INTEGRAL EQUATIONS AND SEMIGROUPS'

BY
J. S. Mac NERNEY

Consider ann X n matrix ¢ of absolutely continuous functions on an interval
S of real numbers. If each of G and H is also such a matrix, then, as is well
known (cf. [2, p. 352] for comments and references), the differential require-
ment that
G'(s) — G(s)e'(s) =0
H'(s) + & ()H(s) = 0 almost everywhere on S,

where 0 is the n X 7 zero matrix, is equivalent to the (Stieltjes) integral re-
quirement that if ¢ is in S then for all z and y in S

¢w) = 6() + [ G- and H@) = HE) + [ o8

moreover, there is a fundamental matrix W of continuous functions on S X 8
which satisfies—without exception—

@ Wy =1+ [ W s =1+ [ dgW( )

where 1 is the n X n unit matrix, and provides G and H in the form
Gly) = G)W(,y) and H(x) = Wz, c)H(c).

The relationship (i) has been extended by H. S. Wall [9], [10], with the
condition of absolute continuity on ¢ replaced by that of continuity and
bounded variation, the intrinsic nature of the harmonic matrices W so ob-
tained being determined explicitly; the reciprocal formulas (involving sum-
and product-integrals)

@) o) — o) = [ WC,0)aW(e, ),  Wiay) = I+ del

were discovered, respectively, by Wall [10] and this author [4]. The con-
tinuity condition on ¢ has been relaxed, in two different directions, by T. H.
Hildebrandt [2] and by the present author [5], [6].

This paper is concerned with connections between additive and multiplica-
tive integration processes, where the integration is directed along intervals
in some linearly ordered system and the functions involved satisfy various
conditions of boundedness, having their values in a normed algebraic ring
which is complete as a metric space.

Received October 18, 1961.
1 Presented to the American Mathematical Society on January 22, 1962.
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For a linear (=) ordering O of a nondegenerate set S, and a complete
normed ring N (with unit 1 such that | 1| = 1), we determine classes 0@
and 09N of functions V and W (from 8 X S to N) such that the integral-
like formulas

(iii) Via,b) = o0 [W — 1] and W(a, b) = J['l1 + V]

are mutually reciprocal; the notation indicates the limit, through refinement
of O-subdivisions {t,}¥ of {a, b}, of finitely continued sums Y, [W (¢, , t,) — 1]
and products [] [1 + V (tp1, tn)].

This determination leads to an integral-equation theory (of Cauchy-left
and Cauchy-right integrals) which, in case S is the real line, properly extends
our earlier results [5], [6] and complements the theory developed by Hilde-
brandt [2]. In Section 10 we give a detailed description of all these inter-
related results.

If O arises canonically from a semigroup operation ¢ on S ({z, 2} being in
O only in case o (z, y) = 2z for some y in S, and o (o (2, @), b) = o(x, ¢) only
in case o (a, b) = ¢), we obtain some connections between additive and multi-
plicative homomorphisms from this semigroup into the ring N. Some funda-
mental facts about such semigroups are obtained in Section 8, and Section 9
is devoted to the aforesaid connections, these being corollary to the theory
developed in Sections 1 through 7.

1. Continuously continued sums and products

Suppose S is a nondegenerate set and 0 is a linear ordering of S, i.e., a sub-
set of S X S with the following properties:

(i) if each of {z, y} and {y, 2} is in O, then {z, 2} is in O,
(ii) if {x, y} is in O and {y, «} is in O, then y is z, and
(iii) if {x, y} isin 8 X S, then {z, y} or {y, x} isin ©.

A function f, from S X S to any (algebraic) ring, is ©-additive provided that,
if each of {x, y} and {y, 2} is in O, then

f(x7 y) + f(yr 2) = f(x) Z) and f(z, y) + f(yﬂx) = f(za x);
and is O-multiplicative provided that for all {z, y} and {y, 2} in ©

f@,fly,2) = flx,2) and [ 9)f(y, 2) = 2).

If g is a function from S to a ring, then dg denotes a function f from S X S
such that f(z, y) = g(y) — g(z) forall {z,y} in S X S.

Note that if N is a ring, each of g and h is a function from S to N, and f is
a function from S X S such that f(z, y) = g(y) — g(z) for {z, y} in © and
flx,y) = h(y) — h(z) for {y, 2} in O, then f is O-additive; conversely, each
9-additive function from S X S to N arises in this way. On the other hand,
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if g is a function from S to a ring, then dg is fully additive, in the sense that
if f = dg, then f(z, y) + f(y,2) = f(z, 2) forall z, y, and z in S.

An 0-subdivision of a member {x, y} of S X S is a sequence {¢,}o such that
{tO ) tn} iS {$, y} a’nd

(i) iff{x,y}isin O, then {¢,y, ¢} isin O (p =1, ---,n), and
(i) if {y, «} isin O, then {¢,,t,1} isiIn O (p =1, ---, n).

A refinement of the 9-subdivision ¢ of the member {x, y} of S X S is an 9-sub-
division of {z, y} of which ¢ is a subsequence.

Suppose, finally, that N is a ring, with additive identity element denoted
by 0 and multiplicative identity element denoted by 1, and that | - |is a
norm for N, with respect to which N is complete, such that | 1| is the number
1. If b is a function from S X S to N and {a, b} is a member of S X S,

(i) 2" h denotes a member Z of N with the property that, for each
positive number ¢, there is an 9-subdivision s of {a, b} such that if {,}¢ is a
refinement of s then | Z — >, h| < ¢, where ), h denotes the continued

sum (in the ring N)
Dt hpr,ty) = h(to, 1) + -+ 4 h(tas, t).

(i) o4]]°% denotes a member Z of N with the property that, for each
positive number ¢, there is an ©-subdivision s of {a, b} such that if {,}¢ is a
refinement of s, then | Z — [[:% | < ¢, where J]: % denotes the continued
product (in the ring N)

IIE G, 1) = Rto, 81) << Bltass , ta).

We assume tacit definitions of corresponding ideas involving functions
from S X 8 to the set of real numbers. It should be noted, however, that
N is not assumed to be an algebra over the real or complex numbers® and is
not assumed to be commutative.

2. The numerical case

Let 9@" denote the set of all ©-additive functions from S X S to the set
of nonnegative real numbers, and let 09" denote the set of all ©-multiplica-
tive functions from S X S to the set of real numbers not less than 1.

Lemma 2.1, If adsin 0Q@" and {a, b} isin S X S, then
JI'I 4+ o] = LUB.JL (1 + of for all ©-subdivisions t of {a, b}.

Indication of proof. [1 4 v1 4+ vo] = [1 4+ ][l + v2] = Exp {v1 + o} for all
nonnegative real numbers v; and vs .

Lemma 2.2. If pisin o' and {a, b} isin S X S, then
20w —1 = GLB. 2 [u — 1] for all ©-subdivisions ¢ of {a, b}.

2 This is contrary to the convention adopted by Masani [7].
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Indication of proof. 1If {z, 2} isin S X S, then
= [u@y) — U, 2) — 1]
= [u(,2) — 1] — {lu(@,y) — 1+ @y, 2) — 1}
for all 4 in S such that {z, y, 2} is an ©-subdivision of {z, 2}.

TaeorREM 2.1.  If a belongs to ©Q™, then the conditions

pla,b) = JI°M + o] for each {a, b} in S X S
define a member u of OM™*; conversely, for u in O, the conditions
a(a,b) = o2 [u — 1] for each {a, b} in S X 8

define a member o of OQ™.

TueorEM 2.2. There is a reversible function &%, from 0@™ onto OM™, such
that each of the following is a mecessary and sufficient condition for the member
{a, u} of 0@" X 0™ to belong to &

G) w(a,d) = JI°1 + « for each {a, b} in S X S.
() a(a,b) =42 [u— 1] foreach{a,b}in S X 8.

Proof. If aisin 0@" and (i) is true, then u = 1 + «, and, for each {z, y}
in S8 X S and each 9-subdivision {¢,}o of {z, ¥},

0= 2ilw—1—aly = 2ik—-1—a
= D2 0 o, t) — 1 — alty, tp)]
< 2T I 4 alten, ), t) — 1 — altpa, t)]
: {H:+l u(tra, tr)}
= 18w, to) — IIE (L + @lton, tn)] = u(x,y) — I1:01 + o,

whence (ii) is true. Conversely, if px is in 09" and (ii) is true, then
a = u — 1, and, for each such {z, y} and ¢,

0=y — [L0+a=TIule,t) — TIT 1+ alte, ts))
= Z? { {’_1 [1 + a(tlI—l ) tq)]}[""(tp—l ) tp) —1- a(tp—-l ) tp)]
AT e, ) }

A

< 2T wlter, t) Vi (tpr s 1) — 1 — altpr, £)]
Al w1}
é {H{L p’(tQ—l ’ tq)}Z;L [u(tp—l ’ tp) - 1 - Oé(tp_1 5 tp)]

I

“’(x) Z/){Zt [M - 1] - C!(SU, y)};

whence (i) is true.
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There emerges from the preceding argument a fact which will be useful
in the subsequent development, and which we now record.

TaroreM 2.3. If aisin 0QT and u = &% (), then, for each {z, y} in S X S
and each O-subdivision t of {x, y},

2l =1 = al,y = uly) — L0+l
3. The fundamental correspondence

Let 0@ denote the set of all ©-additive functions V from S X S to the
(complete normed) ring N such that, if {a, b} is in S X S, there is a number
u such that if {t,}¢ is an ©-subdivision of {a, b}, then

Zt\ Vl = Z;L l V(tp—lytp)l = u
Let 091 denote the set of all ©-multiplicative functions W from S X S to N

such that, if {a, b} is in S X S, there is a number « such that, if {¢,}o is an
o-subdivision of {a, b}, then® D> | W — 1| = D20 | W(tp, tp) — 1| S w.

LemMma 3.1, If V is an 0-additive function from S X S to N, then the condi-
tion that V belong to OQ is equivalent to the requirement that there be a member
aof 0@F such that | V)| < a.

Indication of proof. The requirement is clearly sufficient. If V belongs to
0@, then, for each {z, y} in S X §, let a(z, y) be
20| V] =LUBY, | V] for all ©-subdivisions ¢ of {z, y}.

Lemma 3.2. If W is an O-multiplicative function from S X S to N, then
the condition that W belong to OIN is equivalent to the requirement that there be a
member u of O such that | W — 1| < u — 1.

Indication of proof. The requirement is clearly sufficient. If W belongs to
091t, then, for each {z, y} in S X S, let
hz,y) = LUB.D | W — 1| for all ©-subdivisions ¢ of {z, y};

clearly h(z, y) + h(y,z) < h(z,2) forall z, y, and 2 in S such that {z, y, 2} is
an O-subdivision of {z, 2} ; let ¢ be a member of S, and « a member of ©@™ such
that, if {z, y} isin 8 X S, then

a(t,y) = h(z,e) — h(y,e) if {x,y, e} is an O-subdivision of {z, ¢},
a(r,y) = h(z,e) + h(e, y) if {z, e, y} is an O-subdivision of {z, y},
ax,y) = hie,y) — h(e,x) if {e, z, y} is an O-subdivision of {e, y};

let p = 87 (a);if {, y} isin 8 X S and either {z, y, ¢} is an O-subdivision of
{z, e} or {e, z, y} is an O-subdivision of {e, y},

\W(.’B, y) -1 \ = h(x7 y) = Ol(x, y) = [.L(CC, y) - 11

3 Observe that W (z, z) = 1, since {z, z} is in O, and so there is a number « such that
n| W, 2) —1|Su (n=1, 2,--).
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whereas, if {z, e, y} is an ©-subdivision of {z, y}, then
| Wz, y) — 1= |W(,e)W(,y) — 1|
= |W(z,e) — 1IW(e,y) — 1]
+ W (2, e) — 1] + W(e, y) — 1|
a(@, e)ale,y) + a(z, e) + ale, y)
=14 a(x, e)lll + ale,y)] — 1 = ulx,y) — 1.

TaroreM 3.1. If aisin 0@" and V is a member of ©G such that | V| £ a,
then, for each {a, b} in S X S, JI"[1 + V] exists, and

[JIP+VI—1D+ V(b =’ + o = 1 + ala, b))l

Indication of proof. If {t,}¢*" is an O-subdivision of {z,y}, then, for
1=¢g=p=n+ 1, wesee that

I+ Ve, t)] — TIF' [ + V(s 8]

= {TIF7 11 + Ve, tD1}V (s £),
I 0+ Ve, tD)] = TT2a [+ Vb, 8)]

= Vtes, t){ 120 11 + Vs, 11},

IIA

where 1 = JI54 = 1, and
I+ Ve, )] — 1L+ V(z, )]
= 28I 4 Ve, )] — 1V (s 1)
= 3 AP [+ Vs, t)] — 1}V, tpsa)
= 2o 2o Vo, ) T2 (L + Vtt, D}V o, ton),
whence it follows that
Lo+ VI—0+ Vel = ILE+d—01+a )l
From these considerations, and from the identity
IT7 B, — IIF A, = 220 {1155 4o} By — A9 {TT7=0i1 B},
if s is an O-subdivision of {a, b} and ¢ is a refinement of s, then
TL+vi—IL0+ Vi< I+ ol = TL 0L + al.
TuroreM 3.2. If pis in OM' and W is a member of OIN such that
|W—1l=sw—1,
then, for each {a, b} in S X 8, .0 [W — 1] exists, and
(@, b) =1 =227 — 1| £ [u(e, b) — 1] = o 2" [u — 1].
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Indication of proof. If {t,}¢*" is an O-subdivisionof {z, y}, then, for
1=q¢=p=n+ 1, we see that
Wz, ty) — W(, tpa) = W, t,1)[W(tp1, t) — 1,
Wtea, o) — Wt tn) = W(tea, ta) — LW (tg, t),
and, recalling that W (z, z) = W(t,, tp) = 1,
W (2, 9) — 1] — 2255 Wt , £y) — 1]
= 255 W@, tpa) — 1IW (b, 8) — 1]
= 250 W, ) — W @, ) — 1]
= 251 20 Wt ta) = TUW (o, 8) W (b, tpua) — 11,
whence it follows that
W (@, y) — 10— 2 — 1] S lule,y) — 11— Xelu — 10,
Therefore, if s is an ©-subdivision of {a, b} and ¢ is a refinement of s, then
1227 — 1] = 2200 = 1][ £ 2Zslw— 1] = 2elw— 1)

TaroreM 3.3. There is a reversible function &, from OQ® onio O, such
that each of the following is a mecessary and sufficient condition for the member
{V, W} of 0G X O to belong to &:

(i) W(a,b) = JI°[1 + V] for each {a, b} in 8 X S.
(i) V(a,b) = o2 [W — 1] for each {a, b} in S X S.
(iii) There is a member {a, u} of 8% such that
| W, y) — 1=V, =uky) —1-ak,y)
Sor each {z, y} mns X S.

CoroLLARY 3.1. If {V, W} s in &, then these are equivalent:

1) V(y,z) = =V(x,y) foreach{z,y}in S X S.

(2) There is a function ¢ from S to N such that V = dé.

(8) If c is a positive number and s is an O-subdivision of the member {x, y}
of 8 X 8, there is a refinement {tp}0 of s such that

| 228 Wty s 1) — 1+ W, 1) — 1} <.
(4) There is a member {a, p} of & such that if {z, y} is in 8 X S, then

CorOLLARY 3.2. If W belongs to O, e is in S, each of F and G is a function
from S to N, and F(z) = Wz, e) and G(z) = W{e, z) for all x in S, then
each of dF and dG belongs to OQ.
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COROLLARY 3.3. If {a, u} belongs to & and {V, W} is a member of & such
that | V| £ a, then, for each {z, y} in S X S and each O-subdivision {t,}o of
{z, y}, each of

W(x> y) —-1- Z? W(x; tp—l)V(tp—l ) t?)
and W@, y) — 1 — D28 Vtg, to) W(tp, y)
has norm not exceeding u(x, y) { Silw— 1 — alz, v) }

Indication of proof. Apply Theorem 3.3 (ili) in comparing the indicated
sums with

W,y) —1= Z? Wz, tp1) (W (tp1, tp) — 1]

= 20 W, ) — Wy, y).

The following theorem is a corollary result of a somewhat different nature,
which includes the observation that if {e, u} is in &* and either « or u is sym-
metric, then so is the other.

TaeoreM 3.4. Suppose that b > 0 and J is a function from N to N such
that J(1) = 1 and, for all X, Y, and Z in N,

JX+7Y)=JX)+J(Y), JXY)=J(T)JX),
and \J(Z)|=b|Z]|.

If J11s the function to which {g, h} belongs only in case each of g and h is a func-
ton from S X Sto N and h(z, y) = J(g(y, x)) for all {z, y} in S X S, then
J1 commutes with &, viz., if {V, W} s in &, then {J,(V), J1(W)} s in &.

4. The homogeneous integral equations

Let 0® denote the set of all functions ¢ from S to NV such that d¢ belongs to
0@. If Fis a function from S to N and V is a function from S X Sto N (or
each is a function to the set of real numbers), the statement that

Z = (L) f:F-V

means that {a, b} isin S X Sand Z = ,)_ *h, where h is the function defined
by
h(z,y) = F@)V(z,y) for each {z, y} in S X 8.

b
Similarly, (R) f V@ = JSh for h defined by h(z, y) = V(z, )G (),

and (L, R) fb FV-G =S hitorh(z,y) = F@@)V(, y)C).

If W is a function from S X S and e is in S, then W ( , e¢) denotes the func-
tion consisting of all ordered pairs of the form {x, W (z, ¢)} for « in S, and
W (e, ) denotes the function consisting of all ordered pairs of the form



156 J. 8. MAC NERNEY

{z, W(e, 2)} for x in 8. The following type of notation is also used when
convenient:

(LY F-V = 20 Flpr) V(tp, tn) fort = {t,}s .
LEmma 4.1 (Integration-b%r-parts). If each of F and @ is a function from
b
S to N and either of (L) f F-dG and (R) f dF -G exusts, then the other

exists, and
(L) [bF~dG — F(a) dG(a, b) = dF(a, b)G(b) — (R) fb dF -G.

LemMa 4.2. If a is in OGQ™T, then, for each {x, y} in S X S, the integral
Y
(L) f a(zx, )-aexists and is

LUB. ()X a(, ) -« for all O-subdivisions t of {x, y}.
LemMa 4.3.  If each of F and G is in O® and o is a member of OQ" such that
b
|dF | £ aand |dG | £ a, then, for each {a, b} in S X 8, (L) f F-dG exists

and—if e is a member of S such that {e, a, b} is an O-subdivision of {e, b}—

’ (L) f: F-dG@ — F(a) dG(a,b) | = (L) fab ale, )-a — ale, a)ala, b).

Indication of proof. 1If {e, , y} is an ©-subdivision of {e, ¥} and {{,}¢ is an
O-subdivision of {z, y}, then

|(L) 2 F-dG — F(x) dG(z, y)| = | 221 dF (@, tp) dG (tp , 1)
< Sla@tp)alpr, ) = (L) XDiale, )-a — ale, ¢)al(z, y).

Hence, if {e, a, b} is an O-subdivision of {e¢, b} and s is an O-subdivision of
{a, b} and ¢t is a refinement of s, then

|(L) X FdG — @)D F-dG | £ (L) 2iale, )ra— (L) D sale ) o

Lemma 4.4 (Integration-by-substitution). If {a, b} isin S X S and V is
a member of OQ, each of F and G is in 0®, and Fy and Gy are members of O®
such that

v Yy
dFy(z,y) = (L)f F-V and d@i(z,y) = (R)f V-G
for each ©-subdivision {a, x, y, b} of {a, b}, then

(R) f:dFl-G - (I, R) f:F-V-G - (L) f:F-dGl.

4 Obviously a more general lemma involving two functions, as well as one involving
R-integrals, could be stated; we desist, since the sequel does not require it.
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Indication of proof. Let o be a member of ©@" such that | V| < « and

|dF | £ aand |dG | = o, C = |F(a)| + ala, b) + |G ()|, and let ¢ be an
O-subdivision of {a, b} ; we have these estimates:

| (R) X dF:-G — (IL,R) X F-V-Q|
<{w) [ ata ya— (@) Tiata, a0

[ (L,R) > F-V-G — (L) > F-dG, |
={@) [ ata )= (1) Teate, )-ap
TumoreM 4.1. If e is in S and {V, W} belongs to & and U is a function

from 8 to N, the following statements are equivalent:
(1) U 7s a member of O® such that, for each z in S,

Uz) = Ule) + (L) f U-v.
i) U@ = U()W(e,2) foreachzin S.

Indication of proof. From Corollaries 3.2 and 3.3, (ii) implies (i), and
for each {a, b} in 8 X S we have

b
Wiab) =1+ (R) [ V-W(,b).
Supposing (i) to be true and z to be a member of S, we have
Y Y
aU(s,y) = (1) [ UV and W, 2) = Wie,2) = —=(®) [ V-W(,2)

for each {z, y} in S X S such that {e, x, y, 2} is an O-subdivision of {e, #};
hence, by Lemmas 4.1 and 4.4,

U(z) — U(e)W(e, 2)

— (L) /U aw( ,2) + (R) [:dU-W( )

- @R [ UVW(C,)+ @R [ UV,
TaroreM 4.2. Ifeisin S and {V, W} belongs to & and U is a function from

S to N, the following statements are equivalent:
(1) U s a member of O® such that, for each z in S,

Ulz) = U(e) + (R) f:V-U.
() U@) = W(z,e)U(e) foreachzin S.
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Indication of proof. From Corollaries 3.2 and 3.3, (ii) implies (i), and
for each {a, b} in S X S we have

b
W(a,b) = 1 + (L)f W(a, )-V.
Supposing (i) to be true and z to be a member of S, we have
y y
dU(z,y) = —(R)f V-U and W(z,y) — W(zx) = (L)[ W, )V

for each {z, y} in S X S such that {z, x, y, €} is an O-subdivision of {z, €} ; now
apply Lemmas 4.1 and 4.4 to W (2, ¢) U (¢) — U (2) along the lines indicated
in the preceding argument.

TueoreEM 4.3. If V isin 0Q and W s a function from S X S to N, each of
the following is a necessary and sufficient condition for W to be the member
&(V) of o:

1) Ifi{a, b} isin 8 X 8, then W (a, ) is in 0®, and

W(a,b) = 1 + (L) fb W(a, )-V.
(i) If{a, b} istn 8 X 8, then W( ,b) is in O®, and
W(a,b) = 1 + (R) fbV~W( b).

5. The nonhomogeneous equations

We treat the nonhomogeneous versions of Theorems 4.1 and 4.2 by con-
sidering the (appropriately normed) rings N’ and N” of 2-by-2 matrices
with respective forms

(if %) and (f)( Z) (X, Y, and Z in N),

the corresponding function-classes 0@/, O3', OQR”, and OIM”, and the corre-
sponding mappings & and &”.
If each of V and K belongs to 0@, then it is easy, by using Theorem 4.3,

to see that
g vV 0\ _(wW 0
K 0) \G 1)’
where W = &(V) and for each {a, b} in S X S

Gab) = (1) [ 6 )V + Kab) = (®) [ KW, b);

moreover, it is similarly easy to see that

e (V K\ _(W H
o o) \o 1)
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where W = & (V) and for each {a, b} in 8 X S
b b
H(a,b) = (L) [ W(a, )-K = (R) [ V-H(,b) + K(a, b).

With the theorems of Section 4, these two observations lead respectively to
the following two theorems.

Tueorem 5.1. Ifesin S and each of V and K isin OQ@ and W = &(V) and
U s a function from S to N, then the following statements are equivalent:
(1) U is a member of O® such that, for each z in S,

Us) = Ule) + (L) f UV + Ko, 2).

(ii) m@=U@WQ@+anKW@@ijmm&

TueoreM 5.2. Ifedsin S and each of V and K isin 0Q and W = §(V) and
U s a function from S to N, then the following statements are equivalent:
@A) U s a member of O® such that, for each z in S,

Uz) = Ue) + (R) /:V-U + K3 o).

(i) U(z) = W(z,e)U(e) + (L) fe W(z, )-K for each z in S.

We state two immediate corollaries which, in effect, complete the analysis
of the mappings & and &” in terms of &.

CoroLLARY 5.1. If each of Vi, V., and K is in OGQ, then
¢ Vi 0\ _(W. O
K Vv, \G@ wy)’
where Wy = &§(Vy), Wo = &(Vs), and for each {a, b} in S X S
b
Ga,b) = (L R) [ Wila, )-K-Wa( ,b).
CoROLLARY 5.2. If each of Vi, Vs, and K is in OQ, then
8// Vl K — Wl H
0 V. 0o Wy’
where Wy = &(V1), Wy = &(V3), and for each {a,b} in S X S

wa=mmfwmmeuw
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6. The Peano series
TeeoREM 6.1. If Visin 0Q and W = &(V), then

W (2, y) = 2 5-0Gp(z, y) for each {z, y} in 8 X S,
where

O Gy =1, Gay = 0) [ Gl )V E=1,2"),

(ii) for each {z, b} in S X 8 the convergence is uniform over the set of all y
such that {z, y, b} is an O-subdivision of {x, b}.

THEOREM 6.2. If Visin 0Q and W = &(V), then

W(xa y) = Z:=0 Hp(xy y) f07‘ each {1}, y} n S X 87
where

O M@y =1, By = ® [ VHAG) 6=12),

and
(ii) for each {a, y} in S X 8 the convergence is uniform over the set of all x
such that {a, z, y} is an O-subdivision of {a, y}.

Indication of proofs. Supposing that W = &(V), and that the infinite
sequences G and H are defined as indicated, we use results from Sections 4
and 5 to justify the following computations:

W(w’ y) - ZZ=0 Gp(w, y)

=@ [ (W) = 26, )}V + Gunle,w)

= ® [ de, )W, w) = @R [ Gala, ) VW, )5
Wz, y) — 250 Halw, y)

® [ VAW, ) = X0+ Hae, v)

= =@ [ W )it ) = WR) [ W) VoH ).

Now let {e, u} be a member of & such that |V| < a, let g and % be infinite
sequences obtained from « just as G and H are obtained from V, and let
{a, b} be a member of S X 8. Considering {z, y} such that {a, z, y, b} is an
O-subdivision of {a, b}, we have

Wow) = 3 0505 0) = (LR [ gala, el ,9) 2 0, and

W y) = X oo ) = (LR) [ ue )l ,9) 2 0;
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thus we see that g and & have the limit 0; the following estimates are estab-
lished inductively (under the same hypotheses):

|Gulz,y) | < gz, y) S gu(2,b), | Halz,y) | £ halz, y) £ hala, ),

l W(.’E, y) - i G:p(x, y) l = (R) /u dgn+1(x, )l“( ) y) = gn—l-l(xy b)l/'(xy b)’

z

n Y
| W (z, y) — };_‘,Hp(x, Y| = —(L)f w(@, ) dhata( ,y) = pla, Phaala, y).
The various assertions of the two theorems now follow.

7. The fully multiplicative case

In Corollary 3.1 we characterized those members { V, W} of & such that V is
fully additive. In this section we characterize those members {V, W} of &
such that W is fully multiplicative:

W, YWy, 2z) = Wi, z2) for all z, y, and 2z in S;

since W (z, ) = 1 for each W in 09 and z in S, the condition that the mem-
ber W of 09 be fully multiplicative is equivalent to the requirement that

Wz, y)W(y,z) = 1forall {z, y} in S X S. In connection with Corollary
3.2, we record the following fact:

TraeoreM 7.1. If W s a fully multiplicative function from S X S to N,
then in order that W belong to ONT 1t s necessary and sufficient that, for each e in
S, W (e, e) = 1 and each of W( , e) and W (e, ) belong to 0®.

TaEoREM 7.2. If {V, W} is in & and h is a function such that
hiz,y) = [1 + V@, Il + V({y,x)] —1  foreach {z, y} in 8 X S,

then the following statements are equivalent:
1) W, y)Wy,z) =1 foralliz,y}in S X 8.

2 20|k =0 forall{x,y}inS X S.

Indication of proof. Let {a, u} be a member of & such that |V|
Since for each {z, ¥} in 8 X 8

hz,y) =1+ Vg, Il + V(y,z) — W(y, 2)]
+ 04+ V@y — Wk yIWy,2) + W, yWy, ) — 1],

it follows from Theorem 3.1 that, if (1) is true, for each {z, y} in S X S and
each ©-subdivision {¢,}¢ of {z, v},

Zt \ h | = w(z, y) { Z? [u(tnyip s tap) — 1] — a(y, x)}

+ {Zt [”' - 1] - oz(a:, y)}”(y7 x)?
so that, by Theorem 2.2, (2) is true. On the other hand, for each {z, y} in

IIA
R
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S X 8 and each O-subdivision {¢,}¢ of {z, v},
TI 0+ Ve, ) TIR I+ Vi, tar)] — 1
= 2P0 + Ve, )1 TTn (L4 Vi s tar)]
=TI 1+ Ve, t]- Tlnop [1 4 V tagar, o)1}
= 2L I+ Ve, t) ko s ) { T v0 0 (1 + Vtasacs, tan)1},
whence we have
ITL: 0+ VI TR 1+ Vasars tar)] — 1| S wlz, 9)u(y, ) 2oe b l;

therefore (2) implies (1).
A combination of Corollary 3.1 and Theorem 7.2 yields the following result.

TueoreEM 7.3. If ¢ is in O® and W = &(d¢), then the following statements
are equivalent:

1) We,y)Wy,z) =1 foralf{z,y}in S X S.
2) 2.Y|dé)| =0 foral {z,y}in S X 8.

b
The statement that Z = (M) f F-d@G means that each of F and G is a

function from S to N (or each is a function from S to the set of real numbers)
and {a, b} isin 8 X S and 2Z = ,2_"h, where h is the function defined by

hiz,y) = [F(x) + FWIG(@E) — G(x)] for each {z, y} in S X 8.
b
Similarly, Z = (M) f dG-H means that 2Z = ,)_"h for h defined by

b
hiz,y) = [Gly) — G@)|H (x) + H(y)], while Z = (M) f F-dG-H means
that 4Z = .. h for h defined by
h(z,y) = [F(x) + FWIGW) — G@)IH ) + H(y)l.
To utilize this mean integral concept, we assume for the remainder of this

section that the ring N does not have characteristic 2, viz., that if Z is in N
and 2Z = 0, then Z = 0.

b b
Remark 1. If either of (M) f F-dG and (M) f dF -G exists, then the
other exists, and
b b
o) [ Fedg + (M) [ dF-@ = FOG®) — Fa)6(a).

Remark 2. If each of F and G belongs to O® and {z, y} is in S X S and
22 dF-dG = 0, then

(M) f:F-dG — (1) f:F~dG.
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THEOREM 7.4. If e is a member of S, each of ¢ and F belongs to
o®, .2.° | [de]* | = O for each x in S, and W = &(de), then the following two
statements are equivalent:

i) F) = F) + (M) le?“dqb for each x in S;

(i) F(x) = F(e)W(e,z) foreachzxin S;
moreover, the following two statements are also equivalent:

(i) F(z) = F(e) + (M) fe de-F for each x in S;
iv) F(z) = W(x,e)F(e) foreach xin S.

Indication of proof. To see that (ii) implies (i), note that if {¢,}¢ is an
O-subdivision of {a, b}, then

21 Wa, t,) — W(a, tr)lid(tn) — ()]
= 2T W(a, tp1)[de (tps , 1)
+ 2 W(a, tp) W (tpr, t) — 1 — dé(tpr, )] db (b1, 1),
from which it follows, by Theorems 4.1 and 3.3, that

W(a,) =1+ (L) [ Wa, )-ds =1+ QD) [ W(a, )-des

the implication of (iii) by (iv) is a consequence of Theorems 4.2 and 3.3 by
a similar line of reasoning. Regarding the converse implications, suppose,
for example, that (i) is true. For z in S we carry out the following computa-
tions:

2 (z) = 2F(e) + (1) [ Fedo + (B) [ Fedgs
2(1) f aF-Ww( ) = (1, 1) ij-d¢~W( o) + (R, L) f:F~d¢.~W( )
= (L R) [[FdeW(,0) + ®R) [ 7 W(,2)
= 2(®) [ arw(,2);
2(R) [ aFW(,2) = —(L) [ FawC, o) = @) [ Faw(,o
= 2F(e)W(e, ) — 2F(2) + (R) f dF-W( ,z) + (L) f dF-W( ,x);

2F ()W (e, ) — 2F(z) = (R) f ar-w( ,z) — (L) f aF-W( ,z);

(ii) follows, since N does not have characteristic 2. Implication of (iv) by
(iii) follows from entirely analogous computation.
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In the final theorem of this section, we will find convenient the hypothesis
that the ring N is torsion-free, i.e., that if Z is in N and » is a positive integer
and nZ = 0, then Z = 0.

THEOREM 7.5. If ¢ isin OB and W = &(d¢) and, for each {z, y} in S X S,

o (@) (y) = o(y)d (@) and W (z, y) W (y, z) = 1, and the ring N 1is torsion-free,
then

Wz, y) = Exp{o@y) — ¢ (@)} for all {z, y} in S X 8.

Indication of proof. With reference to the infinite sequence G indicated in
Theorem 6.1, it is sufficient to show that for each {z, y} in S X S,

)Gz, y) = ldo(x, y)1° forp=1,2,---.

Note that G; = do, let {z, y} bein 8 X S, and let F = d¢(z, ). Suppose
that p is a positive integer such that, for each z in S,

n)Gr(z,2) = F(2)" forn=1,---,p;

the following three steps are justified, respectively, by Lemma 4.1, by Theorem
7.3 and the special hypotheses concerning ¢, and by the inductive hypothesis
together with Lemma 4.4:

(L) fy FP.dF = F(y)"™" — (R) fy dF®-F
= F)™ — () [ Fap

= P~ p () [ Far;
hence we have
Fiy)™ = (p + 1)-(L) f: F*-dF = (p + 1)(phH) (L) f:Gp(x, )-de.

Remark. By Theorem 3.3, if {V, W} is in &, then the condition that V
have (multiplicatively) commuting values is equivalent to the condition that
W have the same property; thus we see that, with N torsion-free, Theorem
7.5 provides a complete characterizatton of the fully multiplicative members
W of 091 such that W has commuting values and satisfies the conditions of
Corollary 3.1.

8. Canonically ordered semigroups

A canonically ordered semigroup is an ordered pair {S, ¢} such that S is a
nondegenerate set and ¢ is a function from S X S to S with the following
properties:

(1) The subset of S X S, to which {z, 2} belongs only in case there is a
member y of S such that o(z, y) = #, is a linear ordering of S, viz.,



INTEGRAL EQUATIONS AND SEMIGROUPS 165

(1) ifzisin Sand {a, b} isin S X S, then there is a member ¢ of S such
that o (o (2, @), b) = o(x,c),
Gi) ifo(o(z,a),b) =z, then o(z, a) = z, and
(iii) if {z, y} is in S X 8, then there is a member {a, b} of S X S such
that o(z,a) = yoro(y, b) = .
(2) Ifzisin Sand{a, b} isin § X S, then ¢(a, b) is the only member ¢
of 8 such that o(o(z, a), b) = o(z, ¢).

Suppose, now, that {S, ¢} is a canonically ordered semigroup and that
O is the linear ordering of S determined by o, i.e., © is the subset of S X S
to which {z, 2} belongs only in case there is a member y of S such that
o(x,y) =z

TaroreM 8.1. The requirement that
oz, 8(x,2)) = 2 Sor each {x, 2} in O

defines a function § from O to S with the following properties:
(1) Ifzisin S and {a, b} isin S X 8, then {o(z, a), o(z, b)} belongs to
O only in case {a, b} belongs to O, and in this case

8(o(z,a), o(x, b)) = d(a, b).
(2) If each of {z, y} and {y, 2} is in O, then
a8z, y),8(y,2) = 8(x, 2).
Indication of proof. Suppose zisin S and {a, ¢} isin 8 X Sand o(z, a) =
o(x, ¢); let b be a member of S such that o(a, b) = a; then
o(z,¢) = a(x,a) = oz, 0(a, b)) = (o(z, a), d),

so ¢ = o(a, b). Thus, the stated requirement does define § to be a function on
O to S; the asserted properties of § follow from similarly simple arguments.

TuaroreM 8.2. There s a member e of S such that, for each x in S, o (e, ) =
oz, e) = x.

Proof. Suppose 2z is in S and y is a member of S such that {y, 6(z, 2)} is
in ©; then, by Theorem 8.1(1), {c (2, ¥), 2} isin O; but {2, o (2, ¥)} is also in 0,
so that o (2, y) = 2z, and, therefore, y = §(z, 2). Hence, if z is in S, then
8 (z, 2) is a member e of S such that {e, x} is in O for each z in S; ¢ is therefore
independent of 2, and ¢(z, ¢) = z for each z in S. If z is in S, then, since
x = 8z, o(x, z)), it follows from Theorem 8.1(2) that

ale, x) = 0'(5(.’13, w)a 8 (x, O'(x, x))) = §(z, o(x, x)) = .

The following theorem follows almost immediately from 8.1 and 8.2, and
provides means for applying the results from earlier sections to this specialized
setting (as in the next section).
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TueoreEM 8.3. If {z, y} is a member of O, then

(1) if {sp}o ts an O-subdivision of {e, 8 (x, )}, then {o(, sp)}o s an O-sub-
diviston t of {x, y} such that §(tp_1, tp) = 8(sp_1,8p) forp =1, -+, n, and—
conversely—

(2) if {ts}o s an O-subdivision of {x, y}, then {8(x, tp)}c s that O-sub-
division s of {e, 6(x, y)} such that t = {o(, sp)}c-

Remark 1. There exists a set S and two functions ¢; and o3 from S X S
to S such that all the following are true:
(1) {S, o} and {8, oo} are canonically ordered semigroups,
(ii) oy is symmetric and o, is not symmetric, and
(iii) the linear ordering of S determined by oy is the linear ordering of S
determined by o .
For example, let S be the set to which x belongs only in case z is a complex
number and either Re z = 0 and Im z = 0 or Re z > 0; for each {z, y} in
S X 8, let

a(x,y) =z+y and o(z,y) =2+ (1 4+ Rex)y.

Remark 2. If, in the preceding example, S, is the subset of S to which z
belongs only in case there is an ordered pair {m, n} of nonnegative integers
such that Rez = 2™ — 1 and 2" (Im z) is an integer, and o, is the contraction
of oo to 8: X S., {8., oo is a canonically ordered noncommutative semi-
group, and there exists an order-preserving mapping from S, into the set of
nonnegative rational numbers.

9. Representations of semigroups

In this section we suppose {8, s} is a canonically ordered semigroup, O is
the linear ordering of S determined by ¢, 6 is the function from © to S de-
termined as in Theorem 8.1, and ¢ is the member of S determined as in Theo-
rem 8.2. A function f, from S to any ring, is ¢-additive provided that
fle(x, ¥)) = f(x) + f(y) for all {x, y} in S X 8, and is o-multiplicative
provided that f(o(z, ¥)) = f(x)f(y) for all {z, y} in S X S. We note that

(i) if fis o-additive on S, then there is an 0-additive V on S X S such
that V(z, y) is f(6(z, ¥)) or 0 according as {z, y} is in O or not, and

(i1) if u is o-multiplicative on S, there is an ©-multiplicative W on 8 X S
such that W (x, y) is u (8 (z, y)) or u(e) according as {z, y} is in O or not.

Let @, denote the set of all s-additive functions F from S to N such that,
if z is in S, there is a number b such that, if {s,}¢ is an ©-subdivision of {e, z},
then D .| F(3) | = D27 | F(8(sp1, sp)) | < b. Let M, denote the set of
all o-multiplicative functions U from S to N such that, if z is in S, there is a
number b such that, if {s,}¢ is an ©-subdivision of {e, z}, then®

SAUG) — 1= X8| U@G(p,8)) — 1] < b.

5 Observe that U(e) = 1 since (e, ) = e; see footnote 2.
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Now, all the following results are direct applications of the corresponding
results from Sections 2 through 7. Supporting proofs, which we omit, are
readily constructed by use of Theorem 8.3, with the observations in the first
paragraph of this section.

TaEOREM 9.1. There is a reversible function &F, from the class GF of all
a-additive functions from S to the set of nonnegative real numbers, onto the class
ML of all o-multiplicative functions from S to the set of real numbers not less
than 1, such that each of the following is a necessary and sufficient condition for
the member {f, u} of GF X 9MF to belong to &F:

1) u@) = JI°IL + )] for each x in 8.

Q) f@) = 2. () — 1] for each z in S.

3) wu(z) =1+ (L)f u-df for each x in S.

TaeoreM 9.2. If F is a o-additive function from S to N and U is a o-mul-
teplicative function from S to N, then

(1) F belongs to G, only in case there exists a member f of QF such that
| F(x) | = f(x) for each x in S.

(2) U belongs to M, only in case there exists a member u of IS such that
|U@) — 1| = u(z) — 1 for each xz in S.

TueoreMm 9.3. There is a reversible function &, , from @, onto M, , such
that each of the following is a necessary and sufficient condition for the member
{F, U} of @ X M, to belong to &, :

(1) U) = JIF[L + F®G)] for each z in 8.

(2) F(z) = .2 [U®) — 1] for each x in S.
(38) There is a member {f, u} of & such that
| U@) — 1 —F(@)| =u@) —1—f(@) foreachzin S.

4) Ux) =1+ (L) fx U-dF  for each x in S.

TueoreM 9.4. If F belongs to @, and o is symmetric, then
F@)F(@y) = Fly)F(x) forall{z,y}in S X S.

TueoreM 9.5. If {F, U} belongs to &, , then U has the convergent series ex-
panston
U) = 2 5 o0K,(x) for all & in S,
where

@) Ko@) =1, K,() = (L) f Kpv-dF (p=1,2, ), and

(ii) for each b in S the convergence is uniform over the set of all & in S such
that {z, b} belongs to ©.
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TaroreM 9.6. If{F, U} isin & and W = &(dF), then, for each {z, y} in O,
W, y) =W, y) = UGk y) and Wy, z) = WE@, y),e);

moreover, the following two statements are equivalent:
1) WE,e)UR) = UR)W(z,e) =1 foreachzin S.

2) D F@®)| =0 foreachzin 8.

TeEOREM 9.7 (The Exponential Case). If the ring N s torsion-free and
{F, U} 1s a member of &, such that

(1) F@)F(y) = Fly)F(x) for each {z, y} in S X 8, and

©2) D \FO®)| =0 foreachzin 8,
then
U(z) = Exp {F(2)} for each z in S.

Remark 1. In case N is an algebra over the real numbers, {8, s} is the
additive semigroup of nonnegative real numbers, and A is a member of N
such that F(z) = 24 for each z in S, Theorem 9.7 is contained in the Hille-
Phillips [3] representation theorem for a ‘‘semigroup U with bounded in-
finitesimal generator A.”

Remark 2. By analogy with terminology in ordinary differential equa-
tions, the analysis in this section is the “constant coefficient case’ of the pre-
ceding theory—at least in case ¢ is symmetric.

Remark 3. The analysis in this section can be phrased in terms of the
semigroup of translations of S of the form ¢ (x, ), and in this aspect is a study
of those members {V, W} of & such that V is fully additive and invariant
under these translations:

Vie(z, a), o(x, b)) = V(a, b) for all z, @, and b in S.

10. Development on the real line

In this section we suppose that S is the real line and © is the usual order-
ing of S, i.e., {x, 2} belongs to O only in case x < z. We recognize O® as
the class of functions ¢ from S to N such that, on each interval, ¢ is of bounded
variation with respect to the norm on the ring N. We let 0®, denote the
set of all ¢ in O® such that, if  is in S, then d¢ (z—, 2)* = dop (z, 2+)* = 0,
and we let 0®¢ denote the set of all continuous members of O®.°

Let 3C be the class of all fully multiplicative functions W from S X S to N
such that, if z is in S, then W (x, ) = 1 and each of W( , z) and W(z, )
isin 0®. By Theorem 7.1, we recognize 3C as the class of fully multiplicative
members of 0. We let 3¢, denote the set of all W in 3C such that, if z is

6 In case there is a nonzero member Z of N such that Z2 = 0, the class O®q properly
includes O®c¢ -
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in S, then
W@—,z) + W(,z—) = W+, 2) + W, 2+) = 2,

and we let 3¢, denote the set of all W in 3C such that if z is in S then each
of W( ,z) and W(z, ) is continuous.

By Theorem 3.2 of [5], the requirement that the member ¢ of O® belong to
O®q implies condition (2) of Theorem 7.3, and the requirement that the
member W of 3¢ belong to 3¢, implies condition (3) of Corollary 3.1; the con-
verse implications are easily established. It follows that 3Cq is precisely the
set of all W of the form &(d¢) for ¢ in OBg. It follows from Theorem 3.3
that 3Cc is precisely the set of all W of the form &(d¢) for ¢ in 0B.. We
now give a brief history of these ideas.

For the case that N is a finite-dimensional matrix algebra over the real or
complex numbers, H. S. Wall [9], [10] has obtained the following results,
using ordinary Stieltjes integrals throughout. For ¢ in 0®¢ and V = d¢,
the equations in Theorem 4.3 are found to be equivalent and have a unique
solution W in 3¢, the solution being provided by the series in Theorem 6.2,
and providing solutions of nonhomogeneous equations as given here in
Theorem 5.2. The set of all solutions W for ¢ in O®¢ fills up 3Cc¢, and the ¢
is recovered from the W by the formula

s0) — a(a) = [ WC,n-awer, ),

which is independent of r and is the first version of formula (ii) in Theorem
3.3 of the present paper. There were some extensions to the case of the
normed algebra of continuous linear transformations in a Hilbert space.
Important applications were made to continuous continued fractions and
related nonlinear equations (complemented by the present author [4], [5],
and extended by Neuberger [8]).

Extension of Wall’s theory, to the case that N is the normed algebra of
continuous linear transformations in a complete normed linear space, was
carried out in [4], There, the formula (i) of Theorem 3.3 was obtained for
¢ in O®¢and V = d¢, and solutions were found to the nonhomogeneous equa-
tions as given in Theorems 5.1 and 5.2, with discontinuities allowed for the K.

For the same algebra N, extension of all the preceding was made [5], [6]—
using Stieltjes-mean integrals—to the fully multiplicative case as summarized
in Theorem 7.4, thus relaxing the continuity conditions theretofore imposed.
The classes 9®¢ and 3¢, were found to correspond under the mapping W =
&(d¢). Those results are all included in the present treatment.

Further relaxation of continuity requirements was effected by T. H. Hilde-
brandt [2], using a version of the Lebesgue-Stieltjes integral suggested by
W. H. Young [11] (also, Hildebrandt [1]). The solution space for the homo-
geneous equations was found to be the whole class 3¢. The analysis of Hilde-
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brandt’s results with respect to the present treatment needs clarification,
which we now provide.

b
Using the notation (Y) [ to denote the integral, with the convention

a b
(Y) f = —(Y) [ as used by Hildebrandt, we first note certain estimates;
b a

these can be obtained as corollary results to the existence, but can also be
obtained by examination of relevant sums—thus netting an existence theorem
as in Lemma 4.3. This lemma also leads directly to formulas for integration-
by-parts and integration-by-substitution.

Lemma 10.1.  If each of F and G is in O®, a is a member of OQ" such that
|dF | £ aand |dG | £ o, and 2 < y < z, then each of

(Y) f F-dG — {F(z) dG(x, v+) + F(y) dd(z+, 2—) + F(2) dG(z—, 2)}
and
(Y) f: dF -G — {dF(x, z4)G(2) + dF(z+, z—)G(y) + dF (z—, 2)G(z)}

has norm not exceeding o (x4, z—)>.

We distinguish, with Hildebrandt, two subsets of 0® as follows: the mem-
ber ¢ of O® belongs to O®; only in case each of [1 — do(2—, 2)]™" and
[1 — dé(z+, 2)]" is in N for each z in S, and belongs to O®, only in case
each of [1 — dp(z, 2—)]" and [1 — d¢(z, 2+)]"" is in N for each z in S.
For ¢ in the appropriate subclass of O®, we define certain functions from
S X S to N as follows:

e, 5) = {[1 + do (z, z+)1 + do (x4, z—)[L — dp(e—, 2)]" ifz < 2,
1+ do(x, 2—)[l + dp(x—, )]l — do(e+,2)]" ifx > 2;
Cater 3) — {[1 — dp (2, 2L + do e+, z—)]IL + do (z—, 2)] ifz < 2,
(1 — do(z, 2—)]7[1 + dé(z—, zH)[L + do(a+, 2)] if 2 > a5
Dy ) {1 +do(x, 2) + [1 — do(z—, 2) ] do(z—, 2)° if z < 2,
1+ do(x,2) + [1 — dp(e+, 2)] " do(e+, 2)° ifz > 2
Do, o) — {1 + do (2, 24) 1 — do (2, 24)] " + do (2, @) if z < x,
1+ de(z, 2—)1 — do(z, 2—)]" + do (2, ) if 2 > x;

Cl(x, x) = Dl(xa x) = 17 Vl(xy Z) = zzz [Dl - 1],
Co(z, z) = Dy(z, z) = 1, Valz, ) = ,0.° [D2 — 1].
For ¢ in 0®, , Hildebrandt finds the solution U of the equation
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U(2) = U(e) + (V) [ U-do for all z in S
in the form U (z) = U (e) {CII’ C’l}, and (for ¢ in 0®;) the solution of
U(z) = U(e) + (Y) f de-U forall zin S

in the form U(z) = {J]* C:}Ue).
Straightforward (but somewhat tedious) computation leads to the follow-
ing three lemmas.

LemMma 10.2. If ¢ 4s in O®y, then Vyis in OQ, &(V,) is in 3C, and, for each
{z, 2 in S X 8, JI'[1 + V1] = JI* D1 = JI* C1; if ¢ is in 0Gs, then Vs
in 0@, &(Vy) isin 3¢, and, for each {z,z} in S X S, JI°[1 + Vi) = JI*D: =

JI° s

LemMma 10.3. Ifedsin S, ¢ isin 0@, U 7s in 0B, and

either U(z) = U(e) + (Y) fz U-de for all zin S

or U(z) = U(e) + (L) fz U-v for all z in S,

then U(z) = U(z—)[1 — dp(z—, &) = Ue+)[1 — do(e+, 2)]™" for all 2.
LEmma 104. Ifedsin S, ¢ isin O®:, U is in 0®, and

either U(z) = U(e) + (Y) f de-U for all zin S

or U(z) = U(e) + (R) fe Ve U forall zin S,

then U() = [1 — do(z, 2—)'U(e—=) = [1 — do (2, 2++)]7U (z+) for all 2.

Application of these lemmas leads to two theorems which, with Theorems
4.1 and 4.2, yield Hildebrandt’s principal results for the homogeneous equa-
tions. Corresponding results can then be obtained for the nonhomogeneous
cases by techniques which we have employed in Section 5; for example,
consideration of the matrices

(¢ 0 o (Il —d¢l™ 1 — del ™ dp
tI)—(O 0) and [1 — d&] -—( 0 1

leads to solutions U in O® of the system
U() = Ue) + (V) [ de-U +6(e) — 0(2)

for ¢ in O®; and 0 in OG®.
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TaroreM 10.1. Ifeisin S and U is in O®, then for ¢ in O®; the following
two statements are equivalent:

(1) U(z)

I

U(e) + (Y) fz U-d¢ forall zin S,

(2) U(z) = Ue) + (L) f U-Vi forallzinS;
whereas, for ¢ in O®, the following are equivalent:

(8) U = U + (V) [ dg-U Jorallzin 8,

(4) U(2)

f

Ue) + (R)f Va-U for all zin S.
TraeorEM 10.2. If W belongs to 3C, then the formulas

W [ WCn)-awt, ) = dantz, 2),

WO [ aw (0 W, ) = douta 2

yield (independently of r) a member ¢, of O®, and a member ¢; of OB, .

Remark. TUsing the integration-by-substitution theorem for the Y-in-
tegrals, this last theorem yields, for each W in 3¢, members ¢; of O®; and ¢,
of O®; such that

W(ab) = 1+ (Y) [ Wa )dor =1+ (V) [ dowW(,0)

for all {a, b} in S X 8. Thus one sees, as indicated earlier in this section,
that the solution space for these Y-integral systems is the whole class 3C.
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