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SOME REMARKS ON EXTENSION THEOREMS FOR
WEIGHTED SOBOLEYV SPACES

SENG-KEE CHUA

1. Introduction

Let 2 be an open set in R”. If « is a multi-index, a = (a, @5,...,@,) €
Z7, we will denote X7_,a; by |a| and let

o a \“ g\
D =(a_) (a) .

A locally integrable function f on & has a weak derivative of order a if
there is a locally integrable function (denoted by D*f) such that

[ f(Po) dx = (=)' (D)o dx

for all C* functions ¢ with compact support in 2 (we will write ¢ € C5(2)).

By a weight w, we mean a nonnegative locally integrable function on R”.
By abusing notation, we will also write w for the measure induced by w.
Sometimes we write dw to denote wdx. We always assume w is doubling, by
which we mean w(2Q) < Cw(Q) for every cube Q, where 2Q denotes the
cube with the same center as Q and twice its edgelength, Let w be another
weight. By w/u € A ,(u), we mean

1/p _ _ (p-1/p
sap ] L)) e <o
Z‘((é)) < C::((g)) a.e.when p = 1,

for all cubes Q in R". If Q is a cube, let I(Q) be the edgelength of Q. For
1<p <o, k €N, and any weight w, L2 ,(2) and E? ,(2) are the spaces
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of functions having weak derivatives of all orders a, |al < k, and satisfying

1/p
”f”l,:;,,((.@) = ) ID*fllLpoy = Y (f |D*fP dW) <wifl <p <o,

O<lal<k O<lal<k
Ifls w2y = Ifllgay = X esssuplD*fl < oo
O<lal<k 2

and

"f”E{;,k(.@) = E IDfll ooy <
lal=k

respectively. Moreover, in the case when w = 1, we will denote L? «(2) and
EP (2) by LR(2) and E(2) respectively.
The following theorem is by now well known.

THEOREM A. If 9 is a Lipschitz domain and 1 < p < «, then L{(D) has
a bounded extension operator; i.e., there exists A: LE(2) - LE(R") such that
Aflo=fand

A fllLpwrry < ClifllLpc2)-

A.P. Calderén [1] proved this theorem for the case 1 < p < « and E.M.
Stein [12] extended Calderén’s result (with a different extension operator) to
include the endpoints p = 1,«. P. Jones [9] then extended Theorem A to
connected (g, 8) domains® as follows:

THEOREM B. If 9 is a connected (¢,8) domain and 1 <p < », then
L2(D) has an extension operator. Moreover the norm of the extension operator
depends only on ¢, 8, k, p,rad( D), and the dimension n.

Furthermore he proved:

THEOREM C. If 9 is an (¢,©) domain in R", then E}(2) has a bounded
extension operator, i.e., there exists A: E}(2D) - EY(R") such that ||A]l is
bounded.

Our purpose is to extend Theorem B and Theorem C to weighted Sobolev
spaces, for example, when the weight satisfies Muckenhoupt’s A, condition.
Indeed, we will try to extend these theorems when the weight w satisfies the
following Poincaré type inequality

If - fQ,w”Lﬁ(Q) < Col(Q)”Vf“L:;(Q) V cubes Q in 9 (P)

The notations (¢, §) domain and rad(2) will be defined in Section 2.
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for all f e Lip,,(R"), the collection of all locally Lipschitz continuous
functions (of course, one could replace Lip,,(R") by Lip,,(2)) where
fo.w = lofdw/w(Q). For example, it is well known that (P) holds when
weA, ?see [2] or [7D. Moreover, (P) holds for a class of non-4,, weights [16].
Also, note that (P) implies the following Poincaré type inequality on union of
touching cubes (i.e., a face of one cube is contained in a face of the other)

If = fo,0 0, wllLeuen < Cmax(1(Q,), (@M VfllLye,uen

for all f € Lip,,(R") and touching cubes Q;,Q, such that 1/4 <
1(Q,)/I(Q,) < 4. For the details, see [6].

Let Lipf;!(R") = {f: D*f € Lip,,(R") for all |a| < k}. Using similar
technique used by P. Jones, we prove:

THEOREM 1.1. Let 9 be an (g, 8) domain with rad(2) > 0 and let k be a
positive integer. If 1 <p < « and w is a weight such that (P) holds for all
f € Lip,,(R") then there exists an extension operator A on 9 (i.e., Af=f
a.e. on 9) such that Af € Lipk_((R") and

A fllze ,@n < ClifllLs (2

for all f € Lipk_ (R") where C depends only on €, 8, k, w, p, n, C, and
rad(2).

Also, similar to Theorem C, we have:

THEOREM 1.2. Let D be an (g, ) domain and let k be a positive integer. If
1 <p < and w is a weight such that (P) holds for all f € Lip,,.(R"), then
there exists an extension operator A on 9 (i.e., Af = f a.e. on D) such that
Af € Lipf; {(R™) and

loc
IAflles wmy < Cliflles (2 forall f € Lipfs'(R"), (1.3)

where C is independent of rad(2).

Let 2 be a bounded (e,0) domain with r = rad(2) and let Q be a
bounded open set containing 2. Let W, be the collection of cubes in the
Whitney decomposition of (2°¢)° and define

m (o< wi@) < 285),

where L > 0 is chosen so that O € (U 5 p,0) U 9.

2|All > w asrad(Z) » O oras & —» 0 or as 8 — 0.

3Thus C depends only on ¢, w, p, k, Cy and n.
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By a similar argument we also prove the next result.

THEOREM 1.4. Let 1 <p, <o fori=0,1,...,N. Let Q be a bounded
open set containing an (&,) domain 2 and let L and r be defined as above.
Let w be a weight and suppose that w; are doubling weights such that

Ilf —fQ,,L”ng(Q) < AN(QNV]fllLgoy VQin 2, (1.5)
for all f € Lip,,((R") and i = 0,1,..., N.

(I) There exists an extension operator A on 9 such that Af € Lipk_{(R™)
and

||VkAf||Lf;5:(Q) < C,~||ka||L¢;§(9)

for all i and all f € Lipjo; '(R"); in addition, if w;/u € A,(u) for some i, then
for that value of i,

IAfllgmn < CIflLgcay + rIVFlLgay + -+ +r* IV 1fll g

IVA fll Lgicay < C,-(”Vf”Lg;:(g) + r||V2f”L5;:(.@) + oo +rk_2||Vk‘1f||ng(9))
||V1Af||L3;5:(Q) < Ci(”VIf”ng(_@) + "”VHlf“ng(.@) + oo +rk_l_1”Vk_1f”L,ﬁ’,:j(9))

”Vk—lA.f”Lf,:j(Q) < Ci"Vk—lf”L:;g(g)
for all f € Lipk= 1(R™).
(II) There exists another extension operator N on D such that Nf €
Lipf;'(R") and
||VkA'f||L55:(R") < C,-||ka||1,g;:(9)

for all i and all f € Lipf; '(R™); in addition, if w;/u € A,(u) for some i, then
for that value of i,

||A'f”L5;1(n) < C,-(”f"Lg;:(.@) + "”Vf”Lg::(_@) + o +rk_1||vk_1f||u;;:(.@))

”Vl\'f"u;;:(n) < Ci(||Vf||Lg,::(9) + r“sz”Lg;‘:(_@) + o +rk*2||Vk_1f||L5;:(9))
||V’A'f||L5;:(Q) < Ci(”V’f”ng(g) + r||Vl+1f||Lg;,:(9) + .- +rk_l_1||Vk_1f||ng(9))

IV A fllgay < CAIVE o

for all f € Lipf;'(R").
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In either case, C; depends only on w;, u, €, L, p;, A;, k and n.* (Unfor-
tunately, L usually depends on r, but there are cases where L is independent of r
and consequently C,; is independent of r.)

Remarks. (a) It can be shown that the extension operators in Theorem
1.4 also satisfy

IVA Ly < CIVflLgieay + r* = IV*Fllgean)
0<l<k—-2,0<i<N,

where C; depends only on w;, u, &, L, p;, k and n. Moreover, in the first case
we have

IAfllLgen < Ci(IflLgcay + rIV*fllgea) Vi

Here C; again depends only on w;, ¢, L, p;, k and n. Moreover, note that the
assertion w;/u € A (u,) is not needed now.

(b) In case k = 1 ‘better result could be obtained, see Corollary 4.23.

(c) Theorem 1.4 has a counterpart for infinite (&, ©) domains; see Theorem
4.26.

(d) These extension theorems, especially Theorem 1.4, have many applica-
tions; for example, they can be used to obtain Poincaré type inequalities (see
Remark 4.15), Sobolev interpolation inequalities (see Theorem 4.34) and
imbedding theorems of Sobolev spaces on (g, %) domains.

2. Facts about (g, ) domains

DEerINITION. An open set 9 is an (g,8) domain if for all x,y € 9,

|x — y] < 8, there exists a rectifiable curve y connecting x, y such that y lies
in Z and

i(y) < B2 (2.1)

d(z,09) > %‘—Z' Vzey. (22)

Here I(y) is the length of y and d(z,02) is the distance between z and the
boundary of 2. Let us decompose & = U9, into connected components

4
C,—>»was L »>0orase —0.
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and define

r=rad(Z) = inf inf sup |x —y|.

o xE.@a ye_@a

We will assume » > 0 in most cases. Then for any x € 9, there is a point
y in the same component with |x — y| = 3r/4. Note that we always have
r > 0 when 2 is an (g, ) domain since Z is then connected.

By a cube in R”, we mean a closed cube whose edges are parallel to the
coordinate axes. Following the terminology used in [9], we say that two cubes
touch if a face of one cube is contained in a face of the other. In particular,
the union of two touching cubes of equal size is a rectangle. If Q is a cube,
let I(Q) denote the edgelength of Q. A collection of cubes {S,;}/2, is called a
chain if S; touches S, for all i.

Also let W, be the cubes in the Whitney decomposition of 2 and W, be
the cubes in the Whitney decomposition of (2°)°. See [12] for the definition
of the Whitney decomposition. We will write d(Q,S) = inf, ., ,cslx — I
and d(Q) = d(Q, 49).

Next let us recall some properties of the cubes in the Whitney decomposi-
tion of the open set 2 or (2°)°. Since these properties are well known, we
will often make use of them without explicitly mentioning them.

I(Q) =27% forsome k € Z,
XNQI=0 ifQ +Q,,

1(Q)) .
I(Q:) <4 ifQ,NQ,+d,

15‘%%93134\/5.

Next, let us collect some facts concerning (¢, §) domains. The reader can
find the proof in [9]. Moreover, more details could be found in [4] or [5].

Let 2 be an (g, 8) domain. Recall that W, and W, are the Whitney
decompositions of 2 and (2°¢)° respectively. Then there exists W, c W,
such that the following five properties hold.

1/4 <

(2.3) There exists C > 0 such that if /(Q) < C and Q € W, then Q € W,.

(2.4) There exists C > 0 such that for all Q € W;, 3§ € W, such that
1 < I(8)/I(Q) < 4 and d(S, Q) < CI(Q). We will choose such an S and write
S = Q*.

(2.5) There exists C > 0 such that for all Q € W;, and S, S, € W, such
that S,, S, = Q*, then d(S,, S,) < CIQ).

(2.6) There exists C > 0 such that for all § € W,, there are at most C
cubes Q € W, with Q* = §.
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(2.7) There exists C > 0 such that for all Q,, Q, € W, such that Q; N Q,
+ &, we have d(QF, 0%) < Cl(Q,).

(2.8) There exists C > 0 such that for all Q,, Qk € W, with Q; N Q, # I,
there exists a chain F, , = {Q} = §,,5,,S,,... = Q%} of cubes in W,
connecting QF to Qf w1th m < C. (Then I(S) I(Q) are comparable and
acs;, Q) < CI(Q ))

Remark 2.9. Note that the constants in (2.3)-(2.8) depend only on ¢, &
and n. Note also that W, is indeed the collection of those cubes which are
sufficiently closed to 2. Moreover, when 9 is an (g, ©) domain, we can take

={0 € W,: I(Q) < erad(2)/(16nL)} with L > 0 so that properties
(2.3)-(2.8) hold except that now L < I(Q*)/I(Q) < 4L for Q € W,.

3. Some preliminary results

From now on, C denotes various positive constants depending only on
&,8,p, k,w and the dimension n, and C(a, B, - -+ ) denotes such constants
depending also on a, B, - - . Again these constants may differ even in the
same string of estimates. We denote by V the vector

9 9 9
9%, 9x,’ " ox,

and by V™ the vector of all possible mth order derivatives for m € Z . By

we€A, 1<p<» we mean that w satisfies the Muckenhoupt A4, condi-
tion, i.e.,

(p—1/p

ﬁ([gw(x) dx)l/p(fgw(x)_l/("_l)dx) <cC

Ycubes Q cR"ifl <p <

and
Lfw(x) dx < Cessinfw(x) Vcubes Q cR"if p =1.
|Q| Q x€Q

Moreover, we write W € 4,, if w € A, for some p > 1.

Next, let us state a theorem on polynomials [5].

THeorREM 3.1. Let E, F be unions of at most N cubes such that E,F C Q
for some cube Q and |E|,|F| > y|Q|. If w is a doubling weight and p is a
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polynomial of degree m, then
[ pllgcey < C(y, m, NP Locr)-
This theorem is indeed the consequence of the following two lemmas.
Lemma 3.2 [13, Chapter 3, Lemma 7).  If w is a doubling measure and m is

a positive integer, then there exists so(n, m,w) such that if s < s, then for all
cubes Q, A > 0 such that

w({x € Q:|p(x)| > A}) <sw(Q)
we have

sup | p(x)| < CA,
xeQ

where p is any polynomial of degree m and C is a constant independent of A, Q
and p.

It follows from Chebyshev’s inequality and Lemma 3.2 that given m and a
polynomial p of degree m,

C
=0y < — =~ llpllL
llp |L(Q) w(Q) llp L)

with C independent of Q and p, since

w({x € Q:|p(x)|>A}) < %f Ipldw

€0, Ip(x) >
1
< ylpliLiy = sw(Q)

by taking

1
A= WQ——)-[leldw.

LemMmAa 3.3. Let Q be a cube and let E be a measurable set in Q with
|E| > y|Ql. If p is a polynomial of degree m, then

ol =gy = C(y, m)lIp |l =g)-
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The reader could find the proof of this lemma in [5] or [4].

4. Main results

Let w and u be weights such that w is doubling. Note that if w/u € 4,(u),
then

1(Q) flle < Cw(Q) ™ llfllLeco)
V cubes Q C R” and real functions f.

Moreover it is clear that this condition is satisfied if u = w since 1 € 4,(w)
for p > 1. If S is a compact set in an open set 2 and f € Lipf; (R") we let
P8, f) be the unique polynomial of degree k — 1 such that

fSD"‘(f— P(S,f))dr =0, 0< lal <k.
First, we have the following lemma regarding these polynomials.

Lemma 4.1. Let Q be a cube and let f and P(Q, f) be as above. If
w/u € A, (w), then

1D#P(Q, F)|.o0r
< (V9o + L@V fllgigy + -+ +1(Q)* v

for 0 < IBl <k -1
The proof of this lemma is quite straightforward and is omitted. However,
details could be found in [5].

Next, the following lemma is an essential tool in the proof of extension
theorems. Note that it is similar to Lemma 2.2 in [9].

Lﬁ(Q))

Lemma 4.2, Let Fy , ={S,S,,...,8,} be a chain of touching Whitney
cubes and let R; be the cube in S; U S, ., such that |R,N S;| = |R, N S,;,,|
= 3 min(|S,], 1S;,,]) fori=1,2,...,m -LIf

If = fo.ullee < Col(QWVflliLeey for Q@ =S, or R, (4.3)
for all f € Lip,,(R"), then
||D”(P#(Sm,f) - Pu(Sl’f))"Lx(s,)
< C(m, CHI(S)* T PNVES laur,my 0 < 1Bl <k,
for all f € Lipf;'(R").
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Proof. Let us write P(S) instead of P(S, f). First note that we may
assume |B| < k. By the triangle inequality and Theorem 3.1 we have

I DE(PSm) = Bu(5D)) |Lgesy

m-—1
< ; | DE(PSi11) — P;L(Si))"Lg(sl)

m-—1

<C ¥ |DP(PuSie1) = BuS))||Lscsy

i-1
= CZ(” DP(P(S)) = PAR))||uacsy
+|| DP(Pu(Sis1) — Pn(Rt))"Lx(s,-))
< CL (| DP(BAS) = PR |acr,nsy
+|| DA(P(S;11) — PM(Ri))"Lﬁ(RinSiH))
< CL(|DP(PuS) = F)legesy +1PP(PLSiet) = F)uges,,
+[ DA(PAR) = ) |ugeas)
< C(Z1S) PNV F lleacsy + 1(Sia)* TPHVEF eecs,.
+1(S)* PNV Negery)
by repeated applications of (4.3). Thus
IDP(PuSn) = BulSD) |Lacsp < COmUS) T PNVEF Ngeors,m
since 1(S,), 1(S,), ..., I(S,,) are comparable. This completes the proof of the

lemma.

The following lemma is a consequence of Lemma 4.1 and the proof of the
previous lemma.

LemMma 4.4.  Under the assumption of Lemma 4.2, if we assume further that
0 < IBl <q <k, then

IDP(PASms ) = PulS1s F) ILacs,y
< C(m,Cpl(S;)?

m m-—1
X ("qu”LfJ(UFpm + Z " Vqu.(Si’ f)”L,g(sl) + Z " VqP;L(Ri’ f)"L,‘;(Sl))‘
i=1 i=1
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Furthermore, if w/u € A,(u), then

| DP(P(Ss £) = Bu(S1, ) |Lacsy < C(m, Co)I(S;) "
X (|| Vf llgor, m + QI VI f gor, m

4 ooee +1(Q)"“’_1||Vk_1f"L.‘:(uFl,m))~

Proof. Because of the proof of the previous lemma, we only need to make
the following observations. First, if |8| < g then

| DA(BSis £) = ) egesy

< QU(S) Y VUBS 1) = 1) egesy
by repeated applications of (4.3)

< CU(S) ([ VIPLSi, ) Lpcsy + 1V lecs)-

Next, if |[8] = g we obtain the same estimate from the triangle inequality.
Moreover, similar arguments can be applied to the term ||D’3(PM(R,., f) -
F)lLgcr,)- Finally, our conclusion follows immediately from Theorem 3.1 and
Lemma 4.1.

We can now prove Theorem 1.1. However, as it is almost exactly the same
as the proof of Theorem 1 in [9] except that now we will make use of
Theorem 3.1, Lemma 4.2 and the Poincaré type inequality (P) instead of
Lemmas 2.1, 2.2 and 3.1 in [9], we will only give a sketch of the proof.

Sketch of the Proof. Recall that W, is the Whitney decomposition of 2
and W, is the Whitney decomposition of (2°)°.

Step (1). Choose W, c W, such that properties (2.3)—(2.8) hold. Note
that I(Q) < C for all Q € W,.

Sep (2). Next let us define the extension operator. For each q; € W,
choose 0 < ¢; < x1g, ¢; € C*(R"), such that

Y ¢;=1 onUW,;,0< Y o<1,
Q,EW; Q;eW;
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and
ID%,| < Cl(Q;))™™, 0x lal <k.

Given f € Lipf;', we define P(x) = P,(QF, f)(x) and

f(x) ifxeg
Lo,emP(x)ei(x) ifxe (29".

We then show that if Q, € W; then

IDAf llgop < CIDf llLeop + CU(Qo) N VEf laurom, (4.5)

where 0 < |a| < k and F(Q,) is the collection of cubes which belong to any
of the chains F, ; for which Q; N Q, # .
This inequality can be shown by repeated applications of (P), Theorem 3.1
and Lemma 4.2. The proof is quite technical but standard (see [9], [4] or [5]).
Next if Q, € W,\ W,, 0 < |a| < k, we can show

| D*Af llLzoy < C(r) r {||V"f lzzop + X || Df ||L5(Q;~*>}-
Q;€W;, QiNQy*J B=<a
(4.6)
Again, the proof of this equality can be found in [9] or [5].
Moreover, observe that
' Yy Y. xor| =C, 4.7
Q€W ,\W; Q,1€W;, QINQ;+D re
> XuFpl| = C. (4.8)
Q,EW; =

Combining these facts with (4.5), (4.6) and using Q) < C if Q; € W, we
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have, for 0 < |a| <k,

IDAf2ecaom = L IDAflieey+ X IDAfllzsep

Q;EW; Q;EW\W;
< ¥ (1D legop +11V*f lgcwrop)”
Q;eW;

+>:( o

Q,eW,\W3 \ Q,eW;3,0,NQ# D

p
(1947 + T 10|

B=<a

IA

Y c(I1Df Ifeaop +1Vf liawrp)
Q;EW,;

+ X )R o))

Q;EW\W;3 Q€EW;3, O;NQ)# D

X(" V¥flleon + ¥ | DPf "i,‘;(Q?‘))

B=<a
< (NS 2
Hence

IAS ez w290 < (S ez i2>-

Step (3). We then show that D*Af is locally Lipschitz for all «,0 <
lal < k. Observe that we have

IAf iz < C (" VEf luron + h I f ||L°;(Q;'>) VO e W,.
QEW;, QiNQ*J

(4.9)

(If Q & W,, we take UF(Q) = &). To prove (4.9), we only need to replace p
by = in (4.5) and (4.6) since

If- fQ,w"L""(Q) < CI(Q)||Vf lle=@y for all cubes Q.

If Q is a bounded set in (2°)°, then 3G c W, such that O ¢ UG and UG
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is bounded. Thus

IAf e <A fllcue < Cl f lla < =,

where K is a compact set containing UF(Q) VQ € G and containing QF
VQ, € W; with O, N Q0 # &, O € G. We now show that D®Af is continu-
ous for all @, 0 < |a| < k. To this end, one only need to show that

lim DAf(x) = D*f(x,) Vx,€092,0 < |a| <k.

x—xg, x€(P°)

Nevertheless, it suffices to show that if Q; € W, and d(Q;,d2) — 0 then

- 0.
L%Q)

a — 1 a
D°Af W(Q;k)foD Faw

However, the proof is again quite standard. For the details, see [9] or [4].

Remark 4.10. (a) Let W’ be the collection of all cubes S such that either
Q* =S for some Q € W, or S € F; ; for some Q;, 0, € W, (see property
(2.8)). Indeed W’ is just the collection of all cubes in W, near the boundary
09. Also, let W” = {R is a cube in Q; U Q, such that |[R N Q,| = |[R N Q,|
= 1min(|Q, |, |Q,!) for some touching cubes Q,, @, in W'}. Then indeed one
needs only to assume that (P) holds for all cubes in W’ U W” to prove
Theorem 1.1.

(b) In case Lipf,;'(R") is dense in L2 ,(2) and w~'/?~1 is locally
integrable on  (these are true when w € 4 p), our extension operator A can
be defined on L} ,(2) such that

IAf ez vy < Cllf ez, «2)-

For the details, please refer to [5] or [4).

Proof of Theorem 1.2. Case (i): 2 is unbounded. Then r = and
W, = W; (see Section 2).

Just as before, we will define Af = Ly y, Pe; on (2°)°. Recall that for
0, € W;, we have

D= Z Pj‘Pj
Q;EW; LEWQQ

S”D"‘Po"sz(Qo)"'lD“ Y. (P = Py)g,
Q;eW; L2(Qy)

D= Y. (P —Py)g
Q,€EW;

LE(Qg)
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when |a| = k since P, is a polynomial of degree k — 1. Also recall that

since |a| = k. By (4.8) we get as before

< CU(Qo)* ™IIV¥f llLacurom
LEQ)

D* 3} (P = Py)e;
Q;eW;

= C||V*f lLacuroo

| DA ooy < CIV*f ey if lal = k.

Exactly the same as before we can show that D*Af is locally Lipschitz
when |a| < k — 1. Hence if |a| =k,

I DA lLzwn < ClIV*F [z (4.11)
Case (ii): 2 is bounded. Then rad(2) = r < © and W, = {Q € W,: I(Q)
< er/16n}.
Recall that by definition, rad(2) = inf, . 4 sup, < olx — y| as now 9 is
connected. Hence

sup |x —y| < 3r.
x,ye9

Let I' = U(W,\ W3) and W, = {Q € W,;: Q N T # J}. Note that

er

1
QeW,=UQ) = 31g;-
Next choose ¢', ¢; € C*(R") for j = 1,2,... such that for Q; € W;,
’ a, t —lal
XQj < P =< X%%Qj’ |D (Pj| < Cl(Q]) ’
Xr<¢ < Xrurs |D*¢’| < Cr7e,

where

c c 1 er
e = {xeTe:d(x,0T) <m}), 1 =3575-

Then 1 < £¢} + ¢’ < C on (2°)°. Define

®; ¢
o= ——=— and ¢ = —T=—.
T+ Ly ¢+ L
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Since the edgelengths of cubes in W, are comparable to r, we have K =
number of cubes in W, < C (independent of r) and

IDPp,| < CI(Q;)™ and |DPp| < Cr A for0 < |Bl <k.

Next, define P = (1/K)Z, <, F; and

Afe {qu +EgemBe on (I
f on 9.
Now if Q, € W5\ W,, we can show as before that
I DAS llzep < CIVEf lzwroy if lal = k. (4.12)
Next if Q, € W,, then since Lo; + ¢ = 1 on UW;,

| DA f llLzey < D*PollLzoy +‘ D= ¥, (Py— P)e,
Q,EW;

LEQy
+[|D*((Py = P)¢)|L2con-

Note that since |a| = k, D*P, = 0 and observe that exactly as before,

D" ¥ (Py-P)e,

Q;EW; LE(Qo)
= x Y. C(a,B)DP(P, — P)D* Py,
QjeW3v Q}'ﬁQO#g BSa L%(Qo)
<C Z Z 1(Qo) _'a_m"DB(Po - Pf)“Lﬁ(Qo)
Q,EW;, 0;NQy*D B<a
< CI(Qy) ™ z IVXf |Lgcor,

Q,EW3, Q;N Q=2
< Qo) N V4f lLacoroy = CIIVAF lLacorc

since |a| = k. Also

[ D=((Po = P)e)l|Lzcop =

L C(a,B)DP(P, — P)D*"Pyp

B=<a

L&Qo)
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Next, observe that

| DA(Py — P)D*"Po| Ly,
< Cr71*=#| DE(Py — P)||Lecoy

Cr—la—Bl
. )74 Y IDA(Po = P)| ooy
0;eW,
C, la—B|

z X | DA(P(SE) = P(SEie1) ooy

E4l

(where Qo = S;,05Sj,15+++»Sj,, = Q; is a chain in W,)

Js

LY T DA(P(SE) = P(SE)) st

Q,eEW, i

by Theorem 3.1 since Q,, S; ; € W, and hence Q,, S}; € Q with |Ql, |S};l
> y|Q| for some cube Q with edgelength Cr and v is a constant depending
only on ¢, k, and n. Continuing with the inequalities we have

Cr_la_ﬂ

I _
<=7 Yy Zl(Sj’i)k 8| v g lLzcue,» by Lemma 4.2
Q;EW, i
where G, ; is a chain in W, which connects S}, to S, ;
< % Y Y IV¥flleeue,p since I(S;;) <Crandla|l =k
Q,eW, i
< Y K| V*fllzoy sinceforalliand j, UG, ;C Zand k, <K

Q,eW,

< C[|V¥f e
since K < C. Thus,
ID=((Po = P)¢)llecop < CIIV*f o2,
and hence if Q, € W,,
| DAS ey < CIVEf lzacorem + ClVEf a2y < CIVEf llLecoy. (4.13)

Finally, by similar methods as the preceding estimate, one can show that
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(details are available in [5] or [4])

| DA f llLeay < Cll V¥f e (4.14)

It is now clear that by (4.12), (4.13) and (4.14), we have

IVEAf oo < CIV*f L.

Similarly, by checking that D*Af is locally Lipschitz for all e, |a| = k — 1,
we have

IV¥A £ leamn < CIVES |lLgco.
Finally, similar to case (i), we conclude the proof of case (ii).
Remark 4.15. 1If (P) holds for all f € Lip,,.(R") and all cubes Q, then
I f = fawlLoa < C rad(2)|Vf |z
for all f € Lip,(R”) and all bounded (¢,) domains 2, where C is a
constant which depends only on &, w, p and n. (In [6], the author has studied

weighted inequalities of this kind over more general domains which include
John domains.)

Proof. First let us choose a cube Q D 92 such that /(Q) is comparable to
rad(2). Next if f € Lip,(R"), we define Af as in the proof of the previous
theorem with k = 1. Then Af € Lip,,.(R") and

| VAf Lz < ClIVf |lLpc2.
Hence
I f = fowllezco < 2| f = (Af)owlieoy
<2|Af = (Af)owllrao

< CI(Q)|VAf ||z
< Crad(2)| Vf Lz 2)-

Finally we prove Theorem 1.4. Recall that & is a bounded (¢, ) domain
with r = rad(2), Q is a bounded open set containing 2 and

r -m
w,={0ewsi(0) s fir ), L=2"mez,,

where L is chosen so that Q ¢ U(W,) U 9.
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Proof of Theorem 1.4. We will only prove the theorem for the typical case

k = 3.
By w € P,(u), we mean

If = fo,ullpey = CUQ)IVf lLixoy ¥ cubes Q € P, f € Lip;o(R").

Note that w; € P,(u) for all i by hypothesis. When Q; € W;, we will write
P, = P(Q%, f). Moreover note that I(QF) < Cr for all Q; € W,.
Now let us prove (I). Let us define

X =

where the ¢;’s are the same as in the proof of Theorem 1.1.
As in the proof of (4.5) we can show that if Q, € W, and |a| = 3 then

| DA f |lLzcoy < C(LYIV3f locurem Vi
Hence when |a| = 3, we have

| DA f ||lLzan2) <|| D°Af |lLacowy

< C(L)|V3fleew Vi

as in the proof of Theorem 1.1 (with the help of (4.8)).

Next we will estimate DA f for |a| < 2 with the help of Lemma 4.1. First

observe that if Q, € W, and w/u € A,(u), then

I Af lzacoy
< Y I P:llLecoy < C(L) > I P; || Lzcom
Q,eW3, 0;iNQy*D Q. €W, QiNQy+J
<C(L) > C(I flleop + I VF lLeop + r2IV2f lezeon)

Q.EW;, QiNQy+J

(4.16)
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by Lemma 4.1 since /(QF) < Cr if Q; € W,. Hence

IAfIZecowp = X IIAS 2o
Q,EW;

st T cw

Q,EW; \ Q,eW;, Q;NQ;#D

p
x (I leaxop + AV lzep + r2v2f uLm))

< X x C(L)

Q,€W; Q;eW;, @iNQ;+D
14
X (£ Waep + r21Vf aep + r22192f lacon)

<c(L) L (Iffeeep + roIVf fzop + r2I v lizen)
Q;EW;

< (L)1 f fezcas + r2IVf figear + r?I V¥ i), (4.17)
Moreover,

14

Z P;p;

Q, €W,

Z P;op;

Q.EW,;

IAf I Zecomamwy =

p '

LECU(W\W3)

Li(UWs)

where W, = {Q € W,\ W;: Q N Q, # & for some Q, € W;},

p
S T Pelao)

Q;eWs \Q, W3, 0iNQ;+J

IA

A

t( ¥ C(L)uPiuLg(Qm)p

QEW; \Q,EW;, 0iNQ;+D

> > C(L)|IP|zzon

Q,€Ws Q,eW;, QiNQ;+D

< X > C(L)

Q,EWs Q,eW;, Q;NQ;+D

IA

X (I f lzgon + VS lzgon + r21V2f lLaeon)”

by Lemma 4.1
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< X )y C(L)

Q,eWs Q,eW;, QiNQ;+D
X (I f Wezep + r21VF Ifeacen + r221 V2f Kzcon)

<c(L) T (Iflfaep + r1Vf liaep + r29%f fruep)
A

< C(L)(I f eacar + rlVf fozcor + r21 v [ipo)).

Thus

IASf lgown < C(LY(I f ey + V23S Iz + P2 VP L) (4.18)

Moreover if [B| = 1, Q, € W3 and w € P,(n), (again, w/u € A (1))

I DA f ||L£(Qo)5“ Y. (D*P)e¢; +| Y. P.DPy;
Q;€W; L2(Qy) Q. €W; L&(Qy)
< L 1Dl +| T 8- PYD,
Q. €W;, 0;NQy+*J Q,EW; L2(Qy)

since )., DPp,=0on UW,

Q,EW;
< C(L) r I DPP; |0 + CCLYIQ) ™
Q. €W, 0;NQe*J
X x | P; — Pyllecon
Q;€W;, 0:NQy+D
< C(L) ) (19f lieen + rlV2f lLaon +11VF lLgcor, »

Q. €W;, QiNQo+J
+rlV2flLscur, ) by Lemmas 4.1 and 4.4,

where Fy ; = {QF = S; 0, S; 155 5; m, = QF} is a chain guaranteed by (2.8)

< C(L) X (1Vf leacury,» + V2 lLscor, ).
QiEW;, QiNQo* D

(4.19)
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Similarly, if |y| =2 and Q, € W,, we obtain (when w/u € 4,(u) and
w € P (u))

| DA f ||Leoy < > | DP;||Locom
Q,€W;, Q;iNQy+*D

+ Q)" h ¥ | DE(P, = Py)|lLpcop

Q,€W3,0,NQy#J |Bl=1

-2
+ Cl(Q)) Y | P; = PollLacoy
Q,EW;, QiNQy+J

<C(L) . (IDflesep +1V2f leawr, ),
Q,€W;, 0;NQy*J

(4.20)

by Lemmas 4.1 and 4.4. Thus we obtain estimates of
IDPA fllLgop, ID"AfllLp, for Qg € Wi.

Similar to the estimate of ||AfllLzuwy, if 18] =1, |y = 2, we have, by
(4.19) and (4.20),

I DA £ llezomwy < C(L)(IVF ooy + VP leao),  (4.21)
ID?Af legwwy < C(L) VP Lz, (4.22)

Next as in the proof of Theorem 1.1, we can show that D*Af is locally
Lipschitz for 0 < |la| <2 if f € Lip},(R"). Hence we have the desired
estimates (recall that Q € 2 U (UW,)), namely, for all i such that w;/u €
A, (n)

p; 4

1v2A £ Lexer < €LY VP |z,
IVAS legear < C(LY(IVF leec> + rlV3f o)),
IAS legmn < CCLY(I £ lLgx> + P VF lLgxa + r2| V2f lLexo),

and

IV2Af ey < C(LYIV3F e

This proves (I).

We now consider (I). As in the proof of case (ii) of Theorem 1.2, we let
P =(1/K)Xy cwP; (recall that K is the number of cubes in W, and
W,={Q e W;: 0NT + &) where T = U(W,\ W,;)). Also, similar to the
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proof of Theorem 1.2, we choose ¢', ¢’ € C*(R") for j = 1,2,... such that
for Q; € W,

—lal
Xo, < ¢ < X120, ID*gj| < CI(Q;)

Xr < ¢ < xrure |ID%'| < C(L)r™'™,

where
1 er
If={xer<d(x,)<n}, =n= 3 Tenl -
then 1 < ¢} + ¢’ < C on (2°)°. Define
?j ¢
= v ad o= ——~<=—.
T+ e ¢+ 2

Since C,(L)r < edgelengths of cubes in W, < C,(L)r, we have K = number
of cubes in W, < C(L) (independent of r) and

IDPyp.| < CI(Q;) " and |DBp| < C(L)r " for0 < |B| < k.
J J

Again we define

Pe+ Y P¢, on(29)°
Nf = Q;eW;

f on 9.

The rest of the proof of (II) are similar to that of (I). The reader could refer
to [5] or [4] for the details.

CoroLLARY 4.23. Let 1 <p, <o for i=1,2,...,N and let u be a
weight. Let N;, N € Z, such that N, < N. Suppose that wi,...,wy are
doubling weights such that w;/u € Ap,(“) for1 <i <N, and

I£ = fo.ullae < AH(Q)f lzxor V¥ cubes Qin 2, N, <i <N,

forall f € Lip,,(R"). Let D and Q) be as in the preceding theorem. Then there
exists an extension operator A on 9 such that Af € Lip, (R"),

IASflzwn < Cll f gy for1 <i <N,
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and
IVAf llLzcoy < CillVf lLexoy  for Ny <i <N,

for all f € Lip,(R") where C; depends only on w;, p;, ¢, A;, L and n.
(Similarly, there exists another extension operator so that the above inequalities
hold with Q and R" interchanged).

Proof. One needs only to check through the preceding proof and see that
the proof of (4.18) does not involved the Poincaré inequality (P) when k = 1.

CoROLLARY 4.24. Let 1 <p, <o for i=1,2,...,N and let u be a
weight. Let N;, N € Z, such that N; < N. Suppose that w,,...,wy are
doubling weights such that w;/u € A,(u) for 1 <i < N, and

"f - fQ,p"ng(Q) = Ail(Q)" vf ||L£§(Q) VQin 9

for all f € Lip,,(R") and N, <i < N. Let Bbe any ballin R". If 1 <5 < oo,
then there exists an extension operator A on 9 such that Af € Lip, (R"),

IAf lezsy < Cill fllepey  for 1 <i < Ny,
and
| VAf |lLemn < Ci||Vf ||lLzwsy  for Ny <i <N,

for all f € Lip,, (R") where C; depends only on A;, w;, p;, n and s. Moreover,
Af are locally Lipschitz on R". (Similarly, there exists another extension
operator so that the above mentioned inequalities hold with sB and R" inter-
changed).

Proof. First note that all balls B are (gy,©) domains for some fixed
€9 < 1. Next take Z = B, () = sB in Corollary 4.23 above. Then C;’s are
independent of rad(B) since L depends only on s (indeed L = C/s).

Theorems 1.4 has another corollary:

CoroLLARY 4.25. Let u be a weight and suppose that w; is a doubling
weight such that

"f - fg,u“w,.(m <A UQ)IVSf "MZ‘;(Q) V cubes Q in 9

for all f € Lip,,R™) and i=1,...,N. If 9 is a bounded® (e,») domain,

°A similar result also holds for unbounded (¢, ) domains.



EXTENSION THEOREMS FOR WEIGHTED SOBOLEV SPACES 119

then there exists an extension operator A on 2 such that Af € Lipk {(R")
and

IVEA £ Lo < Cll V*f Lecay Vi
for all f € Lipf; '(R™) where C; depends only on €, A;, w;, p;, k and n.
Next, Theorems 1.4 has a counterpart for infinite (&, ©) domains:

THEOREM 4.26. Let u be a weight and suppose that w; is a doubling weight
such that

"f - fQ,#"Lg;‘(Q) SAil(Q)" vf l|L£:.(Q) VQin 9

for all f € Lip,,(R") and i = 1,...,N. If Q is an open set containing an
infinite (&, %) domain such that sup, .o d(x, D) = L < o, then there exists an
extension operator A on 9 such that Af € Lip};'(R") and

I VA £ ooy < CllVEf gy Vi

for all f € Lipls '(R™); in addition, if w,/u € A,(u) for some i, then for that
value of i,

IAflLewn < Cy(ll fliLex2y + LIVE Lgx2y + - -+ + L UVE~f o))
IVAS lzxoy < C:(I1Vf lLexoy + LUV gy + -+ +LF~2V*1f e 2)

IVAf lzzcor < C(IV'f lLecay + LIV *if ey

+ oo A LY VR )

V5= 1A £ lLzcr < CIVE=f lLgc ).

Moreover, there exists another extension operator (which we will again denote
by A) on D such that Af € Lipk;'(R") and

loc

| VA f Lo < CllV¥f lLacay Vi

for all f € Lipk; {(R™); in addition, if w,/u € A »(1) for some i, then for that
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value of i,

IAS legeor < Ci(Il f iz + LIVF legea + - -+ +LY V4 f |Lgco)

IVAS llezcor < C(1VF lleaxoy + LIV gy + -+ - +L52| V5= f ||z o))

IVAf e < C(IV'S e + LIV*f (g

+ o LY VRS g 9))

[V IAf ooy < CIVEf Lpco.

In either case, C; depends only on A;, w;, €, p;, k and n.

Sketch of the proof. Let us assume that k = 3. First let W, = {Q € W,:
I(Q) < CL} such that Q c (UW,;) U 9. Next, given f < Lipk (R"), by

Lemma 4.1, if w/u € A,(u) and S is any cube or union of two touching
Whitney cubes, then

1BLS) lgesy < (I f lezesr + LSHIVF e + 1SNV eges)),
IVP.(8) |lgsy < C(IVS lges) + 1CS MV lLecs)),
"V2P W(S) I|L5(S) < C V¥ o).

Using these estimates we can prove this theorem as we did Theorem 1.4.

Remark 4.27. The Poincaré type inequalities (P) assumed in all the above
can be replaced by the Poincaré type inequalities on balls, i.e.,

I f = fs.wlleee < CIBIY ™| Vf g Vballs B in @ (P)

for all f € Lip,(R"). To see this, it suffices to observe that one can use
Whitney type decompositions of open sets in balls in those proof above. Of
course, we now only have bounded overlaps instead of non-overlapping. But
that is sufficient. Thus the conditions (P) and (P’) are indeed equivalent.

With the help of the extension theorems in Section 4, we are able to
improve a result in [15]. First, let us prove a lemma which is essentially a
consequence of the proof of Theorem 1 in [15].
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LemMma 4.28. Let 1 <p < » and let v,w,,w, be doubling weights. Let B,

be any ball in R". Suppose that there exist constants C, > 0 and q > p such
that

1 1/q9 1 1/p
_ q 1/n 14
(WZ(B) me up | dwz) < C,|B| (wl(B) fB|vu| dwl) (4.29)

for all balls B c 3B, with center in By,u € Lip(3B,). Suppose further that
there exists C; > 0 and 1 < h < q/p such that

wo( B) o(B) "7 (118117 wy(B) v(ﬁ))
w,(B) SCI[U(B)] ([|1§| wi(B) * o(B) (430)

for B, B, such that B C B,, B C 3B and the center of B lies in By. Then there
exists a constant C > 0 (depending only on n, C, and C,) such that

1 h-1
ph 4
fBIuI dw, < CWZ(B)[U(3B) /;Blul dv]

|BI”/" » 1 »
X[WI(SB) LBIVuI vy + S5 [33|u| dv| (431)

for B C B, and u € Lip(3B).

Proof. Our proof is essentially the same as the proof of equation 2.1 in
[15] although it is assumed that p = 2 in [15]. Fix a ball B in B, and let
x € B and B, be a ball in 3B, centered at x. By (4.29) we have

h
ph ph/n 1 p
foluI dw, < Cowz(Bx){leI [wl(Bx) fB,W”' dwl]

< Cowy(B,) {IBx|ph/n[ W1(1Bx) 1;3

= Cow,(B){I + II} (4.32)
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by Holder’s inequality. If B, is large, i.e., B € B, C 3B, we may assume that
I > II. Otherwise if I < II, we have

h
Llulph dwstC()wz(Bx)( o(B, )f lul? dv) .

and we have nothmg to prove. Also observe that |B,| — 0 implies I/ — 0 and
II - |u(x)IP". Therefore if u(x) # 0, for small balls B, we have I <II.
Hence given x € B with u(x) # 0 there exists B, C 3B such that I =11, i.e.,
such that

1

|B |p/n
* Wl(Bx)

j \Vul” dw, = f lul? dv. (4.33)
Bx

1
U(Bx) B,

Hence for this ball B,,

h
1
lulP* dw, < 2Cow,(B,)|B,IP"" Vul? dw
/BX 2 < 2Cowy(B,)| wl(Bx)fB,' I” dw,

h—1
- 2C0w2(Bx){T;;jfB|u|” dv]

X'B"'p/n[ AN dw‘]

By Besicovitch’s covering lemma, there is a family {B,);_, which covers
{x € B: u(x) # 0} and which has bounded overlaps. Since

lul? dv < |ul? dv,
By,

_1 _1
v(By) v(By) /38

we obtain

p 1 p "
fBIu| " aw, < C§W2(Bk)[m/;9k|u| dv]

'Bklp/"

Vul? dw
(B Jo T4
h_.

p/n
sclf ura) T BB 1 gup .
3B k V(B)" wi(By) 7B
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We now apply (4.33) and assumption (4.30) to get

h—1 p/n B
flul”hdwzsC(f Iul"dv) ) Byl ,,_1”2( ) J \Vul? dw,
B 3B k U(B)" wi(By) "B,

v(B) "7 (1B wi(Be) | v(By)
"[( v(B)) {(lBki) wi(B) © o(B) }]
|Bk|p/n

v(B)""'wy(B,)
X {[lﬂ]p/n wi(By) + v(By) }

stz(B)(f Iul”dv) Y fBIVuI"dwl
k

BJd| wi(B) ' u(B)

h-1
< sz(B)(j;Blul" dv) ;[BIVuI"dw1
k

X[ |BI”" +lBk|"/”v(Bk)}
h—1 h
v(B)""w(B)  v(B)"wi(By)

h-1
< sz(B)[;)%ﬁfwlul” dv]

|B|?/" 1 v(By)IB """
X|——— |Vul? dw, + |Vul? dw
[m(B) [Vl vt gy By v

since B, ’s have bounded overlaps

1 h—1
stz(B)[ (3B)f |u|Pdv]
LI 1 ’
[wl(sB) J 7t i+ gy 2 "”]

B/ e dw v —L [
<y L gy

again since B,’s have bounded overlaps. This completes the proof.
We are now ready to prove the following Sobolev interpolation inequality
which is similar to Theorem 1 in [15].
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THEOREM 4.34. Let v,w,w, be doubling weights and 1 <p < gq < .
Suppose that

1/p

1/p
([Iu —ug ,I° dwl) < COIBII/”(IIVuIP dwl) (4.35)
B B

for all balls B, and u € Lip,,.(R").
(@) Suppose that (4.29) holds for all balls B and u € Lip,,(R"). Let
1 < h < q/p. Then the following two inequalities are equivalent:

[t dw, < CWZ(B)[;(iBjLIuIP dv]h—l

|BI”"" » »
X[WLIVL;I dw, + (B) flu| dv] (4.36)

for all B < R" and u € Lip(B);

w,(B) v(B) " |B| " wy(B) U(é))
wi(B) Sc[v(m ( g w® fum) ¢

for all balls B, B € R" such that B C 3B and the center of B lies in B.
(b) (4.36) holds for all B in a fixed B, if (4.29) holds for all B in 3B, and
(4.37) holds for all B € B, and B c 3B (and the center of B lies in B).

Proof. First assume that (4.36) holds. Let B, B in R” such that B c 3B
and the center of B lies in B. We now choose u € Co such that x5, <u <
x5 and |Vu| < C/|B|"/". Then

h-1
f |l dw, < CW2(3B)( ul? dv)
3B

1
v(3B) LB

BBI”/" » »
X[wl(fiB) LBIVuI dw, + (3B)f lul? dv|.

Thus

h—-1 p/n 53
W2(B/2)<Cw2(3B)( (313) (B)) [5]?33) |B|€/n «(B) + :((3BB))]’
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and hence

-1

BBI”/" wy(B) _ v(B)
|B|?/" wy(3B) v(3B)

wa(B) C[ v(B) |'
w,(3B) v(3B)

Therefore,

wa(B) c[”<é>]h_l B w(B) , w(B)
w,(B) v(B) |B|?/" wi(B) = v(B) |

Next we will prove (b). First by the previous lemma, we have
1 h—1
ph p
fBluI aw, < CWZ(B)[U(3B) f33|u| dv]

X

|B|”/" » 1 »
GBIV it o /33|u| dv| (4.38)

for u € I_.ép(l?), B c B,. Next by Corollary 4.24 and Remark 4.27, given
u € Lip(B) there exists an extension Au (which is locally Lipschitz) of u such
that

| Aullzeey < CllullLos)
and

| VAu|z 68 < C|| VutlLg o>

Moreover, we know that Au € Lip(3B), so Au satisfies (4.38). Thus (b) holds
since

lullegrs = || AullLgis.
It is now easy to see that part (a) holds.
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