
integrable on . (these are true when w A,), our extension operator A can
be defined on Lwp, k(-@) such that

For the details, please refer to [5] or [4].

Proof of Theorem 1.2. Case (i): . is unbounded. Then r m and
W2 W3 (see Section 2).

Just as before, we will define Af Eajw3P:: on (.c)0. Recall that for
Q0 W3, we have

Qj w3 Lw(Qo) Qj w3 Lw(Qo)

Qj w3 Lw(Qo)
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when lal k since P0 is a polynomial of degree k 1. Also recall that

Qj W$ LPw(Qo)

since I1 k. By (4.8) we get as before

D’Af I1< cII vkf IlL’w(9) if I1 k.

Exactly the same as before we can show that DAf is locally Lipschitz
when I1 -< k 1. Hence if lal k,

(4.11)

Case (ii): . is bounded. Then rad(_)= r < o and W3 {Q W2" l(Q)
< er/16n}.
Recall that by definition, rad(.) infx supy lx y as now is

connected. Hence

sup lx-yl <3r.
x, ye.

Let F= u(W2\W3) andW4={QW3"QF}.Notethat

Q W4=l(Q) > 8 16n

Next choose q, q) C(Rn) for j 1, 2,... such that for Qj W3,

where

{x e rc. d(x, or) < .}, 32 16n

Then 1 < Eq. + q’ < C on (_c)O. Define

and qJ ’ + E
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Since the edgelengths of cubes in W4 are comparable to r, we have K
number of cubes in W4 < C (independent of r) and

IO%l < CI(Qj) -131 and IDql < Cr-131 for0 _< I/1 < k.

Next, define P (1/K)I2Qj w4PJ and

on (.c)
on ..

Now if Qo W3 \ W4, we can show as before that

(4.12)

Next if Qo E W4, then since I2pj + cO 1 on o W3,

II
D"Af [ILpw(Qo)<: DaPoIILg(Qo) -t- IID

II Qj W3

+ D’((Po P))

Note that since lal k, D"Po 0 and observe that exactly as before,

since I1 k. Also

D(( P0 P) tO) II, eOo) C(a, )D(Po P)D’-,[[
fla IILwP(Qo
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Next, observe that

( eo P) D-13P
<_ Cr-I - lll D13( Po P)

Cr la -131

K
Qi W4

Cr la -131

K
Qw4

(where Qo Sy, o, Sy,1,. Sj, kl QI is a chain in W4)
Cr la -131

K
QyW

S.*. c Q with IQol IS,ilby Theorem 3.1 since Qo, Sj, W4 and hence Qo, j,,

> T IQI for some cube Q with edgelength Cr and T is a constant depending
only on e, k, and n. Continuing with the inequalities we have

Cr-1, -131
")k-IlllVkfllLw, ) by Lemma 4.2K

_
Y’. (S,__l,

aye W

where Gi, is a chain in W which connects S, to S/*, +

C

Qye W
since l(Sy, ) <_ Cr and I1 k

C

Oje W4
since for all and j, uai, c

_
and ky < K

since K < C. Thus,

D’ ((Po -< eli VV
and hence if Qo e W4,

Finally, by similar methods as the preceding estimate, one can show that
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(details are available in [5] or [4])

D’Af IILw,r) < Cll vkf IIL(.). (4.14)

It is now clear that by (4.12), (4.13) and (4.14), we have

Similarly, by checking that D’Af is locally Lipschitz for all a, [al k 1,
we have

Finally, similar to case (i), we conclude the proof of case (ii).

Remark 4.15. If (P) holds for all f LiPloc(Rn) and all cubes Q, then

for all f LiPloc(Rn) and all bounded (e, oo) domains ., where C is a
constant which depends only on e, w, p and n. (In [6], the author has studied
weighted inequalities of this kind over more general domains which include
John domains.)

Proof. First let us choose a cube Q D

_
such that l(Q) is comparable to

rad(.). Next if f LiPlo(Rn), we define Af as in the proof of the previous
theorem with k 1. Then Af Liploc(Rn) and

Hence

211Af (Af),w I1<>
< Cl(a)ll VAf IlLw(O>
_< c tad( _)1I Vf I1’.

Finally we prove Theorem 1.4. Recall that . is a bounded (e, oo) domain
with r rad(.), 1) is a bounded open set containing _q and

W3= QW2"I(Q) < i6nL L 2-m, m Z/,

where L is chosen so that
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Proof of Theorem 1.4. We will only prove the theorem for the typical case
k=3.
By w Pp(/z), we mean

[If- fo,.llo <- CI(Q)IIVZII,o V cubes Q c ., f LiPoc(Rn).

Note that w Pp(/3,) for all by hypothesis. When Qj W3, we will write

P. P(Q, f). Moreover note that I(Q. ) < Cr for all Qj W3.
Now let us prove (I). Let us define

Qi W3ei( x ) Oi( X )
Af(x)

f(x)

if x (_c)0
ifx .

where the i’S are the same as in the proof of Theorem 1.1.
As in the proof of (4.5) we can show that if Q0 W3 and I1 3 then

Hence when I1 3, we have

<_ C(L)IIv3ZIIL:.) Vi

as in the proof of Theorem 1.1 (with the help of (4.8)).
Next we will estimate DAf for Icl _< 2 with the help of Lemma 4.1. First

observe that if Qo W2 and w/Ix Ap(tt), then

< Z P, I1,0) < c(L) E eI1,
ai-W3, Qioaof Qi-w3, QiOQo

<C(L) E
QisWa, QimQo,

(4.16)
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by Lemma 4.1 since I(Q’) < Cr if Qi - W3. Hence

Moreover,

QiW3 Lw(U WS)

where W5 {Q W2 \ W3" Q t3 Ql #: f for some Ql W3},

(
ajws aiw3,

(
QIW5 Qi-W3,

< E E C(L)II Pi
Qws Qw3,

< E E C(L)
Qj Ws Ow3,

by Lemma 4.1
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< E E C(L)
QjW5 Qi.w3, QitOy.f

Thus

Moreover if 1/31 1, Qo w3 and w Pp(/x), (again, w/g A;(l))

QiW3 Lw(Qo) Qi . w3 Lw(Qo)

E
QiWa, QiQo*f

E
W3

( Pi Po)Dlqi l[Lw(Qo)
since ., Dli =- 0 on UW3

Qi- W3

< C(L) E
QiW3, QiQof

oPi ]IL(O, + C(L)I(Qi)-

E
QiW3, QiOo*

Pi eo IIL(0,

< C(L) E
QiW3, QiQo.f

(11 x7f I1,() + rll V2f II,(or) + W IILw(Ueo, i)

+ rll V2f IlL<uo,,)) by Lemmas 4.1 and 4.4,

where Fo, {Q Si,o, Si,1, Si, mi Q?} is a chain guaranteed by (2.8)

< C(L)
Qi.W3, Oit3Qo.

(4.19)
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Similarly, if Il 2 and Q0 W3, we obtain (when w/It Ap(I.t) and
w P())

DAf I1,.(o) <

<C(L)

(4.20)

by Lemmas 4.1 and 4.4. Thus we obtain estimates of

IIDAfllao), IID/AflILQo) for Q0 W3.

Similar to the estimate of IIAfll,(w), if I/1 1, Il 2, we have, by
(4.19) and (4.20),

DeAf I1’() < C(Z)(ll Vf I1,() + rll vf IIL()), (4.21)

(4.22)

Next as in the proof of Theorem 1.1, we can show that D’Af is locally
Lipschitz for 0 < I1 < 2 if f LiPoc(Rn). Hence we have the desired
estimates (recall that 12 c . t3 (t3 W3)), namely, for all such that wi/i.t
Api(I),

VAf II,’w:m < C(Z)(ll vfI1 + rll V2f
Af [Ic(R") < C(L)(II f I1,() + rll Vf IlLe(9) + rE11 V2f

and

This proves (I).
We now consider (II). As in the proof of case (ii) of Theorem 1.2, we let

P= (1/K)EQjw4PJ (recall that K is the number of cubes in W4 and
W4 {Q W3" Q F 4: } where F-- t(W. \ W3)). Also, similar to the



EXTENSION THEOREMS FOR WEIGHTED SOBOLEV SPACES 117

proof of Theorem 1.2, we choose q’, q’ C(Rn) for j 1, 2,... such that
for Qj W3,

Xr < q’ < Xrurg, ID’I < C(L) r-Il

where

(x rc. a(x, or) < ,), 1 8r
r/ 32 16nL"

then 1 < Eq;. + q’ < C on (c)0. Define

and q , +

Since CI(L)r < edgelengths of cubes in W4 < C2(L)r, we have K number
of cubes in W4 < C(L) (independent of r) and

IO%l < CI(Qj) -I1 and IOl < C(L)r-I1 for 0 < 1/31 < k.

Again we define

P.% on (.)
Qj W3

The rest of the proof of (II) are similar to that of (I). The reader could refer
to [5] or [4] for the details.

COROLLARY 4.23. Let 1 <_ Pi < for 1, 2,..., N and let tz be a
weight. Let N1, N Z+ such that N < N. Suppose that Wl, WN are
doubling weights such that wi/tx A,i(tz) for 1 <_i <_ N and

for all f LiPoe(Rn). Let . and f be as in the preceding theorem. Then there
exists an extension operator A on . such that Af LiPoc(R"),
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and

for all f LiPoe(Rn) where C depends only on wi, Pi, e, Ai, L and n.
(Similarly, there exists another extension operator so that the above inequalities
hold with fl and Rn interchanged).

Proof One needs only to check through the preceding proof and see that
the proof of (4.18) does not involved the Poincar6 inequality (P) when k 1.

COROLLARY 4.24. Let 1 <_ Pi < for 1, 2,..., N and let Ix be a
weight. Let N N Z+ such that N < N. Suppose that w wu are
doubling weights such that wi/tx Am(ix)for 1 <_i <_ N and

for all f Lipoc(R") and N < < N. Let B be any ball in R. If 1 < s < 0%
then there exists an extension operator A on . such that Af LiPloc(Rn),

and

forl <i <Nx,

VAf GII Vf for < < N,

for all f Lipo(R") where C depends only on A i, wi, Pi, n and s. Moreover,
Af are locally Lipschitz on Rn. (Similarly, there exists another extension
operator so that the above mentioned inequalities hold with sB and Rn inter-
changed).

Proof. First note that all balls B are (e0, oo) domains for some fixed
e0 < 1. Next take _q B, fl sB in Corollary 4.23 above. Then Cg’s are
independent of rad(B) since L depends only on s (indeed L C/s).
Theorems 1.4 has another corollary:

COROLLARY 4.25.
weight such that

Let tz be a weight and suppose that w is a doubling

Ill -< ail(Q)llVf v cubes Q in _q

for all f LiPloe(Rn) and i= 1,..., N. If .. is a bounded (e, ) domain,

5A similar result also holds for unbounded (e, oo) domains.
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then there exists an extension operator A on .q such that Af Lipl(Rn)
and

for all f Lip,S l(Rn) where C depends only on e, Ai, wi, Pi, k and n.

Next, Theorems 1.4 has a counterpart for infinite (e, ) domains:

THEOREM 4.26.
such that

Let Ix be a weight and suppose that w is a doubling weight

for all f Lipoc(Rn) and 1,..., N. If l-I is an open set containing an
infinite (e, ) domain such that supx a d(x, .) L < , then there exists an
extension operator A on _q such that Af Lip l(Rn) and

VAf [ILg(m --< fill

for all f Lipko l(Rn); in addition, if Wi/Ix Api(Ix) for some i, then for that
value of i,

Moreover, there exists another extension operator (which we will again denote
by A) on . such that Af Lipo I(R’) and

for all f LiPlko l(Rn); in addition, if wi/Ix Ap(Ix) for some i, then for that
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value of i,

In either case, C depends only on Ai, wi, F, Pi, k and n.

Sketch of the proof. Let us assume that k 3. First let W3 {Q W2:
I(Q) < CL} such that fl c (tJW3) t3 _. Next, given f Lip71(Rn), by
Lemma 4.1, if w/lz Ap(Ix) and S is any cube or union of two touching
Whitney cubes, then

s) ll , wS> C(llV lE (s)-4-

Using these estimates we can prove this theorem as we did Theorem 1.4.

Remark 4.27. The Poincar6 type inequalities (P) assumed in all the above
can be replaced by the Poincar6 type inequalities on balls, i.e.,

Iif-f,wll( <- CIBll/nllvfl[L Vballs B in (P’)

for all f LiPloc(Rn). To see this, it suffices to observe that one can use
Whitney type decompositions of open sets in balls in those proof above. Of
course, we now only have bounded overlaps instead of non-overlapping. But
that is sufficient. Thus the conditions (P) and (P’) are indeed equivalent.
With the help of the extension theorems in Section 4, we are able to

improve a result in [15]. First, let us prove a lemma which is essentially a
consequence of the proof of Theorem 1 in [15].
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LEMMA 4.28. Let 1 <_ p < and let v, w1, w2 be doubling weights. Let Bo
be any ball in Rn. Suppose that there exist constants CO > 0 and q > p such
that

1 la dw2 < ColBI1/ 1
ip

w2(B ) lU-UB, wl(B) IVu dw (4.29)

for all balls B c 3Bo, with center in Bo, u Lip(3Bo). Suppose further that
there exists C > 0 and 1 < h < q/p such that

v(/) (4.30)wz(B )
< C1 v(B) wI(B ) v(B)

for , B, such that B c Bo,/ c 3B and the center of lies in Bo. Then there
exists a constant C > 0 (depending only on n, CO and C1) such that

(4.31)

for B c Bo and u Lip(3B).

Proof Our proof is essentially the same as the proof of equation 2.1 in
[15] although it is assumed that p 2 in [15]. Fix a ball B in Bo and let
x B and Bx be a ball in 3Bo centered at x. By (4.29)we have

Cow2(Bx) I + H} (4.32)
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by H61der’s inequality. If Bx is large, i.e., B c Bx c 3B, we may assume that
I > H. Otherwise if I < H, we have

fxlUlPh dw2 2C0w2(n) v(nx) lu dv

and we have nothing to prove. Also observe that [BI 0 implies I 0 and
n---, lu(x)lp’, Therefore if u(x) O, for small balls Bx we have I <//.
Hence given x B with u(x) 0 there exists Bx c 3B such that I H, i.e.,
such that

[BxlP/n 1 fBxl ip
l fBx[ ]p

w(Bx)
7u dw V(Bx)

u dr. (4.33)

Hence for this ball Bx,

By Besicovitch’s covering lemma, there is a family {Bk}= which covers
{x B: u(x) 0} and which has bounded overlaps. Since

we obtain

1 fB, ip
v( Bk)

u dv <
1 f3nl ip

v(Bk)
u dr,

k wl( B) VuIP dwl

C u p dv
w2(Bg)IBglP/"

JBE Vu[p dwl.
k V(Bk)h-lwl(Bk)
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We now apply (4.33) and assumption (4.30) to get

lu Vh dw2 < C lul dv
(B) ,(B)

v(B,,) IBI "/" w,(B,,) +X
v(B) w,(B) v(B)

c() lu,v k v(B)h-IwI(Bk) IVulp dw

{ [ ’BI ]/n w’( B)x
,() + (B)

(B)*-,() ()",(B)

v(B)
u dv

]B[P/n 1 U(Bk)[Bk]p/n
x

w(B) BlVulPdw+() ,(B)

since B,’s have bounded overlaps

[ 1 I""-’v(3B)
w(3B) BtVu dw + v(B f]u do

1
lul dv

xIIBI’/w(3B) 1 f3BIVuV dw + dv
v( B) lu

Vu It’ dw

again since Bk’S have bounded overlaps. This completes the proof.
We are now ready to prove the following Sobolev interpolation inequality

which is similar to Theorem 1 in [15].
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THEOREM 4.34.
Suppose that

Let v, w1,1422 be doubling weights and 1 < p < q < .

ColBI 1/n IVulp dw (4.35)

for all balls B, and u LiPloc(Rn).
(a) Suppose that (4.29) holds for all balls B and u LiPloc(Rn). Let

1 < h < q/p. Then the following two inequalities are equivalent"

(4.36)

for all B c n and u Lip(B);

h-1

for all balls B, J n such that J 3B and the center of J lies in B.
(b) (4.36) holds for all B in a.fixed Bo if (4.29) holds for. all B in 3B0 and

(4.37) holds for all B c Bo and B 3B (and the center of B lies in B).

Proof First assume that (4.36) holds. Let B, B in n such that B 3B
and the center of B lies in B. We now choose u CO such that X/2 < u <

X and Vul _< C/I/l 1/n. Then

B
[uIph dw2 < Cw2(3B) v(3B) B

lu dv

X
wI(3B) BlVUlP dwl + v(NB) n

In dv

Thus

1 )h-1W2(//2) < Cw2(3B) v(3B)v(/) I3BI p/n C
Wl(3B) ijlp/nWl(B ) "Jr"

v(3B)
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and hence

w:() [ v()w2(3B)
< C v(3B)

h-1 3BIp/n Wl(/)
-I-

u(/) ]]IP/n Wl(3n) v(3B)

Therefore,

w2(n)
< C IBIP Wl(/) U(/)

v(n) [IP/n w,(n) + v(n)

Next we will prove (b). First by the previous lemma, we have

fBlUlphdw2<Cw2(B)[1-v(3B) f3IpBlu dv]h-1
[’BIP/" f3 1 f3 1"Wl(3B ) IVulpdwl+ v(B) nlu dv (4.38)

for u Lip(B), B c B0. Next by Corollary 4.24 and Remark 4.27, given
u Lip(B) there exists an extension Au (which is locally Lipschitz) of u such
that

and

Moreover, we know that Au Lip(3B), so Au satisfies (4.38). Thus (b) holds
since

Lph

It is now easy to see that part (a) holds.
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