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THE COMPLEXITY OF THE CLASSIFICATION OF
RIEMANN SURFACES AND COMPLEX MANIFOLDS

G. HJORTH AND A.S. KECHRIS

ABSTRACT. In answer to a question by Becker, Rubel, and Henson, we show that countable subsets of
C can be used as complete invariants for Riemann surfaces considered up to conformal equivalence, and
that this equivalence relation is itself Borel in a natural Borel structure on the space of all such surfaces.
We further proceed to precisely calculate the classification difficulty of this equivalence relation in terms
of the modem theory of Borel equivalence relations.

On the other hand we show that the analog of Becker, Rubel, and Henson’s question has a negative
solution in (complex) dimension n > 2.

1. Introduction

In this paper we consider the problem of classifying various classes of complex
manifolds. The investigation is completely abstract, since we are not so much con-
cerned with specific schemes ofclassification and their success or failure, as with con-
sidering what kinds of complete invariants could in principle be produced. Here we
have in mind that there is a hierarchy oflevels of difficulty ofclassifying various math-
ematical objects and this paper joins Dougherty-Jackson-Kechris [94], Harrington-
Kechris-Louveau [90], Hjorth [97a], Hjorth-Kechris [95], Kechris [92], Kechris [98],
and others, as one more piece in a general project to compare the classification prob-
lems across a variety of mathematical disciplines and obtain a language that can
contrast their various forms.

At perhaps the simplest level are schemes of classification which provide a single
point in some highly concrete space as a complete invariant. In ergodic theory the real
number corresponding to the entropy of a Bernoulli shift is a complete invariant for
this class of measure preserving transformations. One similarly finds in the theory
of Riemann surfaces that compact complex surfaces considered up to conformal
equivalence may be cataloged as points in highly concrete spaces.

The work below came about after we saw the following theorem:

THEOREM 1.1 (Becker-Rubel-Henson [80]). There is no "reasonably concrete
space" X and "reasonably intrinsic" or "reasonably definable" assignment
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from 79, the collection ofcomplex domains, such thatfor any two R, Rz 79,

R1 R2 : f(R1)-- f(R2).

In other words, there is no reasonable way to assign points in X as complete
invariantsfor complex domains considered up to conformal equivalence.

Of course the phrases "reasonably concrete space" and "reasonably intrinsic as-
signment" are deliberately vague. For the purposes of this introduction we simply
ask that the reader accept that this can and will be made precise, that the various ways
in which one might do so are not subject to serious controversy, and that all the com-
peting explications of these phrases give rise to similar outcomes. Indeed while one
may have doubts about how a definition of such concepts should be crafted, it should
certainly be clear that for instance the space of all subsets of C is not sufficiently
concrete and that a function obtained by invoking the axiom of choice to well order
the complex domains and then thus armed producing an injection from 7) into the
ordinals or into C or into 790 (C) (the set of all countable subsets of C) can not be
considered "reasonably intrinsic" or "reasonably definable".

Perhaps in passing we can mention that for us "reasonably concrete space" means
something like a Polish space or a standard Borel space, and that for us a "reasonably
definable function" means something like a function that is Borel measurable from
some standard Borel space of parametrizations. More generously one may consider,
as in the Ulm invariants from abelian group theory (see Kaplansky [69]), spaces
such as the set of all countable subsets of the first uncountable ordinal, or equiv-
alently, countable transfinite sequences from C, and functions that are universally
Baire measurable, or projective, or even ordinal definable from reals. As we discuss
in Section 5.C, Theorem 1.1 survives in some form even in these contexts.

Our first concern is the extent to which classification may be obtained ifwe consider
invariants more general than a single point in some space. In direct response to a
question by Becker, Rubel, and Henson, we show that countable unordered subsets
of C can provide complete invariants for 7"Z, the class of all Riemann surfaces:

THEOREM 1.2. There is a "reasonably definable" function

f: --+ 7Po(C),

from the Riemann surfaces to countable subsets ofC, such thatfor any two R, R,

gl "- g2 f(gl) f(R2).

In other words, there is a "reasonably definable" way to assign countable subsets
of a concrete space as complete invariants for Riemann surfaces considered up to

conformal equivalence.

One might draw an analogy between this result and the Halmos-von Neumann [42]
invariants for discrete spectrum ergodic measure preserving transformations. There,
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as here, there is no reasonable method to assign points in say C as complete invariants,
but the countable subset of C corresponding to the eigenvalues completely classifies
an ergodic discrete spectrum measure preserving transformation up to isomorphism.
The proof of 1.2 in 4.A below is based on an abstract method and does not seem to
provide "geometrically meaningful" invariants f(R). One can wonder if it is possible
to sharpen this theorem by providing such invariants.

The method of proof in 4.A below actually gives a much better upper bound on
the complexity of conformal equivalence for Riemann surfaces and in 4.B we show
that this is precise.

THEOREM 1.3. The classification problem for Riemann surfaces considered up
to conformal equivalence is "equal in difficulty" to that of the universal countable
Borel equivalence relation, Eo.

Here "equal in difficulty" indicates that each equivalence relation can be embedded
in the other using a function that is Borel measurable in some suitable space of
parameters. Eoo is known to have a number of instantiations. For instance, it can
be realized as the orbit equivalence relation produced by the shift action of F2 (the
free group on 2 generators) on 2F2 {f f: F2 --+ {0, 1}}, or as isomorphism on
finitely branching trees (Jackson-Kechris-Louveau [9?]), or (very recently, Thomas-
Velickovic [99]) isomorphism on finitely generated groups.

Put another way, this means that the "moduli space" of all Riemann surfaces is
"Borel equivalent" to the very complicated quotient space 2F2/Eoo. Actually, as it
follows from the proof of 1.3 given in Section 4 below, this holds as well for Riemann
surfaces homeomorphic to the infinitely punctured plane, i.e., C \ S, where S c_ C is
infinite discrete. Thus this gives a precise measure of the set theoretic complexity of
the moduli space ofthese Riemann surfaces. It is much more complex than the moduli
spaces of finitely punctured compact Riemann surfaces, which are fairly "concrete"
and admit a rich geometrical structure.

Finally, the higher dimensional case is discussed in Section 6. Here we provide a
new lower bound on the complexity ofbiholomorphism, and indicate a sense--which
when translated into the theory of Borel equivalence relations can be made totally
precisemin which the passage from complex dimension 1 to complex dimension 2
brings an increase in classification difficulty. The following is a simple corollary of
6.1 below.

THEOREM 1.4. Let .]2 be the class oftwo dimensional complex manifolds. Then
there is no "reasonably definable" assignment

f: ./2 R0(C)

such thatfor any M1, M2 E .A42,

M1 - M2 : f(M) f(M2).
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2. Borel equivalence relations

Definition 2.1. A topological space is said to be Polish if it is separable and admits
a complete metric. We then define the Borel sets to be those appearing in the smallest
a-algebra containing the open sets. A function between two Polish spaces is said to
be Borel if the inverse image of any open set under f is Borel.

If X is a Polish space and E is an equivalence relation, then E is said to be Borel
if it is Borel as a subset of X x X (in the product topological structure). For x X,
we let [x]e {y X: x Ey}. An equivalence relation is countable if every [x]e is
countable.

Examples ofPolish spaces.

(i) R, C, in their usual topologies; 2r =df {f f: N --+ {0, 1 }} equipped with
the metric

d(x, y) 2- least n such that x(n)y(n)

is a compact metric space, and so certainly the underlying topological space
is Polish.

(ii) Polish spaces are closed under countable products, and thus ]Rn, Cn, Rr, CrY,
Nr are all Polish.

(iii) Any G subset of a Polish space is Polish (see Kechris [95, 3C]).
(iv) The space of all countable models of a given countable language is a Polish

space; this is an especially important example from the point ofview of logic.
Let/ be a countable (relational) language and let Mod(/) be the set of all
/-structures with underlying set N and equipped with the topology induced
by taking as subbasic open sets those of the form

{.M Mod(/): A/[ R(nl,... ,nk)},

{.M Mod(/): M ",R(nl nk)},

for n nk in N and R Z a relation of arity k. This space is Polish since
it is homeomorphic to

I2N"t,

where a(R) is the arity ofthe relation symbol R (see Becker-Kechris [96]). (A
similar definition works even for languages with function symbols, since we
can show that the space Mod(/2) is homeomorphic to a G subset of Mod(/2’)
for a suitably chosen relational/2’.)

Many mathematical objects can be thought of as points in some appropriately
chosen Polish space considered up to some notion of isomorphism or equivalence.
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For instance, we may think of countable groups as elements of some appropriate
Mod(Z) considered up to isomorphism. A fundamental notion used in comparing
equivalence relations is that of Borel reducibility.

Definition 2.2. For E and F equivalence relations on Polish spaces X and Y, we
write E <8 F, and say that E is Borel reducible to F, to indicate that there is a Borel
function f" X -- Y such that for all xl, x2 X,

XlEX2 f(Xl)Ff(x2).

We use E "8 F for E <8 F <8; E <8 F indicates that E <8 F but it is not the
case that F <8 E.

Examples ofequivalence relations.

(i) id(C), the equality relation on C; more generally for any Polish space X we
can consider the identity relation id(X) on X. Since any two uncountable
Polish spaces are Borel isomorphic, it follows that for any two uncountable
Polish spaces X and Y, id(X) ’-’Bid(Y).

(ii) We let E0 be the equivalence relation of eventual agreement on 2r. This
means that x Eox2 if and only if there is some N N such that for all
m > N, xl(m) x2(m). Here it is well known that id(C) <8 E0 (see
Hjorth [9?a, Chapter 3], or Hjorth-Kechris [95], or Kechris [00]).

(iii) Given a countable group G, we can let it act on the Polish space 2 (=df
{flf: G --+ {0, 1}} in the product topology) by shift: for g G and f 2
we define g f by

(g. f)(h) f(g-h)

for h G. We denote the orbit equivalence by E(G, 2).
(iv) In specific cases the complexity under <8 of E(G, 2) is exactly understood.

For instance it is known that

E0 "8 E(Z, 2)

(see Dougherty-Jackson-Kechris [94]) and that for any Borel equivalence
relation E one has either

E <8 id(C)

or

E0 <8 E,

but not both (this was proved in Harrington-Kechris-Louveau [90]).
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(v) Let F2 be the free group on 2 generators. Here it is known that for any count-
able Borel equivalence relation E, i.e., having countable equivalence classes,

E <B E(F2, 2).

In this sense, we say that E(F2, 2) is a universal countable Borel equivalence
relation, and we will denote it by Eoo.

(vi) More generally, we consider orbit equivalence relations induced by the con-
tinuous actions ofPolish groups (that is, topological groups whose underlying
space is Polish). If G is a Polish group acting continuously on a Polish space
X, we will use E for the orbit equivalence relation given by

X1 Ex2 3g G(g.xl x2).

(vii) Finally, for a countable language, we let Mod(Z:) be the equivalence relation
of isomorphism on elements of Mod(Z). Thus Mod(Z:) A/" iff there is
some permutation zr of the natural numbers such that for all relations R in
the language,

./ R(nl nk) A/" R(zr(nl) zr(nk)).

Definition 2.3. We say that an equivalence relation E is smooth if E <B id(X)
for some Polish space X; note that here we may assume without loss of generality
that X C. We say that E admits classification by countable structures if there is
some countable language with

e
Let us further say that E admits classification by countable subsets of C if there is a
countable sequence of Borel functions (fn)nr into C such that for all x, x2,

x1Ex2 ,# {fn(X1)" n } {fn(X2)." n I}.

Note that in the definition of classification by countable subsets we ask that
{fn(x): n N} and {fn(X2): n N} are equal as unordered sets; if we were
to alternatively require something along the lines of the equality of the sequences
(fn(xl))r and (f(x2))er, then this would be nothing other than the notion of
smoothness, since CN is itself a Polish space.

The next couple of lemmas clarify these definitions.

LEMMA 2.4. IfE is a countable Borel equivalence relation, then E admits clas-
sification by countable subsets ofC.

Proof. Let X by the Polish space on which E is defined. Following the uni-
formization theorem for Borel sets in the plane with countable sections (see Kechris
[95, 18.C]) we may find a countable sequence of Borel functions

hn" X-+ X
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such that for all x e X,

[X]E {hn(x): n 1N}.
Then if h" X C is a Borel injection we may let fn h o hn witness the

definition at 2.3. !-!

This implication does not reverse (see, for instance, Hjorth [9?a, 2.3]).

LEMMA 2.5. IfE admits classification by countable subsets ofC, then E admits
classification by countable structures.

Proof Let (en)nEN be a sequence of unary predicates, Un: n 6 N} a countable
basis for the topology of C, and let

(., .): N-N
be a bijection. Let (fn)nEr be the sequence of Borel functions witnessing the classi-

fiabilit by countable subsets of C. Let/2 be the countable language determined by
(P.).r.

Then for any point x in the space on which E is defined, we let A//x be the/2-model
with underlying set N defined by

.A/lx Pn((k,l))

if and only if fk (x) Un. (Here each fk (x) is quite deliberately repeated infinitely
often; allowance needs to be made for the fact that the sets {fn(Xl): n N} and
{f, (x2): n 6 N} may be equal, but the sequences (f, (xl))nr and (f, (x2))nzr may
list a given complex number with different frequency.)

The implication here also fails to reverse (see, for example, Hjorth-Kechris-
Louveau [98]).

Although we confine ourselves to Borel functions, a similar reducibility theory
arises for any general class offunctions including the Borel, closed under composition,
and satisfying reasonable regularity properties (such as Lebesgue measurability and
the pullbacks of open sets having the Baire property). This is an important point.
Key theorems are not held hostage to circumstantial and subjective choices used in
our explication of reasonably definable.

For instance we could equally work with the C-measurable functions, i.e., those
that pull back open sets to sets lying in the smallest a-algebra containing the open sets
and closed under Souslin’s M-operation (compare Hjorth-Kechris [95]). Alternatively
we might use the absolutely A functions.

For functions of higher complexity, it is necessary to work in systems stronger
than ZFC to avoid the whole pursuit’s dissolving into a quicksand of indistinguishable
independence results. For instance, we can develop a similar theory for functions in
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L(R) (the smallest class of sets containing all the reals and closed, in some sense,
under transfinite iterations of rudimentarily definable operations) assuming sufficient
determinacy or the existence of large cardinals. The authors of Becker-Henson-
Rubel [80] choose to use the collection of all "ordinal definable functions" and in this
context one again obtains a similar theory by working in the very specific model of
set theory known as the Solovay model.

3. Parametrizing complex manifolds

In order to precisely formulate the problem of classifying species of complex
manifolds we need a method of parametrizing complex manifolds. Here the method
must be completely general, and in some sense given in advance of any specific
classification result. We will use points in a standard Borel space--indeed without loss
ofgenerality we can take the space R--to describe orparametrize complex manifolds.
The obvious properties will become Borel in the space of parametrizations and the
equivalence relation of biholomorphism will be 11 (analytic)--that is to say, defined
by the Borel image of a Borel set. It should not be felt that there is any great mystery
or presumption in the method of parametrization. It is an empirical fact that most
classes of concrete mathematical objects can be represented by points in a standard
Borel space and all such methods of representation tend to be "Borel equivalent".
We recount some basic definitions, all detailed in Kodaira [86].

Definition 3.1. A complex manifold of dimension n is a connected Hausdorff
second countable topological space M along with a chart U,, o, },e^, where:

(i) Uo^ ua M;
(ii) each 0,: U, --+ V is a homeomorphism between U c_C_ M, open in M, and

V

_
Cn, open in

(iii) the overlap maps

q:,, o .1. oa(Uo, fq U,) -- ,(U f3 U,), when Uo, N Ut 5/:: 0,

are holomorphic.

A complex manifold of dimension 1 is called a Riemann surface. For M and
N complex manifolds, with charts {U,, o,}, Wt, apt }, we say that r: M N is
holomorphic if each aprol is holomorphic. A biholomorphic map is a holomorphic
map with holomorphic inverse. We shall write

M-N

if they are biholomorphically equivalent, that is to say, there is some biholomorphic

zr’M--+N.
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For n 1, i.e., for Riemann surfaces, one usually says that M, N are conformally
equivalent if M N.
A manifold is a "separable" object, and thus we might hope to represent or

parametrize a manifold by describing the arrangement of a countable dense subset.
There is some judgment regarding the kind of objects to take as satisfactory parame-
terizations; plainly the class of all manifolds would be absurdly complicated and the
set of all subsets of say C x C2 x C3... only slightly less so. Our idea of a reasonable
space is something like I1, or the set of all subsets of ll, or C ([0, ]), or infinite strings
from a finite alphabet, or any of the classical Banach spaces. In each case we are less
interested in the topological structure of these spaces than their Borel structure.

Definition 3.2. A set S equipped with a a-algebra B of subsets is said to be a
standard Borel space if there is a completely metrizable separable topology r on S
which gives rise to/3 as the a-algebra generated by its open sets.

As a remark on terminology, we say that a completely metrizable separable topo-
logical space is Polish, and that the Borel sets for a Polish topology are those appearing
in the smallest a-algebra containing its open sets. Thus we may say that (S, B) is a
standard Borel space if there is a Polish topology r on S that has/3 as its Borel sets.

As well as the usual examples of Polish spaces, such as n, cn, 2r, stripped down
to their Borel structure, we should also mention that given any Polish space X the
collection of all closed subsets, .T(X), is a standard Borel space, when equipped
with the a-algebra generated by sets of the form {F .T’(X)" F f U 0} for
U

___
X open; this more subtle example is known as the Effros standard Borel space

and is discussed in 12.C of Kechris [95]. It follows that the space of all open
subsets of X is a standard Borel space in the a-algebra generated by sets of the form
{OC_Xopen: ONU=O}.

The collection of standard Borel spaces is closed under countable disjoint unions
and countable products. As a consequence of 13.A in Kechris [95], any Borel
subset of a standard Borel space is again standard Borel in the induced subspace
Borel structure.
We can then proceed to define for each n > 1, a standard Borel space .Mn and a

map

p.Mnv- Mp
assigning to each p .Mn an n-dimensional complex manifold Mp such that for every
n-dimensional complex manifold M there is at least one p e A//n with M - Mp. We
call .Mn the parameter space ofn-dimensional complex manifolds. The construction
of ./n and the verification that it has a number of reasonable properties that we will
need in various parts of this paper is technically cumbersome, although mathemat-
ically rather shallow. We will thus postpone the precise definition and verification
of these facts until 7. In our proofs between now and then we will simply state as
lemmas the various facts about this coding that we need and return to their proofs in 7.
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To start off, the following fact gives an upper bound for the complexity of biholo-
morphic equivalence.

PROPOSITION 3.3. For each n > 1, the relation

P -n q > P, q E ./V[n and Mp - Mq

is I.
For n 1 we will let A/t be denoted by 7, and by R (for Riemann surfaces)

and we will see in 4 that actually R is Borel, i.e., the relation of conformal equiv-
alence of Riemann surfaces is Borel (in the parameters). However we doubt if this is
true in higher dimensions.

CONJECTURE 3.4. For n > 2, the biholomorphic equivalence relation n of n-
dimensional complex manifolds (in the parameters) is not Borel.

In this paper we will also discuss a particular class of Riemann surfaces, namely
domains (open connected sets) in C. Again we will need to parametrize these by
elements of a standard Borel space. We will thus define in 7 a standard Borel space
79 and a map d l) Dd assigning to each d 79 a domain Dd

_
C such that

for each domain D _c C there is at least one d 7) with D Dd. We call 79 the
parameter space of domains in C. Of course for every domain D there is also a
p e such that Mp - D. The next fact asserts that such a p can be computed in a
Borel way from any d 79 such that D Dd.

PROPOSITION 3.5. There is a Borelfunction f" 79 - such that Dd - .]f(d).

In particular if we denote by O the relation of conformal equivalence (in the
parameters), i.e.,

d -o e C> d, e E 79 & Dd - De,
then we have

(o) _< ().

4. Riemann surfaces

Our main goal in this section is to compute the precise complexity of confor-
mal equivalence of Riemann surfaces and planar domains in the hierarchy of Borel
equivalence relations.

THEOREM 4.1. The conformal equivalence relations, --O (in the parameters)
ofRiemann surfaces andplanar domains are Borel and

(-) "B (O)’ Eoo.
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We will split the proof of this theorem in two parts:
The upper bound, i.e., showing that R is Borel and (-R) <B Eoo.
The lower bound, i.e., showing that Eoo <t (n).
Since, as we already pointed out in 3, (-n) < () this will complete the proof

of 4.1.

4.A. The upper bound We will need some basic facts from the Uniformization
Theory of Riemann Surfaces (see, e.g., Forster [81].

Given a Riemann surface M, we will devote by M its universal covering Riemann
surface and by zr: M --+ M the covering map. Thus (M, M, zr) has the following
properties:

(i) M is simply connected and zr is a holomorphic surjection of M onto M.
(ii) zr evenly covers M, i.e., for each x M there is open U containing x, so that

zr -1 [U] is the disjoint union of open sets V/}, where each rc k" V/--+ U is

a...biholomorphism.
(iii) M is uniquely, up to biholomorphism, determined by (i), (ii) above, i.e., if

f: M --+ N is a biholomorhism an@(N, N, p) satis_.fy (i), (ii) above, then
there is a biholomorphism f: M --+ N such that p o f f o zr. Moreover,
for each ’0 /, ’0 6 with f(zr(’0)) P(’0), there is a unique f’as
above with f(’0) y0.

The following fundamental result is variously called the Uniformization Theorem
or the Riemann Mapping Theoremfor Riemann Surfaces.

THEOREM 4.2. Every simply connected Riemann surface is conforrnally equiva-
lent to exactly one ofthefollowing"

(i) Coo the Riemann Sphere (= C tO {o});
(ii) C the complex plane;
(iii) ]HI {x + iy’y > 0} the upper halfplane.

The group of automorphisms (i.e., biholomorphic correspondences) of a Riemann
surface M will be denoted by Aut(M). It turns out that the automorphism groups of
the simply connected Riemann surfaces can be explicitly described as follows (see,
e.g., Beardon [84], Bedford et al. [91]).

(i) Aut(Coo)= PSL2(C).
Here PSL2(C) is the quotient of the group SL2(C) of all complex matrices

(ca ab) with ad bc 1 by its center {+I, -I }, where I is the identity matrix.

This acts on Coo as a Mfbius transformation, i.e., for ( db) 6 PSL2(C),
zC,

(ac bd)(z)= aZ+bcz+d



THE CLASSIFICATION OF RIEMANN SURFACES 115

(ii) Aut(C)= the "az + b" group.
This is the group of all pairs (a, b) E C* x C, when C* C {0}, with
multiplication (a, b) (a’, b’) (aa’, ab’ + b). It acts on C by (a, b)(z)
az+b.

(iii) Aut(]I-]I)= PSL2(N).
Here PSL2(N) is the quotient of the group SL2 (IR) of all real matrices ( )
with ad bc 1 by its center {+I,-I}. This again acts on ]HI by M6bius
transformations.

In particular, these automorphism groups are Lie groups, therefore Polish locally
compact, and their actions on the underlying spaces are continuous.
Now consider a Riemann surface M and a universal covering zr" M M, where

we now take M to be one of Co, C, ]HI. Let

F,r {(x, y) E .M yr(x) zr(y)}.

Then F, is a closed subset^of 2, i.e., F,r .T’(2). Now leLf: M N be a

biholomop.hic map and p" N N a universal covering. Then N M and there is
a Aut(M) such that zr p o a. Thus

(x, y) (F. F p(x) p(y)
g (ff-l(x)) 7I" ((7 -l(y))
((7 -1 (X), 0"-1 (y)) E Fr
(x, y) E a" Frr,

where Aut(/) acts on ..(/2) by

a. F {(x, y)" (a-l(x),a-l(y)) F}

Thus Fp, F belong to the same orbit of this action.
Conversely, supp.2.ose zr" M M, p: M N are two universal coverings and

for some cr Aut(A4), F, cr Fr. Then we can define f: M N by

f(x) p (a(y)) where zr(y) x.

Notice that this is well defined, since if yr(y) rr(y’) x, i.e., (y, y’) F,r,
then (a(y), a(y’)) F,, so p (a(y)) p (a(y’)). It is now clear that f is a
biholomorphism between M, N.

Thus we have seen that fixing M E {C, C, ]HI} there is an injection from the set
ofconformal equivalence classes ofRiemann surfaces with universal covering surface
r into the orbits ofthe action ofAut(t) on .T’(2). We have thus essentially reduced
our problem to the study of this action. But then we can use the following general
result:
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THEOREM 4.3 (Kechris [92]). Let G be a Polish locally compact group, X a stan-
dard Borel space, (g, x) -> g x a Borel action ofG on X. Then there is a Borel set
S c_ X which meets every orbit in a countable nonempty set.

This implies the following, concerning the orbit equivalence relation Eg"

xEy 3g G(g.x --y).

First, it is well known that E is Borel (see Kechris [95, 35.49]). Thus, EIS
is countable Borel and satisfies (ExlS) <n Eo. Also there is a Borel function

f: X Swith f(x)Ex, forallx X (seeKechris [95, 18C]).Thus E <_ EIS,
so

E <n E
In particular, this applies to the action of Aut(/) on .T’(/2), where .

{Co, C,/HI}, since this is clearly a Borel action.
One way to proceed then is to show the following"

(i) For each M {C, C, ]I-]I}, the set U- {z 72: Mz has universal covering
surface M} is Borel.

(ii) There is a Borel function F: U- -- .-(/2) so that F(z) is of the form F,
for some covering " M M.

Then letting E- be the orbit equivalence relation induced by the action of Aut(M)
on ."(/2), for Z, w U" we have

Z =R W Mz
f(zlE’F(w),

i.e., (R) < E" and since E- _< E we have that (R) <B E.
The drawback of this approach is that the construction of the function F in (ii)

above, although intuitively rather clear, involves some messy computations, which we
don’t want to commit to print. So we will follow an alternative, somewhat indirect,
approach that will minimize the technicalities.
We will use the following criterion (a proof of which can be found in Hjorth [9?a,

5.2]).

PROPOSITION 4.4 (Kechris). For a Borel equivalence relation E on a standard
Borel space X, thefollowing are equivalent:

(i) E < E.
(ii) There is a Borel function f: X --+ Y, with Y a standard Borel space, such

thatfor any x, y X,



THE CLASSIFICATION OF RIEMANN SURFACES 117

(a) f([x]:) is countable, and

(b) -.xEy = f([x]e) N f([Y]e 0.

Put 1 Coo,/2 C,/3 H. Consider the action of Aut(/i) on .T’(/I/2)
and let Ei be the corresponding orbit equivalence relation. Also let Si be Borel sets
that meet every Ei-class in a countable nonempty set. Then there are Borel functions
fi,j, 1, 2, 3, j 1, 2,..., 3,j" .T’(/I/2) ---> -T’(/2) such that {f,’,l (F)" j
1, 2 Si [F]e, (see Kechris [95, 18.C]). We can of course assume that
3,1(F) F for F . Si. Thus if we put f/= fi,, J satisfies (ii) of 4.4 for Ei. Now
define the following relation P R x Y, where Y $1 tA $2 t3 $3, and we of course
consider S, $2, $3 as pairwise disjoint:

P(z, y) :ti {1, 2, 3}3zr" Mi ---> Mz (zr is a covering map and y 3(F,)).

Denote by Pz the section of P determined by z R. Then if z R Z2 and y Pz,
y2 Pz2, say Yl f/(F,I), Y2 3 (F,2) (for some 1, 2, 3, }), then clearly
Fr Ei Fzr2, SO y f/([Frt ]E,) f/([Fzr2 ]Ei)_ Y2. Thus Pzt, Pz2 C__ fi ([Fr ]E,). It
follows that for each z , [..J,oRz Pw Pz is countable.

Now, if/Sz fq/sz ^0 and y /Sz /Sz, then y 3 (F,) 3 (F,r), where
{1,2,3} and zr" Mi ---> Mz’, zr2: Mi ---> Mz, are covering maps with z =R

’" ’’" and thUSZl=RZ2El, Z2 "-’R Z2. Then FrlEiFr, so z =R Z2,
So we have:

(i) z R =/Sz is countable;
(ii) z Z2 == /3Zl I"l /3Z2 .
We can now complete the proof by showing the following two facts:

(a) g is Borel;
(b) P is Borel.

Indeed, from (b) and the fact that every section of P is countable, we can find a
Borel function f: 7 ---> Y such that f uniformizes P, i.e.,

P(z, f(z))

for any z e R. Then clearly f satisfies condition (ii) of 4.4 and so by (a) above we
can apply 4.4 to conclude that () _<B Eoo.

Proofof(a). We need the following lemma concerning our parametrization,
which will be proved in 7.

LEMMA 4..5. Let Ti c_ x ’(2i be defined by

(z, F) Ti :tzr: Mi ---> Mz (zr is a covering map and F Fr).

Then Ti is 1"
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It follows that if Ci CC_ 7" is defined by

Z - Ci : the universal cover of Mz is Mi,

then Ci projTz(T/), so Ci as well. Since {C1, C2, C3} is a partition of R, it
follows that actually each Ci is Borel.
We have already seen in 2 that -----n is 2 I, so to show that it is Borel it is enough

to show that it is II.J. Recall that the equivalence relations Ei induced by the action
of Aut(i) on ’(M) are Borel. Then we have

Zl --R Z2

: 3i 1, 2, 3}[Zl, Z2 CiF1VF2[(Zl, F1) T/t(z2, F2) Ti := FIE F2]

which shows that R is II.
Proofof(b). We have

P(z, y) 3i {1, 2, 3}[(z, F) T/& fi(F) y],

so clearly P is . To see that it is also II, notice that

P(z, y) Bi {1, 2, 3}[z Ci t VF((z, F) Ti = Bj(fi(3,j(F)) y))].

4.B. The lower bound We will use the following realization of Eoo"
Recall that we let F2 be the free group with 2 generators and let p(F2) be the set

of all subsets of F2 with the topology given by its identification with 2F, the latter
having the product topology. Consider the left-translation action of F2 on p(F2),

g. A gA,

which is clearly continuous. Remember that we denote by E(F2, 2) the associated
orbit equivalence relation and we identify E(F2, 2) with Eoo. It is therefore enough
to show that

E(F2, 2) <t (o).

To do this we will associate to each A F2 a discrete subset SAC._ ]HI and consider
the domain DA ]HI \ SA. We will show that

A E(F2, 2)B DA " DB

(where DA Dn means of course that DA, Dn are conformally equivalent). More-
over the construction is very explicit, so that there is a Borel function f: p(F2) ]HIr

such that for any A cc_ F2, f(A) enumerates SA. We will prove in 7 the following
easy fact about our parametrization of domains.
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PROPOSITION 4.6. There is a Borelfunction g: r ..+ 79 so thatfor any x ]HIr

with {xn: n N} discrete we have Dg(x) ]HI \ {Xn: n N}.

Then if h g o f we have

A E(F2, 2)B , h(A) o h(B),

i.e., E(F2, 2) <B (-----o).
We will now proceed to the construction of A SA.
Consider the group PSL(2, Z) of all integer matrices in PSL(2,/R) Ant(H).

This acts properly discontinuously on H, thus each orbit of this action is a discrete
subset of H (see, e.g., Katok [92]). Moreover, there are subgroups of PSL(2, Z)
isomorphic to Fz which have no fixed points under this action. An example is the
group generated by the two generators

(see Wagon [93, p. 61, 7.1]). From now on we will identify F2 with the subgroup
(a, r) of PSL(2, Z) generated by a, 3. Then for any fixed x 6 H, {g(x): g 6 F2} is
discrete and g(x) x iff g 1 (the identity of F2).

So from now on fix x 6 ]HI and put xg g(x). Then g(Xh) Xgh.
Next we consider the hyperbolic metric p on given by

p(z, w) In Iz- 1 + Iz- wl
Iz- ol lz- wl

It of course also induces the usual topology on H. The main fact that we will
use is that each element of Aut(H) PSL(2, ) acts by isometries on (H, p)
(again, see Katok [92]). Since {xg: g 6 F2} is discrete, there is an > 0 such that
{y 6 ]HI: p(Xl, y) < e} N {Xg: g F2} {X1}. It follows that for any g 6 F2,
{y ]HI: p(Xg, y) < } fq {xg: g F2} {Xg}.

Next put x) x and choose three points x1), x2), x3 in ]HI, distinct from
each other and from x, such that p(xl), xi)) < and the hyperbolic distances

(i)
-ij P(X 0 < j < 3, are all different from each other, except for
e.ij e.ji. Then define xgi), for 0, 1, 2, 3, by

(i) (i)
Xg g(x ),

(so that xg() Xg). Then p(x(gi), x(gj)) p(xi), xlJ)). It follows that {y

{X(hi)" 0 < < 3} {x(i)" 0 < < 3} and that theH" p(y,x(g)) < -} n Uhv
< < 3} (i)set v[lgF2 .six( 0 is also discrete. Notice also that g(x(hi)) Xgh
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For any A F2 put

SA {x(gi)" g . F2, 0 < < 2} t.J {Xh(3)" h A}.

We will show that this works.
First assume that A E(F2, 2)B and let g F2 be such that gA B. Then

clearly g(Sa) SB and so g(Da) DB, thus DA DB.
Conversely, assume that DA - DB via the biholomorphism yr. If f2 is a domain,

]D the unit disk, a 2 and a function f: f2 --+ /D is holomorphic in 2 \ {a}, then
by a classical theorem of Riemann (see, e.g., Rudin [66, 10.20]) a is a removable
singularity, so f can be defined at a so that it remains holomorphic on f2. Since
/HI,/D are conformally equivalent it follows that there are holomorphic extensions
zr +" ]HI ]HI, zr-" ]HI of zr, zr -1, respectively. Then zr- o zr+ is the identity on
On, and vice versa, so (r+)-1 zr-. Thus there is a biholomorphism zr+ Aut(H)
extending zr. For convenience we will just write zr instead of r+ from now on.
Clearly r(Sa) zr(Sn). Next we will find g F2 such that n: g. To find this g
consider zr(x)). For some g, r(x) x(i), {0, 1, 2, 3}. We want to argue that

0, i.e., rr(x) xg(). So assume 0, towards a contradiction. Let us look

at zr(xi’). We have p(r(xi’), x(gi’) p(rr(xli’), rr(x’)) p(xi’, x’) < , so as

p(X(gi’, xg(’) < , clearly p(r(xi)), Xg() < , so that nr(x1) must be one of X(gj’,
j {0, 1, 2, 3}, j i. Thus, p(xi), X(gj) ij P(X, xi) eoi, so, by the

choice of the ij, we must have j 0, i.e., nr(x) Xgi), 7t’(X1)) Xg(0). Then let

j {1, 2}, j i, andconsiderrr(xJ)). Again it must be one ofthe xk) k : i, 0. But
then "kO P(X(gk), x(g0)) P(Tr(xJ)), 71"(xi))) P(Xlj), xli)) 6ji, a contradiction.

So rr(x0)) x0). Then since p(rr(xl)),xg)) p(x1), x)) ;10 we must have

zr(x1)) xg1) and similarly zr(x2)) xg2). Thus 7(xi)) g(x[i)), {0, 1, 2}.
Since both r, g are MSbius transformations this implies that zr g. Finally we need
to show that gA B, and by symmetry it is enough to see that gA B. If h A,
then x SA. So g(Xh(3)) (3) (3):r(xh xgh c_ Sn, so gh B.

It is obvious from our construction that there is a Borel function f" p(F2) -- Hrwith f(A) enumerating SA, so the proof is complete. []

5. Some,consequences

5.A. We first notice that the result in 4 answers the following question in Becker-
Henson-Rubel [80]:
Q10. Is it consistent with the ZFC axioms ofset theory to assume that there is no

complete system of invariants , definable by aformula in set theory, where b(G)
is a countable (unordered) subset ofCfor each domain G?

From 4.1 and the fact that any two uncountable standard Borel spaces are Borel
isomorphic, it follows that there is a Borel function f: 7) --+ C and a countable Borel
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equivalence relation E on C such that

d -R e f(d)Ef(e).

In particular, if to any planar domain D we assign the invariant (D) f([d]R),
for any d 79 with Dd D, we obtain complete conformal invariants for planar
domains which have the form of countable subsets of C. Moreover, since the work in
4 is quite effective, both f and E are actually effectively Borel, or A, and thus the
invariant (D) can be defined by an explicit simple formula in set theory. So Q10 is
answered negatively in a strong form.

5.B. By loosening-up somewhat a definition given in Hjorth-Kechris [95], let us
say that an equivalence relation E on a standard Borel space X is Ulm-classifiable
if there is a map U" X Y<’ where Y is a standard Borel space and Y<
{f" ot Y: a < w}, with xEy U(x) U(y), and such that U satisfies the
following technical condition expressing the "niceness" of U"

(i) If ct(x) ctv (x) domain of U (x) < wl, then for each

Aa=Av={xx: ct(x)=

has the universal Baire property and the map UIA" X Ya is universally
Baire measurable.

(ii) The set

Rtj {(x, y) X2" t(x) _< c(y)}

has the universal Baire property in X2.

Here a set has the universal Baire property if its preimage by any Borel function
(on any Polish space) has the Baire property and a function is universally Baire
measurable if its pre-composition with any such Borel function is Baire measurable.

Recall that E0 is the equivalence relation on 2r given by xEoy BnYm >
n(x(m) y(m)). Then it is a folklore fact that E0 is not Ulm-classifiable. To see
this, first recall that Eo is genetically ergodic in the sense that any E0-invariant set with
the property of Baire is either meager or comeager. Now assume that U" 2r --+ 2<t
verifies that E0 is Ulm-classifiable. By the Kuratowski-Ulam Theorem (see Kechris
[95]) applied to Rt, there is some or0 < col, with A non-meager. Thus, A, is
comeager. Since there is a Borel embedding from Y into 2r and so a Borel embedding
of y,o into (2N) we can assume, without loss of generality, that Y 2. Then for
ct < ct0, there is auniquei, {0,1} so that {x 2r" U(x)(ot) i,} B
is comeager, so B [")<,o B, is comeager, which is absurd, since B is a single
E0-equivalence class, thus countable.

Since Eo <B E(F2,2)--B (----’o)" (n), it follows that n, o are not
Ulm-classifiable either, i.e., one cannot find complete conformal invariants for planar
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domains which take the form of countable transfinite sequences of reals, complex
numbers, or members of any standard Borel space, and which can be defined in a
"reasonable" way.

In Becker-Henson-Rubel [80], the authors show that in the generic model V[G],
obtained by adding a Cohen real G to the universe V, there is no U: {domains}
C<’ which is a complete system of invariants and can be defined in V[G] by a
formula in set theory with parameters in V. Their proof can be recast in our language
as follows" If such a U existed, since E0 <B (--o) by a A and thus explicitly
defined function, we would have (in V[G]) a q" 2r --+ 2< definable by a formula
of set theory with parameters in V, such that xEoy q (x) q (y). By standard
homogeneity properties of the Cohen poset it follows that q (H1) q (H2) for any
two Cohen generics H1, H2 V[G], which is absurd if we take H1, H2 to be the odd,
even parts of G.

Also since Shelah [84] showed that it is consistent relative to ZF+DC that every
set in a Polish space has the property of Baire, it follows that it is consistent with ZF
that there is no map (definable or not) from planar domains into Y<ot, y a standard
Borel space, which gives complete invariants for conformal equivalence.

5.C. We have seen in 4 that the conformal equivalence relation on domains of
the form ]I-]I \ S, S discrete, has exactly the complexity of E. Of course the same
holds for domains of the form D \ S, S discrete in D (]I) the disc). In some sense
these are the simplest Riemann surfaces for which conformal equivalence can be so
complex.

First if we restrict our attention to the compact case, a concrete classification of-----R
for compact Riemann surfaces can be achieved, and we refer the reader to the classical
theory of moduli spaces (see, e.g., Imayoshi-Taniguchi [92]). A similar result holds
for the Riemann surfaces obtained by subtracting finitely many points from a compact
Riemann surface (in particular all domains of the form C \ {xl,... xn }) and domains
of the form ]I-]I \ {x, xn}. Next we consider domains of the form C \ S, with S a
discrete subset of C. From the Picard Great Theorem, it follows that if C \ S, C \ S’
are conformally equivalent, then there is rr Aut(C) with zr (S) S’ and of course
the converse is true as well. Thus, up to "-B, conformal equivalence on domains of
the form C \ S, S a discrete subset of C, is the same as that of the orbit equivalence
relation induced by the action

(g, S) - g. S g(S)

of Aut(C) on the standard Borel space of discrete subsets of C (a Borel subset of
.T’(C)). We will use this fact to show that conformal equivalence on the domains of
the form C \ S is actually <n E.

To see this, we will use the theory of amenability of countable Borel equivalence
relations; see, e.g., Kechris [91].

As in that paper, we call a countable Borel equivalence relation E amenable if there
is a map C - c associating to each E-equivalence class C [x]e a mean c
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on C (i.e., a continuous functional @c on I(C), with inf(f) < c(f) < sup(f))
such that C - c is universally measurable in the following sense: if F: X2 --+
[-1, 1] is Borel, the function G: X --+ [-1, 1] given by G(x) [x]e(Fx) (where
Fx" [x]e is defined by Fx (y) F(x, y)) is universally measurable. (A function
is universally measurable if it is/x-measurable for any probability Borel measure

Since E(F2, 2) is not amenable (see Kechris [91, 2.3]) and amenability is preserved
downwards under <B, it follows that if E is amenable, then E <B Eoo.

Denote the space of discrete subsets of C by .Td(C) and the orbit equivalence
relation induced by the action of Aut(C) on .Td(C) by Ed. Then, by 4.3, there is a
Borel set T _c .Td(C) meeting every Ed-equivalence class in a countable nonempty
set. Then Ed "B EdIT SO in order to show that Ed <B Eoo, it is enough to show that

Eoo"EdIT E is amenable. Since the statement "Ed <B is clearly 1"I21 so absolute
under generic extensions, we can assume that the Continuum Hypothesis, CH, holds.

By a theorem of Mokobodzki (see Dellacherie-Meyer [83, pp. 102-108]), CH im-
plies that there is a universally measurable shift-invariant mean Cr on N. This means
that rl[-1, 1]r: [-1, 1]r [-1, 1] is universally measurable and (I)N((X0, X1,

..)) r(xl, x2 ). Next we will use the fact that Aut(C), the "az + b" group,
is solvable, thus amenable, and so it has a F61ner sequence {Kn}. Thus {K, is a
sequence of compact subsets of Aut(C) which have the following properties, where
Z is the left-invariant Haar measure on Aut(C):

(i))(Kn) > 0;
(ii) X(hrnar,) 0 for each h Aut(C) (see Patterson [88, 4.16]).X(K.)

We now define a mean on L (Aut(C), 9), i.e., a continuous linear functional A
on this Banach space with essinf(f) < A (f) < esssup(f), as follows"

fK, f(g)d.(q) )A(f) Or n -
Then property (ii) of the F61ner sequence and the shift-invariance of Or imply that
A is left-invariant, i.e., for any f as above, if fh(g) f(hg), then

A(f) A (fh), Yh e Aut(C).

Now let zr: .Td(C) -+ T be Borel such thatrr(X)EdX, Yx .Td(C). Then for each
E (= EdlT)-equivalence class C [x]ed f3 T define a mean c on l(C) by the
formula

c(P) A (g - p(zr(g, x)))

for any p e t(C), where g. x is the action of Am(C) on ’d(C).
The left-invariance of A shows that this is well-defined independently ofthe choice

ofx in the same orbit of the action ofAut(C) on .Td (C). Next we check that C - c
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is universally measurable, and thus E is amenable. Fix Borel F: T2 ---> [-1, 1]. We
have to verify that G" T --+ [-1, 1], given by G(x) dPtx]e(Fx) A(g
Fx (zr (g x))) A (g -> F(x, zr (g x))), is universally measurable. From the
definition of A we have

r InG(x)

Put

fr,. F(x, zr(g x))d,k(g)

go(n, x)
f[’:" F(x, r(g x)d,(g).

.(Kn)
Then go: N x T ---> [-1, 1] is Borel, so

ap(x) (n w-> B(n, x))

is a Borel function from T into [-1, 1]r. Since G Cr o ap, and universally
measurable functions are closed under composition, G is universally measurable.
On the other hand, let E(Z, 2) be the equivalence relation induced by the shift on

p(Z) and consider the subset X c_ p(Z) defined by

X {A _c Z: A contains two consecutive integers.}

Then for A, B X,

AE(Z, 2)B C \ A, C \ B are conformally equivalent.

Now the map

Ap(Z\{O})-> A’eX

A’ A t.J {n + l" n e A}

defined by

clearly has the property that

AE(Z, 2)B A’E(Z, 2)B,

thus E(Z, 2)1 (p(Z) \ {13}) <B E(Z, 2)IX. But it is known, see Dougherty-Jackson-
Kechris [94], that

E0 n E(Z, 2)1 (p(Z) \ {13}),
from which it follows that E0 is <B the conformal equivalence of planar domains of
the form C \ S, S a discrete subset of C. We in fact conjecture the following.

CONJECTURE 5.1. The conformal equivalence relation on planar domains ofthe
form C \ S, S discrete in C, is "B Eo.

Notice also that, as in 5.B above, the conformal equivalence relation on planar
domains of the form C \ S, S discrete, is not Ulm-classifiable.



THE CLASSIFICATION OF RIEMANN SURFACES 125

5.D. As in Becker-Henson-Rubel [80, 6.8], we want to discuss some implications
of our result to the conjugacy action on PSL2() Aut(]HI) on its discrete subgroups.

Put

Sd {F c__ P SL2(]R)" F is a discrete subgroup}.

Then Sd is Borel in .T’(PSL2(]R)), so it is a standard Borel space. Consider the
conjugacy action of PSL2() on Sd, which is clearly Borel, and denote by Ec the
corresponding orbit equivalence relation. Thus,

FEcG F, G are conjugate discrete subgroups of PSL2(I).

It is essentially shown in 6.8 of Becker-Henson-Rubel [80] that Eo <B Ec. Again
we compute the exact complexity of Ec.

THEOREM 5.2. Ec Eoo.

Proof. By 4.3, Ec < Eoo and, by 4.B, Eoo <t (R IC3), where Ca is the set
of all z 7. with Mz having universal covering surface ]HI, so it is enough to show
that (R IC3) < Ec. (Recall here that the universal covering space of any domain
of the form ]HI \ S, S discrete, must be ]HI.)

If yr" El M is the universal covering of a Riemann surface M, let Gr be
the covering group, i.e., the group of all g Aut(]HI) PSL2(]R) with yr o g
g. The group G,r PSL2() is discrete and acts freely on ]HI. Moreover with
the usual definition of ]I-]I/Gr, ]HI/G,r is conformally equivalent to M. Finally, if
G, F c__ P SL2(]R) are discrete subgroups acting freely on ]HI, then H/G is conformally
equivalent to ]H[/F iff G, F are conjugate in PSL2(I) (see Beardon [84]).

Next we will need the following technical lemma about our parametrization, that
we will prove in 7.

LEMMA 5.3. There is Borel map 99: Sd T such that if G Sd actsfreely on
]HI, then ]/G is conformally equivalent to M.

Let now T _c X Sd tq {G" G acts freely on ]HI} be a Borel set meeting every
Ec-equivalence class in X at a countable nonempty set. Define Q __. C3 x T by

(z, G) E Q p(G) R Z.

Thus Q is Borel and each section Q is countable, nonempty, so let F: C3 ---> T be
Borel with (z, F(z)) Q. Then

z --R W F(z)EcF(w),

so R If3 ) Ec, and we are done.
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6. Complex manifolds

We will see here that for n > 2 the biholomorphic equivalence relation on n-
dimensional complex manifolds is much more complicated than that of Riemann
surfaces. We have the following result:

THEOREM 6.1. For n > 2 the relation of biholomorphic equivalence --n of n-
dimensional complex manifolds (in the parameters) does not admit classification by
countable structures.

Proof. It is enough to consider the case n 2. The proof will be an application
of the theory of turbulence, a consequence of which is the following result.

PROPOSITION 6.2 (Hjorth [9?, 3.3.3]). Consider the Polish group G (r, +)
and let H c_ G be aproper Polishable subgroup. IfH is strongly dense (i.e.,for every
(xo, Xl xn) ,+l there is x,+l, Xn+2 with (xo, x Xn, Xn+, .) H),
then the equivalence relation

xEtty x y H

does not admit classification by countable structures.

Thus it will be enough to find such an H with

EH <_B (’2).

Consider the unit disk ]I) and the group HD of all holomorphic functions f" ]1) ---> C
with pointwise addition. It is easy (using, e.g., Rudin [66, 10.27]) to see that with
the topology of uniform convergence on compacts this is a Polish group. Consider
the closed subgroup H of all f 6 HD such that f(1/n) ]R for all n 6 N, n > 2.
Define p" H IRr by p(f) (f(n--))" Then p is a continuous homomorphism
from H into ]Rr and so p(H) H is a Polishable subgroup of ]RN (see Becker-
Kechris [96, 1.6]) and is clearly proper (as the sequence (1, 0,...) ’ H). Next we
verify that H is strongly dense in ]Rr" if ao am-, IR, then there is a polynomial
f with real coefficients for which f (/--2) ai for < m, so

f f m+l ’f roW2 =p(f)H.

So it is enough to show that

Et-t < (’’2)"
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For x (Xn) E ]N, let M(x) be the 2-dimensional complex manifold

x {Xn+(n+2),x,+(n+3),x.+2(n+2)}U{O} x
n+2

with the obvious chart. The following easy fact about our parametrization will be
checked in 7.

LEMMA 6.3. There is a Borelfunction F Ir ---> M2 such that

M(x) MF(x)

Then it is enough to show that

x y
_
H M(x) - M(y).

Ifx-y H, sothaty-x Hletf H be such that p(f) y x, i.e., f is
holomorphic on I and f(+2) Yn Xn. Then the map or" M(x) ---> M(y) given
by

or(z, w) (z, w + f(z))
is a biholomorphism between M(x), M(y), i.e., M(x) M(y).

Conversely assume that M(x) - M(y) and a: M(x) ---> M(y) is a biholomor-
phism. Fix z D. The map to E C -> zrl (a(z, w)) ]I), where Zrl: D x C ]I) is
the first projection function, is holomorphic and bounded, so by Liouville’s Theorem
(see Rudin [66, 10.23]) it is constant, say C(z). (Strictly speaking, when z this
map is only defined in the complement of a finite set, but it clearly has a holomorphic
extension to all of C.)

C for some m. Thus the map wIt is obvious that for each n (h-)
C\{xn+(n+2),Xn+(n+3),Xn+2(n+2)} -> Yg2(O’(W)) C\{xm+(m-F2),Xm+
(m + 3), Xm + 2(m + 2)}, where zr2: ]I) x C --+ C in the second projection function, is
a biholomorphism, so clearly C\{n + 2, n + 3, 2(n + 2) }, C\{m + 2, rn + 3, 2(m + 2)
are conformally equivalent. Thus, as in 5.C, a transformation of the form z az + b
of {n + 2, n + 3, 2(n + 2) gives us {m + 2, rn + 3, 2(m + 2) }; by considering distances

Cwe see that lal 1 and therefore a 1 and rn n, i.e., (h-) h--"
Since C is holomorphic (being given by C(z) zrl(a(z, i))), it follows that

C (z) z for all z ]I).
Thus cr has the form

a(z, w) (z,
where Pz - Aut(C), i.e., Pz(to) a(z)to -t- b(z). As b(z) pz(O) zr2(a(z, 0))
and a(z) -b(z) + ,r2(,r!z,i)) it follows that a b are holomorphic. Since the map
a(h-)w + b( maps {x, + (n + 2), x, + (n + 3),x + 2(n + 2)} onto {y, +
(n + 2), Yn + (n + 3), y, + 2(n + 2)} it follows that a(h--)l 1 and xn + (n + 2)

b(n" + Yn + (n + 2), or Xn Yn b(), so b 6 H and x y p(b) H, and
the proof is complete.
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It is clear that the complex manifold used above are not compact. So the following
is open:

Problem 6.4. What is the complexity of the biholomophic equivalence relation
on 2-dimensional compact complex manifolds?

We do not even know if it is Borel or even concretely classifiable.

7. Technicalities of the parametrization

We start with some definitions.

Definition 7.1. Let Y be the set of all triples (Oo, O1, o) such that O0 and O1
are open sets in Cn and o: O0 ---> O1 is holomorphic. We provide Y with the Borel
structure generated by sets of the form

{(O0, O, o)’ U

_
O0}

{(0o, 0, 9)" U _c 0}

{(o0, o, o). o(v)

_
u}

for U, V __. Cn open.
For each n fix in advance some enumeration (q)/eN (or just (qi)ibl when context

makes n clear) of a dense subset of Cn and let Y the collection of 4-tuples

(00, 01, (Ci), (di)),

such that:

(i) Oo, O1 are open sets in Cn, each ci is in Cn, each di is in Mn (C) (the space
of all n x n matrices over C).

(ii) For qi not in Oo the values of ci and di are both (0, 0,...) (or any other fixed
default value in cn).

(iii) There exists qg: Oo ---> Ol analytic such that for each qi 0o,

Then letting O(Cn) be the standard Borel space of open subsets of Cn, we have
that Y’ is a subspace ofthe standard Borel space O(Cn) x O(Cn) x (cn)r x Mn (C)r.
Here O(Cn) is understood to have the Borel structure generated by sets of the form



THE CLASSIFICATION OF RIEMANN SURFACES 129

{O ( o(cn)" U C_ O} for U open in Cn. To see that this is a standard Borel space
define

by

r" y(c) -, o(c)

F -- Cn\ F;

this is obviously a Borel bijection with Borel inverse between .T’(Cn) equipped with
the Effros standard Borel structure and o(cn).

LEMMA 7.2. Y is a standard Borel space.

Proof. By Kechris [95, 13.A], it suffices to show that Y’ is a Borel subset of
O(Cn) X O(Cn) X (cn)N X Mn(C)N.

Let (Cp)pN be the family of compact sets in Cn consisting of all closures of basic
open precompact sets. Then note that (00, 01, (ci), (di)) Y if and only if for all
Cp with Cp c_ Oo we have the following:

(a) For all 6 Q+ there exists 8 Q+ such that

Vqi, qj Cp(lqi qjl < 8 == Idi djl, Ici cjl < 6).

(b) For all Q+ there exists i0, il, il, a finite sequence in N, and 80, 81 ,81
in Q+ such that

Cp c. U Bsj (qij)
j<l

and for all j < and qm, qm’ B (qi) (the open ball of radius 8j around qi)
if

(’1 ’n) (qm --qm’) Cn,

( ) (Cm --Cm’) Cn,
[i,i’]i,i’<n dij, then

I(’l,..., n)[i,i’] ( ’n)l/lqm qm’l

--df (i<_n li’l’ii’2i<n ,ii,n)--(i<n ) /Iqm--qm’l<"

Since all continuous functions on compact sets are uniformly continuous, (a)
asserts that the assignments

qi I--> Ci,
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qi - di
extend to continuous functions on Cp while (b) asserts that qi t-- di indicates the
derivative of qi - Ci. We leave to the reader the routine verifications that (a) and (b)
describe Borel sets.

COROLLARY 7.3. For each n, Y is a standard Borel space.

Proof. The natural map from Yff to Y that associates to each (00, O1, (ci), (di))
the unique holomorphic function p with

o(qi Ci

99’(qi) di

for qi E Oo is clearly one to one and an isomorphism with respect to the relevant
Borel structures. U]

Definition 7.4. Let X be the space of all (Yi,i’)i,i’N - ]NxN such. that there
exists a complete metric space with dense subset {ai" N}, where for each i, i’,

d(ai ai, yi,i,

Note that X is a Borel subspace of Nrxr, since the only restrictions on the
(Yi,i’)i,ieN is that they are _> 0 and satisfy the triangle inequality, and that Yi,i’ 0
exactly when i’. For each such (Yi,i’) we let X (Yi,i’) be a complete metric
space with dense subset {ai" N} as indicated; the exact choice of X (yi,i,) will be
irrelevant in what follows.
We then let X0 be the collection of all (Yi,i,) Xo such that for each N the

open ball

Bl(ai)

of radius 1 around ai in X (Yi,i’)is precompact.
Since precompactness can be phrased in terms of being e-bounded for every ra-

tional e > 0, this is a Borel subset of X, and thus X0 is a standard Borel space. It is
also seen that X (Yi,i’) will be locally compact for each (Yi,i’) in X0. Conversely we
have:

LEMMA 7.5. IfX is a locally compact separable metric space, then there is some

(Yi,i’) in Xo such that X (Yi,i’) is homeomorphic to X.

Proof. Starting with X we may fix a complete d and an increasing union (Om)mN
ofprecompact open sets so that for each m the closure of On, Ore, is included in Om+l
and such that
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Then we may choose continuous fm: X ---> [m, rn + 2] such that fm is constantly rn
On 6m and constantly rn + 2 on X \ Om+l. Then we may define d’ on X by

d’ (a, a’) d(a, a’) + fm (a) -fm (a’) I.
men

Letting {ai" N} be any dense subset of X, we obtain (yi,i,) in X with

(Yi,i’ d’ (ai ai, []

The next technical definition is rather cumbersome. In any case, we ultimately
parametrize the complex manifolds in a Borel manner, and this is the only real concern.
By a basic open set in Cn we mean a ball with rational center and radius.

Definition 7.6. Let .A/[n be the space of sequences ((yi,i,), (Ai), (i,i’))i,i’N (or
just ((Yi,i’), (Ai), (i,i’)) for short) such that:

(i) (yi,i’) Xo.
(ii) Ai 2r (which we equip with the product topology and identify with the

set of all subsets of N).
(iii) i,i’ cn.
(iv) Aj corresponds to a regular open set in X (Yi,i’), in the sense that Aj if

and only if 8 Q+i’ NYq Q+(yi,i, < = i" Aj(Yi’,i" < q)).
(V) {ai: Aj is guaranteed to be precompact by having diameter less than

or equal to 1, in the sense that for all i, i’ Aj,

Yi,i’ < 1.

(vi) If we define Uj =df ({ai: Aj}) for each j to be the interior of the
closure of {ai: Aj} and Vy =df ({j,i: Aj}) for each j to be the
interior of the closure of {j,i: Ay }, then the assignment

extends to a homeomorphism

and the sets Vj are basic open and connected in Cn.
(vii) The overlap maps

j 0 0" 1"
i Ui I"l Uj ----> oj Ui I’l Vj

are biholomorphic.
(viii) The topological space X (Yi,i’) is connected.
(ix) For each the closed set B1 (ai) is covered by finitely many open sets of the

form Uj as described in (vi).
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For p [n we will use Mp to denote the complex manifold ofdimension n, X (Yi,i,),
with chart {Ui, i as indicated above.

LEMMA 7.7. ./n is a standard Borel space.

Proof
that:

First letM be the collection of all ((Yi,i,), (Ai), (i,i’), (Vi,j), ((tgi,j))such

(i) ((Yi,i’), (Ai), (i,i’)) satisfy (i)-(vi) and (ix) of 7.6.
(ii) For each i, j we have (Vi,j, Vj,i, Pi,j) in Y.
(iii) Each V/,) is the interior of the closure of {i,t" Aj f3 Ai }.
(iv) For each Aj N Ai, we have

(tgi,j (i,l) j,l"

(v) For all i, i’ there is a finite sequence jl i, j2 jk i’ such that each
Ajn 0 Aj.+ .

Note that (v) says that Mp is connected. Thus ((Yi,i’), (Ai), (i,i’)) is in A/[n if and
only if there is some (Vi,j), (oi,) with ((Yi,i,), (Ai), (i,i,), (Vi,j), (oi,j)) in M and
the functions

qgj 0 (1971" i Ui [ Uj ---+ qgj Ui Uj
are equal to i,j.

M is a subset of the standard Borel space X0 x (2r)r x (cn)rl x (y)rxl and
so we endow it with the relative Borel structure. To see it is a standard Borel space
we only need check that it is a Borel subset, and the first issue here is whether 7.6
(vi) corresponds to a Borel condition; this in turn follows using the precompactness
of {at" Aj }, as in the proof of 7.2. We also need to be concerned with showing
7.6 (ix) is Borel; but this amounts to the assertion that there are finite sequences
l, i2 in, j,.., jn in N and 31 n Q+, t tn 6 Q+ such that:

(a) Each l < "(b) For all i’ 6 lI and < n, if Yit,i’ < 3[ (i.e., ai, . B;(ail)), then i’ Aj (i.e.,
ai, Ujl); and so, by 31 < ;, we have B, (ai,) c_ Uj.

(c) For all i’ with yi,,i < 1 (i.e., ai, B (ai)), we have some with Yi’,it < 31 (i.e.,
ai, - Ba (ai, ).

Granting all this, the projection function

((Yi,i’), (Ai), (i,i’), Vi,j, (0i,j)) -> ((Yi,i’), (Ai), (i,i’))

M) --+ X0 x (21)r x (cn)NxN

is one-to-one, Borel, and has A/In as its image. Thus, by Kechris [95, 15.1], dn is a
Borel subset of X0 x (2r)r x (cn)rr and therefore standard Borel. ll
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It is easily seen that for each M, a complex manifold of dimension n, there is some
p A’/n with Mp and M isomorphic. The only restriction on our charts is that the
sets Vj from 7.6 (vi) are basic open and connected, but refining a chart as needed we
may always make this assumption.

Recall that for p, q e .A/In we set p -n q if Mp and Mq are biholomorphic. We are
finally in a position to verify the lemmas in Sections 3-6, whose proofs we postponed
until now.

PROPOSITION 3.3. n is 1.

Proof Fix p ((Yi,i’), (Ai), (i,i’)) and q ((Y[,i’), (AI), (i,i’)) in dn, let
Vi, Ui and Vi’, U/’ be the respective Sets from 7.6 (vi) for p and q, and let 9 and qg[ be
the respective functions. Note that we may parametrize the holomorphic functions
from Mp to Mq by sequences of4-tuples (Vi,j, Wi,j, aPi,j, k(i, j)) with (Vii, Wij, aPij)
in Y and k(i, j) 6 N, such that:

(i) Vi is the union of {Vi,j" j N}.
(ii) W,

_
V/,(i,.

(iii) For Ai 71Ai*, qgi(al) -’df i,l, qgi*(al) =df i*,l, i,l Vi,j, i*,l V/,,j,,
we have

_t )-1tDk(i,j) (l[ti,j(i,l)) (k(i,,j,)) -1 (lri*,j*(i*,l)).

(ii) and (iii) are clearly Borel; local compactness of the space gives the same
conclusion for (i). The significance of (iii) is to ensure that the partial functions knit
together in a well-defined fashion and yield a holomorphic function from Mp to Mq.
So given (Vi,j, Wi,j, lPi,j, k(i, j)))i,jeNxN as above we define

extending the assignment

(at) ((i,j))-I (fi,j(i,l))

for/ Vi,j.
Thus we have a Borel subset, Z, of Adn x A/In x (Y’ x N)rr that provides

parameters for the collection of all pairs of complex n-dimensional manifolds and
holomorphic functions between those spaces. For (p, q, ) Z, let tp" Mp --+ Mq
be the resulting holomorphic function. Since it is easily seen that

Z]’ {(p, q, t, ): (p, q, t), (q, p, ) 6 Z, p (p)-l}

is a Borel subset of A/In x .Mn x (Y x N)rr

being the projection of Z]’ (over , 3), is 11.
x (Y x N)rr, it follows that
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Definition 7.8. We put 79 O O(C)" O is connected}. It is not hard to see
that 79 is a Borel subset of O(C). For d D, we let Dd d.

Recall that 7Z is just Ad I, the space of parameters of Riemann surfaces.

PROPOSITION 3.5.
d 79, Dd " Mf(d).

There is a Borel function f: 7) --+ such that for each

Proof For d U an open subset of C, we can let (ai) enumerate U N (Q + Q)
and let (V/) enumerate the basic open sets of diameter < 1 included in U. We may
then let Yi,i’ d(ai, ai,), Aj {i: ai Vj and j,i ai for ai Vj. By local
compactness of the spaces this can be done in a Borel in U fashion. Then (i)-(ix) of
7.6 follow easily.

LEMMA 4.5. Let M1 Coo, M2 C, M3 ][-][. For each 1, 2, 3, let
Ti c_ T x .T(ii be the set of (p, F)for which there exists

yr" Mi--+ Mp
with rr a covering map and F Fzr {(x y)" zr(x) zr(y)} Then T is 1l"

Proof Following the proof of 3.1, we can obtain a standard Borel s^pace Z2,
of pairs (, p) such that appropriately represents a holomorphic zr" Mi --+ Mp.
The construction of 3.1 shows that for each (, (’ D, the fixed countable subset
of Mi and q, r 6 Q+ the set of pairs (, p) Z2, with d(zr((), zr((’)) < q and
d(zr((), an) < r is Borel, where d is the metric for Mp and (an) the fixed dense
subset of Mp.
Now the statement that zr be a covering map amounts to the requirement that

each unit ball around each an in Mp can be covered by finitely many basic open sets,
B$ (an) B (ank), SO that for all j < k, letting Wj 7gUu (B$j (anj)) we have:

(i) Any connected component of Wj is precompact and any two distinct connected
components of Wj have disjoint closures.

(ii) For any connected component U of Wj, zrlU" U ---> Bj (anj) is biholomor-
phic.

We fix j, and we verify that (i) and (ii) are Borel conditions. Put Dj D fq Wj.
Then if we define the equivalence relation

( (’ (, (’ are in the same connected component of Wj,

for (, (’ 6 Dj, we see that the connected components of Wj are exactly the sets of
the form

Uc the interior of the closure of C,
where C is a ,--equivalence class.
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Thus (i), (ii) above are equivalent to (i)’, (ii)’ below, where C varies over all the
---equivalence classes:

(i)’ Every Uc is precompact and for any two distinct C1, C2, 0C, I’ .rc2 0.
(ii)’ zr;,lUc is biholomorphic.

By the methods of 7.2 and the proof of 3.1 we see that these conditions are Borel
and thus the set of (, p) in Z2,i such that rr is a covering map of Mp is Borel.

It is left to show that F F,r can be expressed in a Borel manner. However, this
amounts only to requiring that for each pair of precompact basic open Uo, U1 Mi,
we have that FN (Uo x Ui) 5 0 iff there exists V0, V basic open with V0 c_ U0, V1 _c
U1 and ’q 6 Q+B(o 6 D f’l VoB( 6 D V (d(zr((o), 7t’j((1)) < q). El

PROPOSITION 4.6. There is a Borelfunction

g. Hr-- D,

so that whenever x (Xn) E ]IN enumerates a discrete set, we have Dg(x) g(x)
H \ {Xn" n N}.

Proof. First let A be the set of sequences (Xn) ]HIr enumerating a discrete
subset of ]HI. This is Borel since (xn) B if and only if

’v’n6 6 Q+Vm(m :/: n := d(xn, Xm) > ).

Forx ’ A, wecanjust letg(x) ]HI. Forx 6 A, weletg(x) ][-]I\ {xn" n N}. This
is a Borel function, since for any basic open U C C, U

_
g(x) if and only U

_
H

and no x,, is in U. [21

Recall that Sd is the space of discrete subgroups of PSL2(ll). This is a Borel
subset of .T(PSL2()) in the Effros Borel structure, and hence a standard Borel
space.

LEMMA 5.3. There is a Borel map o: Sd --+ 7"4. such that ]HIG is conformally
equivalent to MCa for all G Sd actingfreely on H.

Proof. Note that we can indeed verify in a Borel manner whether G Sd acts
freely on H: This amounts to the claim that for all basic open U

_
H we may find

a finite sequence V0, V, Vn of basic open sets coveting U and such that for all
i<n,

(.) g V/q V/ 0 for all g 6 G with g 5 1.
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However (.) is Borel, since it amounts to the assertion that for all W c_ PSL2()
basic open not containing the identity, if G N W 7 0 then there exists h W such
that h. V,. N Vi 0.

So let us just fix G Sd acting freely on ]I-I[ and describe p(G).
First we let (V,.) enumerate the basic open sets which are G-discrete, in the sense of

meeting each G-orbit in at most one point, and have diameter < 1 in the hyperbolic
metric p (see 4.B). As in the proof of 3.3, this can be used to give a chart for a
representative of l[-]I/G in R. The one further problem is in uniformly obtaining a,
metric.

For any , ]HI and g G we have

infhep (h. (, ) infhevP (h. (, g. ),

and moreover this quantity is greater than zero if and only if G. ( - G . In
particular

Therefore

infheP (h. ’, ) infh,geOP (h. ’, g. ).

l(G , G ) infh,e, eGP(h , g )

provides the needed metric on ]HI/G.
Thus if we let (ai) enumerate a maximal G-discrete subset of ]I-]I fq (Q + Q) (in

the sense that G ai f’) G aj 0 for all 7 j), Yi,i’ d(G ai, G a), Ai
{j" G aj Vi - 0}, and i,j to be the unique element in Vi N G .aj, if it exists,
we obtain from p ((Yi,i,), (Ai), ((i,i,)) an element in 7"." with Mp conformally
equivalent to ]I-]I/G.

There is the further concern that all these steps can be performed in the Borel
context, but this is routine and resembles earlier calculations.

Recall that for x ]RN we let M(x) be the complex manifold

endowed with the inherited complex structure.

LEMMA 6.3. There is Borel map

F" ]Rr ---> 3d2

such that M(x) and MF(x) are biholomorphicfor all x Nr.

Proofi This follows the method of 3.3. I1
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