A NOTE ON ABSTRACT (1/)-SPACES

BY
ANTHONY L. PERESSINI

The following result is a consequence of the theorem that is proved in this
note: KEvery Banach lattice with a strong order unit can be renormed so
that the resulting space is an abstract (M)-space with a unit element. As
will be seen from the proof, this rather unexpected result is a simple conse-
quence of several known theorems to be found in various places in [2], [3],
and [4].

A locally convex lattice E () is a vector lattice K over the real field equipped
with a Hausdorff locally convex topology & which has a generating family
{Da} aca Of semi-norms satisfying

1) If|z| = |y, then pa(x) £ pa(y) for all aeA.

A real vector lattice which is a Banach space whose norm satisfies (1) is
called a Banach lattice. An abstract (M)-space is a Banach lattice whose
norm also satisfies"

2) Ifzz06,y2z0 then [sup (x, y) [| = max {[|= |, [y}

A subset H of the positive cone K = {z e E: x = 6} in a vector lattice E is
an exhausting subset of K if for each x ¢ K there are an h ¢ H and a positive
number A such that £ = M. An element e ¢ K is called a strong order unit
if {e} is an exhausting subset of K. An element 4 ¢ K of a Banach lattice
E is called a unit element if ||u|| =1 and ||z | < 1 implies that z < u.
More information as well as further references concerning all of the notions
defined above, with the exception of that of (M)-space, can be found in [2]
and [3]; an account of the basic theory of (M)-spaces is given, for example,
in [1].

The properties of the order topology T, introduced independently by
Namioka’ [2] and Schaefer [3], will play a central role in the considerations
that follow. <, can be defined as the finest locally convex topology on the
vector lattice E for which each order interval

[—z,2] = {zeEB: —x £ 2 < x} (x eK)

is a topologically bounded set. Thus a neighborhood basis of the zero ele-
ment § is provided by the class of all convex cireled sets that absorb each
order interval in E. If E(T) is a locally convex lattice, and if {pa}aes is
a generating system of semi-norms for T satisfying (1), then each p, is
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1 g denotes the additive identity in E.
2 Namioka calls &, the ‘“‘order bound topology 3"’.
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clearly bounded on each order bounded set; hence T, is finer than T on E.
The following result, showing that T, actually coincides with the given topol-
ogy on a large class of locally convex lattices, appears in the unpublished
notes [4] but does not seem to be a part of the available literature.

Lemma. If E(Z) is a complete metrizable locally convex lattice, then T = T, .

Proof. We have already noted that &, is finer than ¥. On the other
hand, [2, 5.5 Corollary] shows that if £ (<) is a complete metrizable locally
convex lattice, then every positive linear form on F (<) is continuous. Con-
sequently the topological dual E’ of E(Z) is contained in Et = K* - K*
(where K™ denotes the cone of positive linear forms on E). The opposite
inclusion follows from [3, (1.3)]; hence E' = E*. Since E(Z,) also has
E™ as its topological dual, T and T, must both coincide with the Mackey
topology (E, E¥), E being bornological for T, and metrizable for T (see
[2, 4.10]).

We shall now prove our main result:

Tarorem. If E(X) is a metrizable complete locally convex lattice, then
E(Z) is the inductive limit of a family of linear subspaces that are abstract
(M) -spaces with unit elements. If, in addition, E contains a strong order unit,
then T can be generated by a norm for which E (Z) 1s an (M)-space with unit
element.

Proof. By the lemma preceding the theorem, the given topology on E
coincides with the order topology ¥,. Suppose that H is an exhausting sub-
set of K, and form the subspace E, = Linear Hull [—#A, h] for each h ¢ H.
I, is a lattice ideal in £ which is archimedean since the cone in E is closed.
Thus the Minkowski functional py of [—h, h]is anorm on E, which generates
the order topology T, on E, (see [3,4.1]). Moreover p; satisfies (2) for each
heH. Forif z, ye K nE;, = K;, then it is clear that

max{p: (@), pr(y)} = pu(sup(, y)).
On the other hand, z < pr(2)h, y £ pu(y)h since K, is closed, so that

sup (z, y) = max{pu(x), pa(y)}h.
Therefore

pr(sup (x, y)) = max{pi(x), pa(y)}

which completes the verification of (2) for pi. It is clear that h is a unit
element in E; . The first assertion of the theorem now follows from the fact
that T, (and hence ) has been shown to be the inductive limit topology
with respect to the family of subspaces {E.(Zo)}rn (see [3, 44]). If E
contains a strong order unit e, then E, = E, so that E equipped with the
norm p, is an (M) -space with unit element e.
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