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A FULL CLASSIFICATION OF
CONTACT METRIC (k, /,)-SPACES

E. BOECKX

ABSTRACT. We show that a non-Sasakian contact metric manifold whose characteristic vector field belongs
to the (k,/z)-nullity distribution is completely determined locally by its dimension and the values for k
and/z. We present explicit examples for all possible dimensions and all possible (k,

1. Introduction

In [2], the authors introduced the class of contact metric spaces (M, , r/, 99, g) for
which the characteristic vector field belongs to the (k,/z)-nullity distribution for
some real numbers k and/z. This means that the Riemann curvature tensor R satisfies

(1) R(X, Y) k (rl(Y)X o(X)Y) + kt (o(Y)hX o(X)hY)

for all vector fields X and Y on M, where h denotes, up to a scaling factor, the Lie
derivative of the structure tensor 9 in the direction of . For convenience, we will
call such contact metric spaces (k, Iz)-spaces. Clearly, Sasakian spaces belong to this
class (k 1 and h 0), but the main interest is in the non-Sasakian contact metric
manifolds with this curvature property.

The motivation for the study of (k,/z)-spaces was two-fold: on the one hand, non-
Sasakian spaces of this type exist (the unit tangent sphere bundle of a flat Riemannian
manifold with the usual contact metric structure being an example); on the other hand,
this class of spaces is invariant under D-homothetic transformations (see Section 2).

The basic result in [2] is that the Riemann curvature tensor of a non-Sasakian
(k,/z)-space is completely determined by the defining condition (1). The present
author [3] used this fact to prove, first, that every non-Sasakian (k, lz)-space is a
locally homogeneous (hence analytic) contact metric space, and, second, that every
non-Sasakian (k, tx)-space is locally 9-symmetric in the strong sense. This means
that the local reflections with respect to the integral curves of the characteristic vector
field are local isometries [5] (see also [4] and [6]).

By now, two classes of non-Sasakian (k,/z)-spaces are known. The first consists
of the unit tangent sphere bundles of spaces of constant curvature, equipped with
their natural contact metric structure. They satisfy the curvature condition (1) for
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k c(2 c) and/z -2c, where c is the constant sectional curvature. (If c 1,
the corresponding sphere bundle is not Sasakian.) Moreover, within the class of unit
tangent sphere bundles, they are the only ones with this property ([2], see also [5]).
D-homothetic transformations of these bundles provide further examples. Second,
all three-dimensional unimodular Lie groups, except the commutative one, admit the
structure of a left-invariant (k,/z)-space. (See [2], [4] and [9].)

To our knowledge, these examples are the only ones that have appeared in the
literature, but they do not cover all possible combinations for k and/2, for all dimen-
sions. Hence the question, raised explicitly in [2]: Can one classify all (non-Sasakian)
(k,/z)-spaces ? This is what we set out to do in this article.

After some preliminary notions and results, collected in Section 2, we prove that,
for a non-Sasakian (k,/z)-space, not only the Riemann curvature but the complete
local geometry is determined by its dimension and the numbers k and/.t (Theorem 3).
Next, we introduce an invariant for a (k,/z)-space which remains unchanged under
a D-homothetic transformation. This invariant, together with the dimension of the
manifold, then determines the local structure up to some D-homothetic transforma-
tion. In the last section, we give explicit examples of (k,/z)-spaces for any dimension
and for all possible values for k and ht, thereby giving an affirmative answer (at least
locally) to the above question.

Acknowledgements. The author is grateful to Prof. L. Vanhecke and Dr. E Bueken
for discussions about the topic of this paper.

2. Preliminaries

In this section we collect the formulas and results we need. We begin with some
basic facts on contact metric manifolds. We refer to 1 for a more detailed treatment.
All manifolds in this note are assumed to be connected and smooth.
An odd-dimensional differentiable manifoldM2n+l has an almost contact structure

if it admits a vector field , a one-form r/and a (1, 1)-tensor field o satisfying

and 2 -id + r/(R) .
In that case, one can always find a compatible Riemannian metric g, i.e., such that

g(oX, or) g(X, Y) o(X)rl(Y)

for all vector fields X and Y on M. (M, , r/, o, g) is an almost contact metric man-

ifold. If the additional property do(X, Y) g(X, oY) holds, then (M, , r/, t#, g) is
called a contact metric manifold. As a consequence, the characteristic curves (i.e.,
the integral curves of the characteristic vector field ) are geodesics.

On a contact metric manifold M, we define the (1, 1)-tensor h by

1
hX (/o)(X)
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where/2 denotes Lie differentiation in the direction of. The tensor h is self-adjoint,
h 0, tr h 0 and ho -tph. It holds Vx -oX ohX, or equivalently,

(2) (Vxr/)(Y) g(X, oY) g(X, ohY).

If the vector field on a contact metric manifold (M, , 0, tp, g) is a Killing vector
field, then the manifold is called a K-contact manifold. This is the case if and only
if h 0. Finally, if the Riemann curvature tensor satisfies

(3) R(X, Y) VxVr VrVx Vtx,rl rl(Y)X o(X)Y

for all vector fields X and Y on M, then the contact metric manifold is Sasakian. In
that case, is a Killing vector field, hence every Sasakian manifold is K-contact.

Next, we focus on the (k, Iz)-spaces, the contact metric manifolds for which the
curvature condition (1) holds. This class of manifolds was introduced in [2]. The
authors prove:

THEOREM 1. If (M2n+l , rl, , g) is a (k, Iz)-space, then k < 1. Ifk 1, then
h 0 and (M, , O, o, g) is a Sasakian manifold. Ifk < 1, the contact metric struc-
ture is not Sasakian andM admits three mutually orthogonal integrable distributions,
the eigendistributions ofthe tensorfield h" D(O) , D()) and D(-)), where O,. /1 k and- are the (constant) eigenvalues ofh.

Moreover, if k < 1, the curvature tensor is completely determined by the defining
condition (1).

THEOREM 2. Let (M2n+x, , , o, g) be a (k, lz)-space which is not Sasakian,
i.e., k < 1. Then its Riemann curvature tensor R is given explicitly in its (0, 4)-form
by

(4) g(R(X, Y)Z, W)

(1- )(g(Y, Z)g(X, W)- g(X, Z)g(Y, W))

+ g(Y, Z)g(hX, W) g(X, Z)g(hY, W)

g(Y, W)g(hX, Z) + g(X, W)g(hY, Z)
1 (/z/2)+ (g(hY, Z)g(hX, W) g(hX, Z)g(hr, W))
1-k

(g(oY, Z)g(oX, W) g(oX, Z)g(oY, W))
2
k (/z/2)+ (g(ohY, Z)g(ohX, W) g(tphY, W)g(ohX, Z))
1-k

-t- I.tg(tpX, Y)g(tpZ, W)

+ rl(X)rl(W) ((k 1 + (Iz/2))g(Y, Z) + (IX 1)g(hY, Z))
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-(X)o(Z) ((k- 1 + (IX/2))g(Y, W)+ (Iz- 1)g(hY, W))
q-rl(Y)rl(Z) ((k- 1 q-(IX/2))g(X, W)q-(IX- 1)g(hX, W))

o(Y)o(W) ((k + (IX/2))g(X, Z) + (Ix 1)g(hX, Z))

for all vectorfields X, Y, Z and W on M.

In the next section, we will need two more results from [2] concerning the covariant
derivatives of the tensors h and o"

(5) (Vxh)Y ((1 k)g(X, tpY) g(X, tphY))

r/(Y) ((1 k)oX + ohX) Ixrl(X)ohY,
(6) (Vxo)Y (g(x, Y) + g(x, hY)) n(Y)(X + hX).

(Note that these formulas are valid for all possible values of k, including k 1.)
Finally, we recall the notion of a D-homothetic transformation of a contact metric

manifold (M, , r/, o, g). For a (strictly) positive constant a, this transformation
associates to (M, , r/, tp, g) another contact metric manifold (M, , , q3, ) related
to the first one by

?l=arl, =_1, =o, =ag+a(a-1)r/(R)o.
a

A D-homothetic transformation with constant a transforms a (k, Ix)-space into a
(k,/2)-space where

k+a2-1 Ix+2a-2
(7) k= and /2=

a2 a

(see [2]). In particular, we see that a D-homothetic transformation of a Sasakian
space (k 1) is again Sasakian (k 1).

3. Equivalence problem

THEOREM 3. Let (M2n+1 , rl, p, g) and (M’2n+l, t, rf q9t, g’) be two non-
Sasakian (k, Ix)-spaces. Then they are locally isometric as contact metric spaces.
In particular, ifthey are simply connected and complete, they are globally isometric.

Proof. Letp 6 M, p’ M’andput /1-k > 0. Then we have the
decomposition

TpM Dp(X) Dp(-.) )

and a similar one for Tp, M’. Now, let (el en) be any orthonormal basis of Dp()
and (e’l,..., e’n) any orthonormal basis of Dp,(). Define the linear isometry F"
TpM ----> Tp,M by

FqgeiFp p,, Fei ei, e
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for 1 n. It follows that

F* F*h’p, F*Y]p, Y]p, hp, (pp, (pp.

As a consequence, we see from the expression (4) for the Riemann curvature tensor R
that *F gp, ep Further, as follows from the formulas (2), (5) and (6) and an easy
induction, we also find, for all 6 N,

F,,-,,e e F* ,e ..,,-,,e
V Y]p, lip, V hp, Vehp, r v p, VetDp

On the one hand, this implies that F*V’e Rp; VeRp for all 6 N, so (M, g)
and (M’, g’) are locally isometric ([7]). On the other hand, the local isometry also
maps the structure tensors (, O, o) to (’, r/’, o’). Hence, both (k,/z)-spaces are
locally isometric as contact metric spaces. D

Remark. Adapting the above proof, one can give an alternative demonstration
for the local homogeneity of a non-Sasakian (k,/z)-space, at least when the structure
is known to be analytic [3].

Next, we associate to a non-Sasakian (k,/z)-manifold (M, , 0, o, g) the number

-/z/2 1 -/z/2
Im

/1 -k X

Then we have:

PROPOSITION 4. Let (Mi, i, Oi, (Pi, gi ), 1, 2, be two non-Sasakian (ki, lzi )-
spaces ofthe same dimension. Then IM, lt2 ifand only if, up to a D-homothetic
transformation, the two spaces are locally isometric as contact metric spaces. Inpar-
ticular, ifboth spaces are simply connected and complete, they are globally isometric

up to a D-homothetic transformation.

Proof Recall that a (k,/z)-space is transformed under the D-homothetic trans-
formation with constant a > 0 in a (k,/2)-space with

/=k+a2-1 /x+2a-2
a2 /z

a

or equivalently,

=v/1_/= qC-k___,X 1-/2/2=
1-

a a a

Hence, a D-homothetic transformation preserves the invariant lt.
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1-/2/2 for someConversely, if (M, , r/, 0, g) is a (k,/z)-manifold and It
numbers/,/2 (/ < 1), then applying a D-homothetic transformation to (M, , r/, 0, g)
with constant a x/1 k/v/1 [ we get a (,/2)-space.

The proposition now follows easily: if It It2, apply a D-homothetic trans-
formation to (M, 1, r/l, 01, gl) with constant a x/1 kl/x/1 k2 to obtain a
(k2,/x2)-space (M1, l/a, ar/1, 01, agl +a(a- 1) r/ @ r/l). Bythe previous theorem,
this is locally isometric as a contact metric space to (M2, 2, r/2, 02, g2). El

COROLLARY 5. Let (M, , r/, o, g) be a non-Sasakian (k, lz)-space. Then it is
locally isometric, up to a D-homothetic transformation, to the unit tangent sphere
bundle ofsome space ofconstant curvature (differentfrom 1) ifand only ifIM > 1.

Proof. As mentioned in the introduction, T1M(c) is a (k,/x)-space for k c(2
c) and/z -2c. The corresponding invariant is given by IteM(c) (1 + c)/[1
c l. When c varies over the reals, the invariant takes every value strictly greater
than 1. El

4. The local classification of non-Sasakian (k,/)-spaces

From the results in the previous section, it follows that we know all non-Sasakian
(k,/x)-spaces locally as soon as we have, for every odd dimension 2n + 1 and for
every possible value for the invariant I, one (k,/x)-space (M, , r/, o, g) with lt I.

For I > 1 and for every odd dimension 2n + 1, we have such an example, namely
the unit tangent sphere bundle T1Mn+(c) of a space of constant curvature c, c & 1,
for the appropriate c. See [2] or [5] for more details and explicit formulas for these
contact metric spaces.

In this section, we present examples for any odd dimension 2n + 1 and for arbitrary
I < -1. Our examples are left-invariant contact metric structures on Lie groups.

Let 1 be a (2n + 1)-dimensional Lie algebra with basis {, X1 Xn, Y1 Yn
and the Lie bracket given by



218 E. BOECKX

[, gi] T xi’ >_ 3,

[X1, Xi] o Xi, 1,

[Xi, Xj] O, i, j = 1,

Y2, Yi] Y, 2,

Yi, Yj] O, i, j 2,

IX1, Y1] -/X2 +2,
[X1, Yi] 0, >_ 2,

IX2, Y1] /3 X1 -ct Y2,

[X2, Y2] ct Y1 + 2,
[X2, Yi] ,8 Xi, >_ 3,

[Xi, Y1] -ct Yi, >_ 3,

[Xi, Y2] 0, >_ 3,

[Xi, Yj] 6ij (- X2 + ot Y1 + 2), i,j>3

for real numbers ct and/3. A straightforward computation shows that this defines
indeed a Lie algebra. The associated Lie group G is not unimodular as soon as
dim g > 5 and not both ot and/3 are zero, because tr adx (n 1)c and tr adr:
(n-- 1)/3.

Next we define a left-invariant contact metric structure on G as follows:

the basis {, X1 Xn, Y1 Yn} is orthogonal,
the characteristic vector field is given by ,
the one-form r/is the metric dual of ,
the (1, 1)-tensor field q9 is determined by

() O, qg(Xi) Yi, q)(Yi) -Xi.

A lengthy but routine calculation shows that (G, , r/, 0, g) is a (k,/x)-space. For our
present purpose, we suppose that/32 > 2. Then

(/2 2)2 O2 "l-/2
k=l-

16
/x=2+

2

Hence,

/2 t2;,= #0,
4

so the (k,/x)-space is not Sasakian. Further,

32 +2Io 32 a2
< 1.
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For the appropriate choice of fl > u >_ 0, I attains any real value smaller than or
equal to 1.

Remark. For the three-dimensional case we obtain the Lie algebra

2

[, X] Y,
2

IX, Y]

which corresponds to a unimodular Lie group. For fl > ct > 0, we obtain a left-
invariant contact metric structure on SL(2, ) with ISL(2,r) < --1; if fl > a 0,
we have a left-invariant contact metric structure on E(1, 1) with Ie(1,1) -1. (See
also [2] and [8].) To complete the picture in the three-dimensional case, we note that
left-invariant contact metric structures which are (k,/z)-spaces are further possible
on SU(2) with Isu(2) > 1, on E(2) with IE(2) 1 and on SL(2, ) with -1 <
ISL(2,R) < 1 ([2]).
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