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LOWER BOUNDS FOR NORMS ON CERTAIN ALGEBRAS

MICHAEL J. MEYER

Introduction

A Banach algebra often carries natural algebra norms other than the
complete norm I1 with which it is equipped. It is then of interest to study
the relation of an arbitrary algebra norm on s to the complete norm of
(an algebra norm on s’ is a norm which satisfies Ilxyll _< Ilxll Ilyll, for all
x, y s). Let us say that an algebra norm II dominates the complete
norm I1, on s if Ilxll, _< CIIxll for all x and some constant C. We
are now interested in the following property:

(1) Every algebra norm on dee dominates the complete norm.

The purpose of this paper is to give a simple argument which suffices to
establish property (1) for all noncommutative Banach algebras for which it
is known to hold, and which also allows us to obtain some new examples.

Let P P() {q :qx x for some nonzero x } and note that
P contains every nonzero idempotent of ’. An arbitrary algebra norm
on satisfies Ilqll > 1, for all q P: In fact, if qx x, for some nonzero
x , then

Ilxll Ilqxll Ilqll Ilxll;

thus

Ilqll 1.

This can be exploited as follows: Define

/3(x) inf{llallllbll" a,b sCand axb P} for all x

We set /3(x) oo if there do not exist elements a, b s’ such that axb P.
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PROPOSITION 1. Let be a normed algebra. Suppose that C is constant and
an algebra norm on ’ which satisfies Ilxll _< Cllxll for all x e’. Then

we have C213(x)llxll >_ 1 for all x s, with 13(x) .
Proof

Then
Suppose that fl(x) < and let a, b e be such that axb P.

1 < Ilaxbll Ilall Ilxll Ilbll C211all Ilbll Ibcll.

Taking the infimum over all such a, b yields the desired inequality.

Thus upper bounds for the functional /3 yield lower bounds for continuous
algebra norms on . Let S() {x : Ilxll 1} denote the unit sphere
of the Banach algebra 5e. The following theorem allows the reduction from
arbitrary norms to continuous norms:

THEOREM 1. Suppose that the Banach algebra " satisfies fl(x) < for all
x S(e’). Then for every algebra norm on " there exists a continuous
algebra norm II0 on 5" which satisfies Ilxll0 _< Ilxll for all x

Proof If /3(x)< , for all x S(), then the Banach algebra has
property (P) in the sense of [6]. Now use [6, Theorem 2 (C), (E)]. m

COROLLARY 1. If the functional ] is bounded on the unit sphere S(’), then
each algebra norm on dominates the complete norm of see.

Proof Suppose that [3(x) < M, for all x 5’ with Ilxll 1. Let be
an algebra norm on and choose a continuous algebra norm II0 on
such that II II0 -< II II. Choose the constant C such that Ilxll0 -< CIIxll,, for
all x . Then, for each x with Ilxll 1, we have

1 < C2/3(x)llxllo C=MIIxll, that is Ilxll C2M

We shall now derive estimates for the functional /3 for various Banach
algebras . Let I1, in Proposition 1 to note that /3(x) > 1 for all
x S().

THEOREM 2. If sO" is a C*-algebra or so" is the algebra of all bounded linear
operators on a Banach space X, then fl(x) 1, for all x S().

According to Corollary 1 these algebras have property (1). This has been
known for a long time [2], [14]. However the classical proofs for each case are
quite dissimilar.
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Let now X be a Banach space and ’ ’(X) the algebra of all bounded
linear operators on X. Recall that an operator is called strictly singular
if

inf{lltxll" x N and Ilxll 1} 0,

for each infinite dimensional subspace N
_
X. The family of strictly singular

operators on X is a closed two sided ideal in ’ which we denote by S. Let
us now estimate the functional /3 in the quotient algebra =/S. For

’ we let ? denote the coset + S ’.

THEOREM 3. Let e’ /S be as above. IfX lp, 1 < p < 0% X co or
X LI([0, 1]), then (x) 1, for all x S(/).

If X= lp, 1 <p < o or X= c0, then S coincides with the ideal of
compact operators on X (the only nontrivial closed two sided ideal in ’ in
this case). Thus is the Calkin algebra on X. This case is also treated in [7].

If X LI([0, 1]), then [8] S coincides with the ideal W of weakly compact
operators on X. In this case s is the weak Calkin algebra /W on X.

Finally suppose that X C(12), where f is a compact metric space and
/S as above. In this case we can only prove a weaker estimate for the

functional /3 on .
Again [8] the ideal S coincides with the ideal W of weakly compact

operators on X so that is the weak Calkin algebra on X. Moreover an
operator on X is weakly compact if and only if tfn -- O, for each bounded
sequence (fn) -----X C(f), such that fnfm 0 for all n 4: m [3, VI.17].
Consequently

A(t) sup li Iltfn II,
nToo

where the supremum is taken over all sequences (fn) -- X with Ilfn I and

fnfm 0, for all n 4: m, defines a (linear) seminorm on the algebra ’, which
vanishes exactly on the ideal S. Thus A induces a (linear) norm on the
quotient , which we also denote by A, by means of A() A(t), ’.

THEOREM 4. Let X C(fl), where l) is a compact metric space and
/S as above. Then

x) <_
A(x) for all nonzero x ’.

Proofof Theorem 2. Assume first that s’ is a C*-algebra and let x S(’).
Set u x*x. Then p(u) Ilu Ilxll 1. Let now 0 < a </3 < 3’ < 1 be
arbitrary and choose continuous functions f, g, defined on the complex plane
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and satisfying Ilfll, Ilgll 1 and

f(h) Ofor I1
g(A) Ofor I1

and

and

f(A) 1 for

g(a) 1 for

Set h(h) f(h)/h, for all complex numbers h and note that h is a continu-
ous function satisfying ]h(A)[ _< 1/a for all h. The continuous functional
calculus now yields elements b h[u] and q g[u] in see which satisfy
[[bll _< [Ihll _< 1/a and q 4= 0 (since 1 Sp(q), according to the Spectral
Mapping Theorem). Since also Ah(h)g(h) f(A)g(h) g(h) for all h, we
have ubq- q; that is, (x*xb)q =q and consequently x*xb P(a). This
shows that

1, (x) IIx* I1 lib I1 -,

The result follows if we let a $1.
Suppose now that a ’(X) is the algebra of all bounded linear opera-

tors on some Banach space X and let S(s). Suppose that 0 < a < 1 and
choose a unit vector u X with [[tu > a. Now let x* X* be a continu-
ous linear function with [Ix* < 1/a such that x*(tu) 1. Let q be the one
dimensional operator b x* (R) u x*(.)u a. Then [[b[l [Ix*l[ < 1/a
and the operator tb x* (R) tu is a nonzero idempotent. Consequently tb
P() and so

1

Let now s ,_/S, where ’ (X) is the algebra of all bounded linear
operators on X and S

_
’ the ideal of strictly singular operators. Recall also

that ’ - ’ denotes the quotient map.

LEMMA 1. Let and suppose that there exist a constant p > 0, an

infinite dimensional subspace N c_ X and an idempotent p such that p(X)
t(N) and [[txl[ > pllxl[ for all x N. Then /3() < p-1 [[pl[ in the quotient

algebra s’ ,/S.

Proof In fact the restriction tiN" N- t(N) is invertible and satisfies
(t lN)-l _< p-1. Moreover b (t[N)-lp is a well-defined operator on X
which satisfies lib < p-a lip and tb =p. The idempotent p has infinite
dimensional range and is therefore not strictly singular. Passing to the
quotient algebra we note that tb= fi is a nonzero idempotent in . It
follows that
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Let us call a sequence (fn) - LI([0, 1]) almost disjointly supported on [0, 1],
([13]), if there exists a sequence (gn)--L1([0,1])with pairwise disjointly
supported elements gn such that Ilfn- g, ll 0 as n $. We need the
following result from [13].

LEMMA 2. LetX La([0, 1]), W the ideal of weakly compact operators on X,
and t (X) such that dist(t, W) 1. Then there exists a normalized sequence
(fn) -- X such that tfn Ila --’ 1 and both the sequences (fn) and (tfn) are almost
disjointly supported on [0, 1]. m

We also need the following lemma [10, 2.2].

LEMMA 3. Let X LI([0, 1]) and set

1 + e e(1 + e)m( e) 1- a( e)
where a( e) 1-

for all 0 < e < 1/3. Let (g)
_
Xbe a normalized disjointly supported sequence

and (fn) X any sequence. Then sup, Ilg -fnlll < e < 1/3 implies that the
closed linear span N span(f,) is m(e)-complemented in X; that is, there
exists an idempotentp (X) with Ilp[I < m(e) and p(X) N.

Proof of Theorem 3. First, assume that X lp, 1 < p < w or X c0, let
x S(), choose with x } and let 0 < r < 1. For our Banach space
X the ideal S coincides with the ideal of compact operators on X. It is shown
in [6] that there exists an infinite dimensional subspace N_ X such that
Iltxl] > rllxll, for all x N. Let e > 0. Replacing N with a suitable subspace,
if necessary, we may assume that N is (1 + e)-complemented in X. Now
Lemma 1 shows that

The result follows if we let r $1 and e $ 0 +.
Now, assume that X La([0, 1]), let x S(s) and choose ’ with

x . The ideal S coincides with the ideal W of weakly compact operators on
X. Consequently dist(t, W) [[x l[ 1. By Lemma 2 there exists a normal-
ized sequence (f,) X such that limnlltfnlla 1 and such that both the
sequences (f,) and (tf,) are almost disjointly supported. Choose disjointly
supported sequences (gn), (h) c X such that Ilf g, 1, [[tfn h II1 0, as
n ’ w. Clearly then [[gn , [[hn I1 1 and we may assume that the sequences
(gn), (hn) are normalized.

Let 0 < e < 1/3. Replacing (fn) by a suitable subsequence (and (gn), (hn)
by the corresponding subsequences), if necessary, we may assume that

IIf g. II1 < and Iltf h. II1 < for all n >_ 1.
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Let N span(fn). We wish to show that

1-ellfill for allfN.Iltflll 1 + e (2)

It will suffice to show (2) for an arbitrary finite linear combination f Y’infn.
Note first that IlEAngnlll EIAnl, since the sequence (gn) is normalized and
disjointly supported. Now the equality f= EAng + EAn(fn- gn) implies
that

(1 e)Elanl Ilflll (1 + e)ElXnl. (3)

Since tf EAntfn EAnh + EAn(tfn --hn) and the sequence (hn) is nor-
malized and disjointly supported, we obtain similarly

(1 )lAnl Iltflla (1 + e)lAnl. (4)

The inequalities (3), (4) now imply that

1 ellfill.Iltflll (1 e)lAnl 1 + e

The subspace N_X is infinite dimensional and from Lemma 3 we know
that there exists an idempotent p ’(X)with I]pll < m(e) and p(X) N.
Here m(e) is as in Lemma 3. Note m(e)--. 1 as e 0+. According to
Lemma 1 we have

1 + em(e)"(x) (-t) < 1

The result follows if we let e $ 0 +. m

LEMMA 4. Let X C(f), where 12 is a compact metric space, and
r < A(t). Then there exists a closed subspace N

_
X which is isomorphic to Co

and such that Iltxll >_ rllxll for all x N.

Proof This is a quantitative version of [3, VI.15, p. 159] with similar proof
(included for the convenience of the reader). Choose p such that r < p < A(t)
and a sequence (fn) -X such that Ilfn 1, fnfm 0 and Iltfn > t for all
n4=m.

* X* with IlXn* 1 suchNow choose continuous linear functionals x
that Ixn* (tfn)l It* Xn* (fn)l > P. Finally let, for each n > 1, /’/’n be the unique
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regular Borel measure on 1 satisfying

t* * fafXn(f) dlzn, for all f X.

* lit* II, for all n > 1. ConsequentlyThen [[/znl[--[n[()-- [[t*x
([ ]’n [) is a uniformly bounded sequence of positive Borel measures on
Here [/x denotes the total variation of the measure ]-n as usual.

Let e p- r > 0 and set G {Ifnl > 0}, for all n > 1. Since fnfm 0
for n 4: m, (Gn) is a sequence of disjoint open subsets of f. Replacing (Gn)
and (fn) by suitable subsequences if necessary, we may, according to Rosen-
thal’s lemma [3, 1.4.1, p. 18], assume that

<e for alln > 1.

The map J" (an)= CO f )2n >_ Olnfn " X defines an isometric embed-
ding of the space co into X. Let N J(co) G X. Recall that Ilfm 1, for all
m > 1. Thus, if f EOnf N, then Ilfll -SUpn ]an[ and for each n > 1
we have

E OlmfGmfmdlnm>l

Inl IX n(tfn)l- llfll

" Pl O llfll.

Taking the supremum over all n > 1 yields Iltfll pllfll llfll rllfll.

Proof of Theorem 4. Let x see, x 4: 0, and choose an operator ’such that x }. Suppose that r < A(x) A(t). According to Lemma 4 there
exists a closed subspace N _c X which is isomorphic to the space co and such
that [Itf[I > rllfl[, for all f N. The space X C(f) is separable and the
space Co is known to be 2-complemented in every separable space wherein it
is contained as a closed subspace [9, 2.f.5]. According to Lemma 1 we have
t(x) (-t) < 2/r. Now let r $ A(x). m

Remarks. (A) Theorem 4 would establish property (1) for the weak Calkin
algebra =.,(X)/W on X C(I) if one could show that A(x) > e for
some e > 0 and all x S(g’). Since A(x) < Ilxll,, for all x ’ this is
equivalent with the completeness of in the (linear) norm A.
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(B) A Banach algebra so’ which satisfies /3(x) < for all nonzero x s is
semisimple (the Jacobson radical of cannot intersect the set P(s’)).
Consequently our arguments cannot be applied to nonsemisimple Banach
algebras such as, for example, the Calkin algebra on the Banach space
L([0, ll).
On the other hand we have established the semisimplicity of the weak

Calkin algebra sg =G/W, for the Banach spaces X LI([0, 1]) and X
C(I)). Let K denote the ideal of compact operators on X, 2/K the Calkin
algebra on X, QI’, /K the quotient map, R c_’/K the Jacobson
radical and I QI(R) c_, the ideal of inessential operators on X. For X
as above, W- S c_ I [1, 5.6.2]. Now the semisimplicity of the quotient

/w --_ /I/W/I

implies that R
_
W/K, that is, I_ W. Thus, for the Banach spaces X-

LI([0, 1]) and X C(E), l) a compact metric space, the ideal of weakly
compact operators coincides with the ideal of inessential operators.

(C) If the Banach space X is isomorphic to its Cartesian square, then it is
known that every homomorphism from ’(X) into any Banach algebra is
automatically continuous [4]. This property is inherited by all quotients of the
algebra ’(X) and implies that every algebra norm on any quotient so’ of
’(X) is continuous (with respect to the quotient norm). In conjunction with
property (1) this yields the following strong uniqueness of norm property for

Any two algebra norms on so" are equivalent to the complete norm of s and
hence mutually equivalent.

This should be compared with the classical Uniqueness of Norm Theorem:
Any two complete algebra norms on a semisimple complex algebra are
equivalent.
Our results and [4] establish the strong uniqueness of norm property for

the following algebras so’: s’ =’(X), X a Banach space isomorphic to its
Cartesian square (follows also from [14, 4]), sO’ the Calkin algebra on X lp,
1 <p < , or X co (see also [7]) and sO" the weak Calkin algebra on
X L. It is also known to hold for all simple C*-algebras s’ [5].
An example of a Banach space X such that the Calkin algebra on X

carries a continuous algebra norm, which is not equivalent to the quotient
norm, is given in [11]. Further interesting constructions can be found in [12].
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