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INHOMOGENEOUS INEQUALITIES
OVER NUMBER FIELDS

EDWARD B. BURGER

1. Introduction

In the classical theory of diophantine approximation, Kronecker, in 1884,
was the first to investigate inhomogeneous approximation to real linear forms
which were, in some sense, independent over Z. In a slightly different
direction, Khintchine, in 1936, proved that if a homogeneous system of real
linear forms was not approximated well by integers (i.e., it was a badly
approximable system), then this implied the existence of an excellent integer
approximation to any associated inhomogenous system (see, for example, [9]).
Here we study related inhomogeneous problems in the setting of an arbitrary
number field. In particular, we examine these issues in the context of the ring
of S-integers and over the associated addle ring of the number field. Dio-
phantine approximation over the addle ring was first studied by Cantor in
1965 [4], then later by Sweet [12] and more recently by the author [2].

In Section 2 we precisely describe all our notation, but briefly, let k be a
number field and S a finite collection of places of k containing all
archimedean places. We write ks Fir skv for the topological product of
the completions ko. Let {Ao}o s be a collection of M N matrices such
that for each v S, A has its entries over kv. The S-system {Ao}o s is said
to be a badly approximable S-system of linear forms if there exists a constant
> 0 such that

- < hs(, fi’)vI-[ ]A-
vS

for all S-integer column vectors if’ (s)N, - :# and (’s)t, where hs
is a suitably normalized S-height. Our first result is a generalization of
Khintchine’s theorem to number fields.

THEOREM 1. Let {A}v s be a badly approximable S-system of dimension
M N. For each v S suppose that eo k o satisfies 0 < I]e Ilo < 1. Then
for any = (fl) (ks)M, there exist vectors (Ys)N and (s)M such
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that

and

IIllv C(k, v, A})llevll;M

for all places v S, where Ilo is a supremum norm.

The constants C and C2 are explicitly given in Theorem 8. As the
constants are independent of/3- given the S-system {Av}v s and (ev) (ks) x,
there exists an explicitly computable finite subcollection -_ (s)v so that
for any / (ks)M, the S-integer vector ’ of Theorem 1 may be selected
from the finite set r. As an aside, we remark that Mahler considered
homogeneous inequalities involving both real and p-adic linear systems over
Q (for example, [10], Chapter 3, Section 6, Theorem 3) and in some sense,
one may view Theorem 1 as an inhomogeneous analogue of Mahler’s result
over k.
With respect to independent systems, Cantor proved ([4], Theorem 3.2) a

number field generalization of Kronecker’s theorem in the context of the ring
of S-integers. We state this result in our present notation below. For an
M N matrix B, we define an associated (M + N) N matrix 92(B) by

9J(B)

where lv is the N N identity matrix. Let {Ao}o s be an S-system and= (13) (ks)M. Cantor proved that the following two statements are
equivalent:

(i) If (Ys)M is a vector for which there exists a vector (@s)v so that

ff 21(A)=T

for all v S, then there exists an q @s such that

for all v S.
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(ii) Given e (e) e (ks) x, there exist vectors (d?s)g and " e ($)M $0

that

for all v S.

IIA.

The result is not quantitative in the sense that no explicit bound on the
size of the S-integer vector ’ is given. The following result is formulated
purely over the addles and may be viewed as a quantitative number field
analogue of Kronecker’s theorem.

THEOREM 2. Let A (Ao) be an M X N matrix over the addle ring kA.
Suppose there exist iddles e (e,) and (6), with volume V(6) > 1, so
that the system of inequalities

 ll. for each place vofk,

whereA is the transpose ofA o, is not solvable with ff kM, ks and

0 < IIII. lie. II- for each place v of k.

Then for any ff (fro) (k)M, there exist vectors
that for each place v of k,

and y’ e kM SO

and

IIAoZ- ’ -/3o11. < C(k, v, M, N)lle.ll.

II’I10 C(k, v, M,

The constant C, which is independent of the matrix A, is given in
Theorem 9. In particular, for the nonarchimedean places, C(k, v, M, N) 1.
Just as in Theorem 1, given the initial data, one is able to construct a finite
collection o-c_ kN SO that for any ff (k)M, the vector 2’ of Theorem 2 may
be selected from the set 9z-.
By selecting the matrices A (0) for all v S, one is naturally lead to an

S-integer formulation of Theorem 2 which is more compatible with Cantor’s
result. We say that the S-system {A}o s and 1s are independent over s if
the only vector Y (S)(M+N) for which

for all v S is Y 0-’. It follows that if the S-system {A.}. s and 1N are
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independent over #’s, then for any e (eo) (kA), we may find i
(io) (kA) so that the hypotheses of Theorem 2 are satisfied. This pro-
duces an even closer analogue to Kronecker’s theorem (see, for example, [5],
Section 51, Theorem 1).
The proofs of Theorems 1 and 2 involve techniques in the geometry of

numbers over the addle space. In particular, for Theorem 1 we given an
adelic analogue of an inequality due to Hlawka and for Theorem 2 we use a
recent result of O’Leary and Vaaler.
The author wishes to thank the referee for several valuable comments and

suggestions.

2. Notation and normalizations

Let k be an algebraic number field of degree d over Q. If v is a place of k
we write ko for the completion of k at v and let do [ko: Qo] denote the
local degree. If v is an infinite place we write II I1 for the usual Euclidean
absolute value on ko. If v is a finite place then I1 denotes the unique
absolute value on k which extends the usual p-adic absolute value on Q,,
where v lp. We normalize a second absolute value o at each place v by
setting Io--II I1/. It follows that these absolute values satisfy the
product formula: 1-I o[a o 1 for all a k, a = 0. If v , oo we write Yo for
the ring of v-adic integers in k o.

Let S be a finite collection of places of k containing all places lying over
infinity. We write

s-- {xk:x ’o for allvS}

for the ring of S-integers in k. Let ks be the topological product of {ko}o s,
that is, ks 1-I sko. If we identify s with its image under the canonical
injection in ks then by the product formula ’s is discrete in ks and the
quotient ks/s is compact.

Let

X1

be a column vector in (ko)v. We extend the absolute values II
to (ko)v by defining

max {llx.llo}
<n <N
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and lY’l IIY’IIa/d for all v. We define the absolute value Ill Ill by

N

IlXnll for v loo

II’llo for v

If A (amn) is an M N matrix over kv, we define IAI by

IAIo= max {lamnlv }.
l<m<M
l<n<N

Suppose that ’ (S)N and (S)M. We define the S-height of 2’ and
by

hs(x 7) 1-I max(llo, I’lo}.
vS

For each place v S, let A o be an M N matrix over k o. The S-system
{Ao}o s is said to be a badly approximable S-system of linear forms (of
dimension M x N) if there exists a real constant z z(k, {Ao} s) > 0 such
that

< hs(Z, 7)" YI
vS

for all vectors if’ (iTS)N, 4: - and ’ (S)M. See Section 6 of [2] for
further details on badly approximable S-systems.
We select a Haar measure/3v on the additive group of ko by the following

normalization:
(i) If ko --- R then/3 is the usual Lebesgue measure on R.
(ii) If k ---- C then/3v is Lebesgue measure on the complex plane multi-

plied by 2.
(iii) If v oo we require that /3()= Ila/2, where .&o is the local

different of k at v.
We write kA for the addle ring of k and/3 for the normalized Haar measure
on kA which is induced by the product measure I-I o/3v. If (kA)L is the L-fold
product of addle spaces we write V for the product Haar measure /3L on
(kA)L. We remark that in the geometry of numbers over the addles, the Haar
measure V plays the r61e of volume in the classical theory.
We may embed kL "--> (kA)L via the usual diagonal embedding. It follows

that k L is discrete and the quotient (kA)L/k L is compact with induced Haar
measure

,(( kA ) L/kL) 1
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(see, for example, [13]). The vector space kL plays the r61e of the lattice. An
overview of recent results in the geometry of numbers over the adiles may be
found in [3]. Finally, for an idle 6 (6v)we define the volume of 6 as

3. A result from the geometry of numbers over the addles

For each place v of k let Rv
__
(k)L be a nonempty set. If vloo we assume

that Ro is convex, symmetric and bounded with nonempty interior. If v # oo

we assume that R is a k o-lattice, that is, a compact open -module. We
further assume that for almost all finite v, R v (,o)L. We define the set

From our previous assumptions it is clear the

_
(kA)L. We call a subset

admissible if it has the form described above. For tr > 0 we define the
dilation tr by

o’= I-I(o’R) 1-IR.
vloo

We now recall the definition of the successive minima 0 < h N h2
hL < oo of . We define

A inf{tr > 0: trt kL contains linearly independent vectors}.

The adelic analogue of Minkowski’s successive minima theorem (see [1],
Theorem 3) states that

(/1/2 IL)dV(,.) 2dL.

Another natural constant associated with the admissible set is its
inhomogeneous minimum/x() defined by

/z =/z() inf(r > 0" (kA) L

The proof of Theorem 1 will require an adelic version of an inequality of
Hlawka [6] which relates the inhomogeneous minimum to the first successive
minima. Toward this end we require a lemma which easily follows from a
general formulation of Blichfeldt’s theorem.
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LEMMA 3. For N >_ 2, let o-, 2,..., be Borel measurable subsets of
(kA)L satisfying_. ,nU= lV(nn)> 1. If none of the sets contain two distinct
vectors and fl so that - fl k, then there exist indices and j, j, and
a vector k so that ii- .

Pro,of If the sets {} ae not pairwise disjoint, then the lemma is trivial
and sr may be taken to be 0. We assume now that the sets {} are pairwise
disjoint. Thus we have

V U E v() > l=P((kA)L/kL).
n=l n=l

Hence by Blichfeldt’s theorem in this setting (see [13], Chapter II, Section 4,
Lemma 1), there exist distinct vectors E and/3 in U n_- so that E- t
k. By hypothesis E and fl cannot be elements of the same set and therefore
there must exist distinct indices and ] so that E and ff .
The vector may now be taken to be E- fl which completes the proof.

THEOREM 4. Let be an admissible subset of (k)L with Ax and I as its

first successive minima and inhomogeneous minimum, respectively. Then

1),

where 3’ (2/hl)dLw(’-@)-1 and [x] denotes the integer part of x.

Proof Let (k)L be a fixed vector. We define the inhomogeneous
minimum of with respect to by

/x, =/x,(..) inf{tr > O" "
Let ’0 kL be a fixed vector so that for all tr > ,u,g,

We remark that /xg is related to the inhomogeneous minimum /x via the
identity

/,(..) sup /xq(,.,@). (3.2)
ff(kA)L
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Next we let p% ’- ’0 and N [y] + 1. By the successive minima
theorem we have that N > 2. We now define the vectors , -’2,..-, qN in
(kA)L by

Pn (2nN-1)

for n 1, 2,..., N. Let int() be the interior of , that is,

int(,.) I-[ int(R v) I-I Rv.
vloo v+v

We define sets 1, ,..., in (kA)L by

n-- int(,.) +hl 0n,

for n 1, 2,..., N and observe that

N N

E V( )= E V(1/2A int())= N(1/21I)dLv(,.,) ) 1.
n=l n=l

Finally we we note that

1 int() kL {’}
and thus it follows that the sets 1, ,..., satisfy the hypotheses of
Lemma 3. Hence there exist indices and j with 1 < < j < N and a vector
( k so that - .. That is,

or

1-ff- 2(i-j)N- Po i1. (3.3)

Suppose that r >/z. In view of (3.1), (3.3) and the fact that is an
admissible subset of (kA)L we have

+ -o
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Thus

tx < N-I(N- 2)or + A1.

If we let cr /z from above, the previous inequality reveals that

/.t,, < ( N/2)A1.

In view of identity (3.2) we conclude that

/z _< 1/2AI([T + 1)

which completes the proof.

COROLLARY 5. Let , A and t be as in Theorem 4. ff A > 1, then

11, <__ V(,.,)-I/dL([2dLv(,.) -11 -I- 1).
Proof. Since A > 1, it follows that y <_ 2dLv(..)-1 where Y is the

constant defined in Theorem 4. By the successive minima theorem,

(AIA2 AL)dV() <_ 2dL

and so 1/2A < V(..)-1/(aL). The corollary now follows from Theorem 4.

Remark. In the classical geometry of numbers one is able to construct
examples for which Hlawka’s inequality is relatively sharp. Similarly, one may
construct examples in this setting to indicate that the inequality of Theorem 4
cannot be substantially improved. As an illustration, we consider the addle
ring QA and define the admissible set

=R 1-[ R,-(QA) L

p prime

as follows. Let a > 1 and define the L L real matrix A by

1 (C)

O 1
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We define

R {2’ RL" IAx-L 1}

and R,, (Zp)L for all primes p, where Z, is the ring of p-adic integers. It is
a straight-forward calculation to verify that A 1 and V(..@)= 2La, SO in
particular,

el, (2/A1)Lv(,.,) -1.

Finally, ()= a Ala while the inequality of Theorem 4 reveals that

, _< +

4. A transference theorem over number fields

Let Bv be an L L nonsingular matrix over k v for each place v of k. Let
R

__
(k)L be defined by

Ro {5" (ko) L" IIB5"II < 1}.
Suppose that for almost all places v, R o (fir)L. Thus if we let FIvRo,
then is an admissible subset of (kA)L.

LEMMA 6. Let 2 be the admissible set described above with 1 as its first
successive minima. If A > 1, then for any *= () (kA)L, there exists a
vector 5’ k such that

for all places v of k, where

{+11)

Proof. By Corollary 5 we have

(kA) L c_ {(V(,.)-I/dL([gdLv(,..) -11 -I.- 1)),.+ }. (4.2)
kz-

1--+Define $ () (kA)L by , B-ff for each place v of k. By the
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containment of (4.2), there exists a vector ’ kt such that

(4.3)

In view of the definition of and -*, (4.3) is identical to the inequalities of
(4.1).

THEOREM 7. For each v S, let A v be an M N matrix over kv

and eo, be two nonzero elements of k with II eo II < 1. Let

be defined by

,I> rI (II,,,IIVII,,II) <’/<.

Suppose that there are no vectors (@s)N \ {’} and " (Ys)M satisfying

IIA.’-’11o-< Ilell. and I1’11 _< I111

for all v e S. Then for any vector if= () e (ks)M, there exist Z (gYs)v
and " (s)M such that

for each v S where

(1/2(C)((P)-I/(M+V)([(C)"(M+")()-al+I)
1

2 1/2

forv ,

and s is the number of complex places of k and Ak is the discriminant of k.

Proof Set L M + N and for each v S define the L L nonsingular
matrix B by blocks as

/:1!N 0 )BY t 8: .,,zlv ’11M
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and for v S set Bv 1L I(M+N where 1L is the L L identity matrix.
Next define Rv

_
(ko) by

Ro {’ (ko) L" IIB’IIo < 1}
and write = FIoR

_
(kA)L. Clearly

Idet Bolo tleol_Mlolg for v e S
1 for v S

and thus (see identity (2.2) in [2]),

s

V(,.2) 2dL - al-’/2(,)

We now demonstrate that the first successive minima, A 1, of is greater
than one. Suppose instead that A1 < 1. Then there must exist vectors if’ ks

and y’ k M, not both identically zero, such that

That is, 2’ (d?s)N, - e (s)M and

(4.4)

for all v S. Since we are givenjhat there are no S-integer solutions to (4.4)
with Y’ 4: 0 it follows that Y’ 0 and so ’ 4: 0 From (4.4)we conclude that

1-IIl,, < 1-’I leolv < 1.
v vS

By the product formula this implies ’ ’ which is a contradiction. Thus
it must be the case that h > 1 and hence satisfies the hypothesis of
Lemma 6.
We now define the vector *= (r-) (kA)L by

1-’* for v S
e213

0 for v S.
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By Lemma 7, there exists a vector

where ’ kN and y’ k M, such that

for all places v of k. Thus for v q S,

_<1,

so (s)N and ’ (Ys). For v S,

and

llllo
_

Tollollo.

This completes the proof of the theorem in view of the definition of To and
the calculation for V().

5. Badly approximable S-systems

Let {Ao}. s be a badly approximable S-system of dimension M N. Let
z(k, {Ao}o s) > 0 be a real constant such that r < 1 and

" < hs(x--’, ’)NI-I IA.’-

for all ’ (@s)V, , :/: and ’ (@s)M. Next we define the constant
C C((A.}. s) by

Cz (2Nn({ Ao}os))-N/M’r1/M,
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where f({Av}v s) 1-lvs max{l, IAolo}. We trivially remark that 0 < C, <
1. For each place v S, we select - ko such that 0 < I1 _< 1 and

I-I I1 c.

Finally we define the constant po p,(k, C.) k,, for v S by

RV

We now give a proof of Theorem 1 which we restate here with explicit
constants.

THEOREM 8. Let {Av}o s be a badly approximable S-system of dimension
M x N. Let z, {zo}e s be as defined above. For each v S suppose that

k satisfies 0 IIoll 1, Then for an -- () (ks)M, there exist
vectors (S)N and " (s)M such that

and

for all v S.

Proof. For each v S set

g and (v e-M’v Ev "l’v

Suppose now that there exist vectors ’ (@S)N, , ’ and y’ (s)M SO

that

for all v S. From the inequalities of (4.4) of [2] we have

and

hs(Z, ’) < 2Nlq({Ao}os) 1-[ max{le’ol, 161}.
v.S
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Therefore

vS

_< (2n({Aoios))
v I-I max{le’,l, I,,I,,}’ 1-I
vS vS

(2Nn({Ao}os))N I-I
uS

(2NII({Ao}os))N I-1
vS

which is impossible. Hence there are no vectors ’ (s)N, Y’ 4 0-’, ’ (s)M
satisfying

for all v S. We now apply Theorem 7 with {Av}vs, {ev}o s and {6} s
and observe that the p’o’s of Theorem 7 are equal to the po’s defined here,
which completes the proof.

6. A quantitative formulation of Kronecker’s theorem over k

Again we write /z =/z() for the inhomogeneous minimum of and
A 1, A2,..., Az for its successive minima. Recently O’Leary and Vaaler formu-
lated an adelic version of an inequality due to Jarnik. In particular they
proved ([11], Theorem 5) that

/z < v(k)(A + A2 + +AL) (6.1)

where the field constant v(k) is defined as follows. Let

be the admissible subset defined by

{x k." Ilxll. < l}
{x kv" Ilxll. 1}

and define v(k) =/(k). So, for example, v(Q) . General estimates for
v(k) in terms of classical field constants are given in Section 7 of [11]. Finally,



INHOMOGENEOUS INEOUALITIES 467

we define the constant Ck(M N) by

Ck(M,N) v(k)(M + N){C’k(M,N)}TM,
where

c(M, N)
(M + N) !2[(2(M + N))!]2"lhklTM

4s(M+N)

and r and s are the number of real and complex places of k, respectively.
We now prove Theorem 2 which we state below with explicit constants.

The proof is an adelic adaptation of arguments given by Khintchine [7] and
Mahler [8].

THEOREM 9. Let A (Av) be an M N matrix over the addle ring kA.
Suppose there exist iddles e (eo) and (), with volume V() > 1, so
that the system of inequalities

IIAT 11 < I1, lit for each place v of k,

is not solvable with ff kM, . kN and

0 < I1’11o < IlellS for each place v of k.

Then for any = () (k)M, there exist vectors kN and ’ kM so
that for each place v of k,

and

IIAoZ- -/311 _< C(k, v, M, g)lleollo

IIZlIo < C(k, v, M, g)llollo,

where C(k, v, M, N) Ck(M N) if vl and C(k, v, M, N) 1 otherwise.

Proof If L M + N, we define the L L matrix Bo over ko by

elZv e[llM

and define Ro (kv)L by

Ro {5’ (ko) L. III Bo lllo < 1}.
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We note that for each place v, the polar body, R*, is given by

where

(nvT) -1
0 evlM

(for an analysis of polar bodies in the nonarchimedean setting, see [2],
Section 3). Let = 1-IRo and * I-IR*. We now show that the first
successive minima, h, of * satisfies h > 1. If h < 1, then there must
exist vectors fi’ k za and kN so that

Thus, for each place v of k,

-1IIAT-- 11 I111-1 and I1’11 Ileoll

If fi’ 0 then

By the product formula, this implies_s that which is impossible. There-
fore; it must be the case that fi 4: 0. Hence, for all places v of k, we have

But this contradicts the hypothesis which states that the previous system is
unsolvable. This contradiction implies that A] > 1.
By inequality (6.1) we have

(,.q?) < v(k)LAt (6.2)

We now recall the adelic analogue of an inequality due to Mahler (Theorem
3.7 of [2]):

(A]AL) d < c,(M, N). (6.3)
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Inequalities (6.2) and (6.3) along with h > 1 combine to give

Thus we have

Iz(..q2) < Ck( M, N).

( kA) L C_ U {Ck( M, N),. + "}.
ek

Let ($v) (kA)L be defined by

v
-1B"Ev

Then there exists a vector s k L so that- O e Ck( M,N).-.

Alternatively, we have

(Ck(M,N)
The theorem now follows by partitioning : as

In fact we have produced slightly stronger inequalities over the archimedean
places than required since plainly

for all vloo.
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