
ON THE REGULARITY OF MARKOV PROCESSES

BY

:FRANK KNIGHT

Introduction

This study is concerned with continuous parameter Markov processes
having values in an arbitrary space. More specifically, we shall consider the
effect of stopping times on such processes. We first define these objects
following [1].

DEFINITION 1. Let X be a space, and let 6t be a -field of subsets of X.
Let X(t) be a stochastic process, defined either for >_- 0 or for < <
on a probability space (t, F, P), with X as state space and as measurable
field. Finally, let IF(t)} be a family of -subfields of F, defined for the same
range of asX(t), such that F(h) c F(t) for tl < t2. Then X(t) is a
Marlcov process relative to the family {F(t)} if (a) for each and E e 5,

{X(t) e E} e F(t),

and (b) for t < t2 and E e(,

P(IX(t) eE}I F(t)) P(IX(t) eE}[ X(t))

(a.s. abbreviates "almost surely" or "with P-measure 1").

DEFINITION 2. A random variable T on t with values in

u {t:X(t) is defined}

is a stopping time in the general sense for X(t) if P{ T < } > 0 and for each
one has {T < t} e F(t). A stopping time in the narrow sense is defined by

replacing {T < t} by/T -< t} in the above.

We note first that every stopping time in the narrow sense is also a stopping
time in the general sense. Henceforward, stopping time will be used to mean
stopping time in the general sense.
Along with any stopping time T for X(t) we consider the new probability

space derived from (It, F, P) by restriction to the set IT < }.

DEFINITION 3. Let Xr(t) be the process X(t) restricted to It n {T < },
with field composed of the sets S n T < }, S e F, and probability measure
P(S n T < )/PIT < for each such set. Let (2r, Fr, Pr) designate
this probability space, and let Tr be the restriction of T to tr. For brevity
we will omit the subscript in Tr.
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It is easily seen that Xr(t) is a Markov process relative to the fields Fr(t)
generated by sets S n T < }, S e F(t), and that T is a stopping time for
x(t).
The central regularity property to be considered is the strong Markov

property, which we next define. The definition refers to some specified set
of conditional probabilities P({X(t + tl) eE}] X(t)), tl > O,E e(, for the
process X(t), and to specified families of a-fields {Pr(t), 0 -<_ < } defining
for each stopping time T and _>- 0 the past of Xr(T t) up to time t. Given
these conditional probabilities and a-fields, the strong Markov property is
the requirement that for every stopping time T"

(i) the process Xr(T - t), 0 <- < , is again a Markov process on
(gtr, Fr, Pr), relative to the fields {Pr(t)},

(ii) given T and Xr(T) this process is independent of Pr(0), and
(iii) P({Xr(T -t- tl) e E}[ Xr(T) defines a conditional probability on

(tr, Fr, Pr) of {Xr(T z7 t) E} given Xr(T) for each gl > 0 and E e .
We shall assume at the start that the probabilities

P({X(t -- t) eE}[ X(t))

are produced by a transition probability function.
that for all t, tl and E,

This is defined to mean

(1.1) P({X(t -- t) eE}I X(t) p(t, X(t), -- h, E)

where p(h, x, t., E) is a probability measure on 6t for fixed (t, x, t.), and
a function jointly measurable in (t, x, t) over 6t X 6t X 6t (6t being the
field of real Borel sets) for fixed E. The fields Pr(t) are defined following
these introductory remarks.

It is well known that not every Markov process satisfies the requirements
of the strong Markov property [1]. Somewhat related to this difficulty is
the problem of "separability" for a process, which begins with the fact that
because of the inadequacy of joint distributions to define a process beyond
determination up to sets of probability zero for each t, various intuitively
meaningful functions of a process may fail to be measurable, or even to be
well defined. A third regularity requirement, referring to the case of processes
with transition probabilities stationary in time, is that of convergence of the
associated semigroups to the identity at 0.
The present paper provides, under certain restrictions, a kind of simul-

taneous resolution to these problems. Starting with a given process X(t) on
(2, F, P) a related process Y(t) is defined on the same space, such that Y(t)
is similar enough to X(t) to replace it for most purposes, but such that Y(t)
satisfies, in a sense to be made precise, the above three regularity requirements.
The process Y(t) is closely related to the processes defined in [7], and also
to those defined in some unpublished work of D. G. Austin. A main dif-
ference from [7], however, is that in [7] the starting point is a resolvent family,
while here it is a probability space (t, F, P) and process X(t). Thus, in
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the present paper, topologies on X and function space methods are largely
absent. For a given stopping time T, we first change the field generated
by T and Xr(T) sufficiently to yield automatic conditional independence of
the past and Xr(T t) relative to the changed field. This changed field,
called here an entrance boundary field, is generated by T together with an
infinitesimally small part of the future of Xr(t) after time T. Given
this new field, the transition probabilities of Xr(t) are expressed as limits
of those of X(t), using martingale convergence. The stopping time T is
seen to be a "Markov time" for Xr(t) (i. e., T meets the requirements (i),
(ii), and (iii) of the strong Markov property) if these transition probabilities
are a.s. the same as the given ones. In the other case, and when the transi-
tion probabilities are stationary in time and satisfies a mild restriction, the
process is redefined slightly with the result that for the new process and for
every stopping time these limits are a.s. the same as the conditional prob-
abilities defined for the new process. This redefined process is then a "strong
Markov process." It is also "separable" in the sense (different from that
of [2]) that its paths are determined by their values for a countable dense
set of times. Finally, the way in which the new process may replace the
original process is revealed in the fact that functionals whose definition does
not depend on countable sets of are naturally redefined on the new process,
and their distributions remain unchanged. We note that most functionals
can be defined in this way--for example, the value of a process at a fixed
time can ordinarily be defined as the limit of an integral average on the path
functions as the interval of integration decreases to zero.

Section

Commencing the exposition, we first introduce the following a-fields:

DEFINITION 4. Let H+(T) be the field of all sets S e Fr such that

Sn{T < c} Fr(c)

for all c. H+(T) may be termed the field of the past up to time T+. More-
over, let H(T) be the field consisting of all sets S e Fr such that

S n T <= c} e Fr(c)

for all c. Then H(T) is the field of the past up to time T. It is clear that
T is measurable over H+(T) and over H(T).

DEfINiTION 5. The process X(t) is a strong Markov process if for each
stopping time T it satisfies the requirements (i), (ii), and (iii) of the strong
Markov property, with Pr(t) H+(T -f- t). A process X(T) is a strong
Markov process in the narrow sense if for each stopping time T in the narrow
sense it satisfies (i), (ii), and (iii), with Pr(t) H T + t).

DEFINITION 6. Let L be the least a-field containing all sets of the form
{X(t) e E}, E 6t, all t. L may be termed the field generated by X(t). We
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denote by L(T) the restriction of L to 2r, i.e., the -field of sets S r for
SeL.

DEfINITiON 7. For each integer n > 0 and < m < we set

a(m, n) m2-.
For any stopping time T, let T(T) T be the stopping time defined by
T=(m,n) for(m- 1, n) <- T<a(m,n),- <m< . We denote
by Gn(T) the least -field containing the sets T e R} and/X(T) e E} for
1 >- n, E e (g, and R e , where t designates the real Borel sets. Finally,
let the entrance boundary field G+(T) be defined by G+(T) f’l ,+ G(T).

It is convenient to prove, at this point, that G+(T) H+(T). Let
G+S e (T). Then S T < c} ,:: S Tn < }, and it is sufficient to

prove that S T < c} e Fr(c). Since G+(T) G(T), this will certainly
hold if it holds for the sets S’ T e R} and S’ {X(T) e E}, k >- n, which
generate G(T). But T e R} T < c} e Fr(c) is immediate, while

{X(T)E} {T < c}

i3;:_+ ({T a(m,/)} n{X(a(m,k)) +E} n{T < c})

where , [2c] (the greatest integer -< 2c), and this is a union of sets
in Fr(c).
We shall now establish an extended form of the strong Markov property.

THEOREM 1. Let X(t) be a Marlcov process relative to a family of a-fields
F(t) and such that X (t) is measurable over 6{ x L as a fudction of (t, w)
(see ft. (1.1) and Definition 6). Then if T is any stopping time for X(t),
X( T -+- t) is measurable for each >- O, and for 0 < tl < < t ]c > O,
and E E e (g,

Pr (f’l: {Zr( T + t) eE,} H+(T)) P(,_ {X(T

-lim f f p( T W t_t,x_l,T-C t,E)

p(T "C t__, x_, T -+ t_, dx_)
p(T,X(T,), T + t,dx) a.s.,

where for 1 1 the last expression is to be replaced by

lim_++ p(T X( Tn), T + t E).

The proof of Theorem 1 will be carried out for the case 1 1 only, since
the other cases are proved analogously.

LEMMA 1.1. For each n > 0, > a(1, n), and E

Pr({Xr(T + t) eE}I H(Tn)) Pr({X,(T + t) eE}I Gn(T))
(1.2)

p(T, Xr(Tn), T + t, E) a.8.
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p(h, xl, t2, E) that for each assembly0 < tl < < t. and E1,
a.s. on the set

Pr(l" E/ H(T)= X,(t,:)

p,( X,(h) e E;} G, (T)
(1.3)

Since T is countably valued [1] it follows from the definition of
,Eje(B,

p( T,, Xr(Tn), h, dx),

where in the case j 1 the last expression becomes p(T,, Xr(T,), h, E).
We consider this case first, and set Sm= T, a(m, n) }. For S H(Tn) it
follows from the representation

S n S, S n {Tn <= oz(m, n)} n {ftr (S n {T, < a(m 1, n)})}

that S n S, e F(a(m, n) ). Therefore we have for a(m, n) < h

(1.4)

(P{T < })- fn p( T, Xr( T,), h, El) dP(w)

(P{T < })-P(S n S,,, n {Xr(h)

f p Tn, Z,(Tn), t, El) dRr(w)
flSm

Pr(S n S n {Xr(h) eE}).

For j 1, (1.3) follows from (1.4) by summing over [m:a(m, n) < h} and
noting that Gn(T) H(Tn). The situation for j > 1 is clearly analogous.
To derive the lemma from (1.3) it is necessary to replace the constant

time for j 1 by the random time T + t. We first remark that T q- is
measurable over H(Tn). To justify this replacement we reduce the problem
to one involving a product space. Let (ft, Fr, P) and (ft,, F, P) be
two identical replicas of (ftr, Fr, Pr). Letting primes indicate the replica
in which a point, set, z-field, or random variable is considered, we use (1.3)
to define a measure t on the space (ftr, X t,,, H’(T’) X L"(T")) such
that (S X S’) Pr(S n S) where S is the copy of S’ or S in ftr,
i 1,2. For sets of the form S ’={Xr(t) Ed and SIH(T) we
define

(S’ X S’’) Pr(S n S) Pr(St n Sn {tt -< T,})

(1.5) + fs f p(tj_ x_ t Ei)
1A{ Tn<tl} --I

p(ti_, x_:, tj_, dxi_) p(Tn, XT(T,), h, E) dPr(w).
This situation, and also the proof, closely resemble those of Lemmas 1, 2 of [9] (as

the referee has pointed out).
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For the remaining sets of H’(Try) X Lr( Tp) we define/ as the unique z-addi-
tive extension.
Along with the measure we introduce the set mapping M for which

M(S’I >< S’) S1 n S.. This mapping has a natural extension to
H’ T’, X L" T’ ). Indeed, let the diagonal of any set S H’ T’, X L" T
be defined as the set of all w e It such that (w’, w")e S. Then we define

(1.6) M(S) diagonal of S.

It is clear that M preserves set unions and differences. Let
F(H(Tn), L(T)) be the least z-field containing H(Tn) and L(T). It is
easily seen that the class of sets S for which M(S) F(H(Tn), L(T) con-
tains the ring of sets S’ >< S’ for S’ H’(Tr) and S’ L’(T"), and that it
is closed under monotone limits. It is thus equal to H’(T’,) >< L"(T").
Similarly, it follows from (1.5) that

(1.7) (S) PrM(S).

Now let t* > 0 be a real-valued random variable on H’(Tn) such that

{X’(T’ -+- t*) eE} eH’(T’n) >< L"(T"), for all E d.

The "section" of {X( T’ + t*) e E} in L" T’ at any point w’e gt for which
t* (w’) is clearly X T’n (w’) + t) e E}, and it follows from (1.5) and a
standard result for iterated integrals in product spaces that for S e H’(T’n)

({X(T’ -t- t*) eE} n(s’ x
(1.8) f, p(T’n Z’r(T:), T’ - t*,E) dP’r(w’),

the integrand being measurable over H’(T’n) [9, Lemma 2]. In particular,
let t* T’ T: -t- t. Then if {X(T’ + t) eE} eg’(T’) X L(T’),
it follows from (1.8), after applying the mapping M of (1.6), that for
SeH(Tn)

(1.9) Pr({Xr(T + t) eE} n S) f p(Tn,Xr(T), T - dPr(w),

which is equivalent to (1.2).
In order that {X(T’ - t) eE} eH’(T’n) X L"(T") it is sufficient that

X(t) be measurable over X L, as assumed in the theorem. For we then
have {(t’, w’)’X(t) eE} d’ X L(T), and since T’ - is measurable
from H’(T’n) to 6t it follows that

{(w’, w")’X’(T’ + t)eE} eH’(T’n) X L"(T").

The lemma is thereby proved.
To complete the proof of Theorem 1, we use the fact that the sequence of

fields {Gn(T)} is nonincreasing. Hence, as is well known,
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Pr((Xr(T "- t)eE}I G(T))
is a (reversed) martingale in n. By a theorem of Doob it converges a.s. to
Pr({Xr(T + t) e E} G+(T) ), implying the theorem for k 1. The situa-
tion for k > 1 is analogous.
Without some further restrictions it seems difficult to show that the limit

in n of Theorem 1 may be brought inside the integral. We shall adopt the
following hypothesis"

HYPOTI-IESIS ..3 (a) The field 63 is generated by countably many sets,
and wide-sense conditional distributions over 63 exist [2]. (b) The transition
probabilities p(tl, x, t., E) are stationary in time, i. e.,

p(tl x, t. E) p(t tl x, E)

where p(t, x, E) is jointly measurable in and x for each E 63.

Under this hypothesis Theorem 1 assumes the simpler form stated in the
following definitions and corollaries.

DEFINITION 7. (replacing Definition 7 under the assumption of Hypoth-
esis. ). Let G*(T) be the least a-field containing the sets {Xr(Tk)eE}
and{Tk TeR} fork => n, Re,andEe63. Further, let

G*+(T) = G* (T).

COROLLARY 1. Under Hypothesis., Theorem 1 becomes

p( f3_=1 {Xr(T A- t) E} H+(T))

n= {Xr(T -t-- t) ePr( E,} G*+(T))

lim_, p(t + T T, Xr(Tn), dx)

where limn_.,, p(h -t- T Tn, XT(Tn), E) is any wide-sense conditional
distribution in E for Xr(T + h) given G*+(T), is equal to the indicated limit
a.s. for each E 63, and defines the last expression of Corollary 1 in the case

We note first that if we replace G*+(T) by G+(T), then Corollary 1 is a
case of Theorem 1. Indeed, for any wide-sense conditional distribution
P({Xr(T + ti)e(’)IIG+(T)) and for any countable field of sets /E}
generating 63, we have

limn- p(tl -4- T Tn XT(Tn), El) P({Xr(T + h) eE}[ G+(T))
for all E a.s. But the integral in Corollary 1 may be defined using only

Wide-sense conditional distributions over 63 exist if (for example) 63 is generated
by the compact sets of a locally compact space X [3].
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countably many xl-sets, for example the sets

E((m,n)) E1 f f p(t t_l,x_l,E)
Ek--1

p(t tl, x, dx) < (m,n)
and their differences. Choosing these sets among the/E} we see that a.s.
the limit may be brought inside the integral as required. But since the
integral in Corollary 1 is already measurable over the field G*+(T) of Defini-
tion 7., the conditioning may be limited to this subfield.

DEFINITION 8. For each t 0, let A (T tl) be the least -field generated
byH+(T) together with the sets {Xr(T - t)eE}, 0

_
<-_ t. Thus

A(T W t) is a past of Xr( T t) up to time t We note that when X(t) is
measurable over X L we have A (T - t) c Ft.
CORO.LARY 2. For the situation of Corollary 1, if t O,

Pr({Xr(T "4- t2)eE2}i A(T zr- h)) p(t2 t, Xr(T "4-t), E).

Stated in words, Xr( T - tx) is a Markov process with transition probabilities
p(t, x, E) for tl > O, relative to the fields A(T - tl).

This corollary is an immediate consequence of Corollary 1 for/c 2.

COROLLARY 3. If there is a topology on X such that p(t, x, E), for each E
in some countable field generating 6, is jointly continuous in x and left con-
tinuous in t, and for which X has right continuous path functions, then X
is a strong Martov process.

The proof is again direct from Corollary 1, since the hypotheses imply that

lim,_ Xr(T) Xr(T) a.s.,
and that

lim_. p(t + T T Xr(T), E) p(t, Xr(T), E) a.s.

for all E in a countable field generating (. Since the measure p(t, Xr(t), (.))
is countably additive, it is identical a.s. with any wide-sense conditional

With further assumptions on the topology and on 6, left continuity in is a con-
sequence of continuity in x. Thus for X a compact space and 6 the topological Borel
field, this corollary reduces to the sufficiency of right contfinuous pths and semigroup
mapping the continuous functions into themselves [4]. Indeed, the semigroup is then
weakly right continuous, and this is known to imply strong continuity for 0 [6,
p. 306]. Hence the distributions p(t - T- T,, X(T,), (.)) converge weakly to
p(t, X.(T), (.)) a.s. as n -- , which is sufficient for the proof to work. Our point of
view, however, is that even the assumptions of Corollary 3 are unnaturally topological.
Thus any assumption is sufficient which implies that X(T - t) is measurable and that
lim p(t -t- T T, X,(T,), E) p(t, X(T), E) a.s. It is hoped that Section 2 of
this paper provides evidence that these ure natural requirements to impose on any
Markov process.
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distribution P({Xr(T + t) (’)}1G*+(T)), and therefore is itself such a
distribution.
For applications to analysis it would be useful to discover how the past

up to time T is connected with the field G+(T). In particular, let G-(T)
be the field defined like G+(T) but after replacing the stopping times Tn by
their counterparts T "toward the past":

T c(m 1, n) for a(m 1, n) < T _-< c(m, n).

It is suggested by Theorem 1 that the field G-(T) may there suffice for the
same purpose as G+(T), and therefore that the past up to time T may be
transmitted to G+(T) directly from G-(T). This is not true in general,
however, even for stopping times in the narrow sense, as is shown by the
following counterexample"
Example 1. Let X /0, =t= i: 1 =< i -< 4} with the field of all subsets

of X. It is known that a process X(t), >- O, with X(0) 0, is defined by
assigning to each point x e X an exponential waiting time parameter k(x),
0 -<_ k(x) -<_ , and a probability measure p(x, S) on 6t for the state first visited
after leaving x, provided that there is at most one occurrence in each path of
an x such that k(x) (instantaneous state). We begin with the following
assignments"

h(0) h(1) h(--1) h(2) h(--2) 1,

k(3) },(--3) , x(-4) 0;

p(O, p(O, 1/2,

p(1, 2) p(1,--2) p(1, 3) p(1,--3) -,
p(--1, 2) p(--1,--2) p(--1, 3) p(--1,--3) ,

p(2, 1) p(2,--1) p(2, 3) p(2,--3) -,
p(--2, 1) p(--2,--1) p(--2, 3) p(--2,--3) .

This is sufficient to define a process up to the first arrival at one of the in-
stantaneous states 3 or -3. Let us define the distribution of the next
state visited after +3 or -3 to depend on the past, as follows: from 3 the
next state visited is +4 if the second state visited was -1, and -4 if the
second state visited was -1; from -3 the next state visited is -[-4 if the
second state visited was -1, and -4 if the second state visited was 1.
Since 4 and -4 are absorbing states, this completes the definition of a
process X(t), 0 <- < . Moreover, X(t) is a Markov process. To con-
vince ourselves of this it is sufficient to note that at any time prior to an ar-
rival in the set {-3, -3} the conditional probability of arrival at +3 before
-3 is 1/2, independently of the past, and hence so also is the conditional prob-
ability of eventual arrival at 4 before -4. Now let T be the time of ar-
rival in the set 3, 3}. Since
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{T =< t} {T < t}u{T t} {T < t}u{X(t) 3}u{X(t) --3},

we see that T =< t} e F(t) where F(t) is generated by the sets

IX(t’)

so that T is a stopping time in the narrow sense. Moreover, it is easy to
see that X(t) is measurable over ((. X L(T)). However, the past and
future are clearly not independent given G-(T), since G-(T) does not con-
tain the set where --1 is reached before -1.

Section 2
The next aim is to extend the space X of Theorem 1 and to redefine the

process X(t) in such a way that, although differing as little as possible from
X(t), the redefined process will be a strong Markov process on the enlarged
space. It is to be noted that this may require redefinition at certain on
a set of positive probability, s shown by Example 2 (also [8]).
Example 2. Let X(t), 0 <= < , have only two path functions, each

occurring with probability 1/2. The first is given by X(t) t, 0 -<_ -< 1, and
X(t) 2, 1 < < . The second is given byX(t) t, 0 -<_ =< 1, and
X(t) 3, 1 < < . Obviously, T g.l.b.{t:X(t) 3} is a stopping
time (in the general sense), and X(T) 1 if T < . However,

Pr({Xr(T + t) 3}1X(T)) 1

while p(t, X(T), {3} 1/2. Thus T is not a Markov time, and any redefini-
tion must involve set of at least probability 1/2.

This example depends on the fact that T is a stopping time in the general
sense but not in the narrow sense. For narrow-sense stopping times to be
Markov times relative to the fields Pr(t) H(T - t) (Definition 5) it is
never necessary to redefine the process t any on a set of probability greater
than zero. Indeed, if {ti} is the (countable) set of all ti for which

P{T t} > 0,

then for each i we have {T t} e F(t), and hence by the Markov property,
a.s. on the set

P({X(T -t- t’) eE}l H(T)) P({X(T + t’) eE}l f(ti))
(2.1)

p(t’, X(ti), E).

It follows that T is a Markov time on (J i{ T t}, and thus no redefinition
on this set is necessary. It will be shown below, moreover, that under
Hypothesis, the process may be redefined to become a strong Markov
process in the narrow sense, without changing the definition at any on a set
of positive probability.
The basis of the redefinition of X(t) to produce a strong Markov process

Y(t) is the construction of elements in the state space Y of Y(t). These
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will be certain families of joint distributions defining Markov processes for
> 0 with the original transition probabilities. The construction is carried

out in the form of a lemma.

LEMMA 2.1. Let X t) be a Markov process relative to fields F(t) with F and
each F(t) assumed to be completed for the measure P, and suppose that Hy-
pothesis holds. Then we have a.s.

P({X(t(t) E} H+(t)
Go (t))(2.2) P({X(t,(t)) eE}] *+

lim+o.t+,a.p(t,(t) t- r, X(t + ), E)

where E} is any field of sets forming a countable basis of 6t, A a(m, n) },
H+(t) and G*+(t) are the a-fields H+(T) and G*+(T) for T t, the latter
completed for the measure P, and t(t) is any element of the decreasing sequence
{t(t)} with limit t, defined below. Moreover, the limit (2.2) exists a.s. for all
t, r, and i simultaneously, defines a conditional probability as indicated, and
defines by extension for each and r a.s. a probability measure on 6t. These
measures satisfy a.s. for all r

G (t))P({X(t(t)) eE} *+

(2.3)
Go (t)).p(trl(t) try(t) x,E)P({X(t(t)) edx} *+

Wherever (2.2) and its extension exist and (2.3) holds, we define for all tl > 0
the distributions

(2.4) F(tl E; t, w) fx p(t t(t) Go*+(t)),

where r is any integer for which tr(t) t > O. For the remaining set of
probability 0 at each we choose an arbitrary but fixed element x_ e X and define
(2.5) F(t E; t, w) p(t x_, E).

Then F( li ("); t, W) i8 a wide-sense conditional distribution

P({X(t .qt_ /1)e (’)}] H+(t)) P({X(t + ta) e (’)}1G*+(t))
on 6t, and for ti

(2.6) F(t,E; t, w) fx p(t t,x,E)F(tl,dx; t, w).

Moreover, let Ti and T. be stopping times with T <- T, and let E( Tx) be a
random set a function of T) such that

{X’(tr(V) -- /1) E(T’I)} H+’(T) X L’(T’),
where primes indicate replicas in a product space
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(2 X 2, H+’(T) X L" (T’))
as in the proof of Theorem 1. Then for r and tl such that, for all w
tl > tr(T1) T. we have a.s.

F(t - tr( T1) T2 E( T1) T2, w)

P({X(t - t(T))eE(T1)} H+(T)).
Proof. We first have to define the functions tr(t).
and ]c > 0 the unique integer m(t) such that

Consider for each

a(m(t), k) <-_ < a(m(t) -t- 1, k).

The sequence {t,(t)} is merely the sequence {a(mk(t) - 1, k)} with repetitions
(for different ]) eliminated. Thus {tr(t)} is strictly decreasing with limit t.
The expressions p(2- r, X(a(m, ]) - r), E) form martingales in .

By a theorem of Doob [2, p. 363] the limits

lim -,(m,). p(2- , X(a(m, k) -- ), E)
(2.8)

lim$0.+ p(a(m - 1, k) , X(t - ), E)

exist a.s. for all such that a(m, ) <= < a(m + 1,/). Thus the limits
(2.2) exist a.s. for all t, and by [2, p. 331] they define for each a conditional
probability as required.
But if P_({X(t(t)) (.)11G*+(t)) is any wide-sense conditional distribu-

tion as indicated, then the limits (2.2) agree with it a.s. for all E, and thus
a.s. define by extension a probability measure on ( which is also for each E
a conditional probability on 2. The relations (2.3) and (2.6) are now evident
consequences of the Chapman-Kolmogorov equation, and we will see by the
same argument as leads from (2.11) to (2.9) below that F(t, (.); t, w) is in-

*+deed a wide-sense conditional distribution P({X(t - t) e (.)}IG ())
Turning now to (2.7) we first show that for E and fixed, a.s. on the set

{T <t}

(2.9) F(t T: E; T: w) lim$0,r+ p(t T r, X(T - ), E).

Since {T. < t} (J {tr(T2) < t}, it is sufficient to show that (2.9) holds a.s.
on a set/t(T) < t}. Here we have by (2.6)

(2.10)
F(t T.,E; T:, w)

p(t t,( T), x, E)F(t( T) T, dx; T, w).

Since t,(T.) is countably valued, the integral in (2.10) depends only on
countably many sets/E} which we shall take to include the {E}. It will
be shown that a.s. for all of these sets

(2.11)
F(t,( T) T2 E’;Te,w)

limo.r:+ p(t(%.) T -, X(T + r), E’),
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i.e., that the definition of F(tr(T) T2, E T., w) is given a.s. by sub-
stituting T2 for and E for E in (2.2). It is clear that the limit in (2.11)
is actually a version of P({X(tr(T) e E’} G* +(T.) ), so that in particular it
exists a.s. for all E, and by comparison with any wide-sense conditional
distribution P({X(t(T.)) e (.)}1G*+(T.)) we see that (2.11) a.s. defines
by extension a probability measure. The same facts hold a.s. for all pairs
rl, r., rl < r., which means that a.s. F(t(T) T., E’ T., w) is defined
by (2.4) rather than by (2.5), proving (2.11). By inserting the limit in
(2.11) into the integral of (2.10) it is clear that we may bring the limit out-
side of the integral, upon which (2.9) follows.

It is next to be shown that in (2.9) may be replaced by t -[- t(T1) and
E by E(TI), which will prove (2.7). This situation is analogous to the
earlier replacement of t by T in (1.4). We first note that on T. < h} we
have

t T,E; T,w) f: p(t,x,E)F(h T.,dx;(2.12) F(tl -+- T, w).

Since, by (2.9), E(t t. E; T w) is a version of Pr({X(t) eE}! H+(T.))
on {T. < t}, wecan use F(t T. ,E; T, w) and (2.12) to generate a measure
on a product space H+’(T) X LtP(T) such that

T2,E; T,
(2.13)

F(t dPr(w)

-+- Pr(S {X(t) eEl {T _>- t})
where S’ is the replica of S in t’, and S H+(T).

Since Sa{X(t)eE} a{T. >= t} eH+(T.), it follows that (2.13) defines,
along with (2.12), a a-additive set function on a field generating

H+’(T’) X L’(T’).
We define on H+’(T’) X L"(T’) as the a-additive extension of this func-
tion. Clearly, is a probability measure.

Recalling the mapping M of a set onto its diagonal (1.6), we also have for
g eH+’(T’) X L"(T’’)
(2.14) (K) Pr(M(K)).
Under the assumption that {X#(t(T;) + tl) eE(T;)} eH+’(T) X L#(T)
it follows that

(2.15) M{X"(t(T’) -t- h) eE(T;)} {Z(tr(T) + t) eE(T1)},

and that the right side is in the least z-field containing H+(T) and L(T).
On the other hand, we have by (2.13), since t(T) + t T. > 0, that

(2.16) f F(tr(T) + t T2,E(T); T., w) dPr:(w),
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as the section of {X" (tr(T’l) - tl) e E(T’)} in 2" at T’ t, T’2 t has
conditional measure F(tr(t) t t, E(t); t, w). Thus by (2.14) and
(2.15)

Pr(S X(t(T) + t) eE(T)})
(2.17) f F(t(T) + t- T,E(T); T, w) dPr(w).

It follows from (2.9) and (2.16) that F(tr(T1) + tl T2, E(T); T, w) is
measurable over H+(T). Hence by (2.17) it is a version of

g(Ix(t -- tr(T)) eE(T1)II H+(T))
us asserted.
By means of (2.4), (2.5), and (2.6) there are defined functions Y(t, w)

whose values are the Markovian families of joint distributions determined
by the expressions

p( tk tk_ Xk--1, E)p(t_ t_ xk_2 dx_l

F(tl,dx; t, w)

for all finite assemblies0 < t < < t;E,...,Ee. We will show
that Y(t, w) may be interpreted as a Markov process on (It, F, P), and that
it possesses certain regularity properties. As above in the case of X(t), we
will write in place of Y(t, w) simply Y(t), the dependence on w being under-
stood.

DEFINITION 9. Let I-It>0 X be the product space of X indexed by the
real parameter > 0, and let IIl,(m,n)l t be the least a-field on IIt>0 xt con-
taining all sets of the form (IIo<t<,(m,n)Xt)(Ea(m,n))(H,(m,n)<t Xt) for
E,(,n,n) e6t,(,,n), 0 < m ,0 n . Let Y be the space of all
probability measures on IIl,(,,n)l t, and let 6t(Y) be the least z-field on
Y containing all sets of the form {y Y" PY(Q) e RI where PY is the measure
defining the point y, Q IIl,(m,n)l t, and R e 0,1 (the real Borel sets on
[0, 1]). We define Y(t) to be the function of (t, w) with values in Y deter-
mined, under Hypothesis ,, by (2.18) for all assemblies t a(m, n),
1 -<_ i <-_ ]c. It is clear that this determination is unique.

THEOREM 2. Y(t) is a strong Markov process on , F, P) with state space
Y and (Y) as measurable field, relative to the fields H+(t) and the (stationary
in time) conditional probabilities (2.19 a, b) defined below.

Remarks. It is easily seen that F(t) H+(t) (see Definition 4). Also,
the sets [Y(t’) Q} for t’ <- are in H+(t), as noted below. Lastly, since
the distributions determined by (2.18) all have the transition probabilities
p(t, x, E), it is seen that measurability of (Y) implies measurability of
{y e Y’P(Q) e R} for any Q in II0<t 6tt if we extend the definition of Y and
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Y(t) to measures on II0<t 6tt by using (2.18) for arbitrary t in the latter
case.

Proof. The measurability of 6t(Y) for Y(t) over H+(t) follows from that
of 6t0.1 for (2.18). This in turn is a consequence of the definition of
F(h, E; t, w) (see (2.4) and (2.2)) and the completeness of H+(t).
To define the conditional probabilities of Y(t) it is expedient to introduce

an auxiliary process X(t), 0 < < , with state space X and transition
probabilities p(t, x, E), corresponding to each point y Y actually assumed
by Y(t) for some t. The process is to have as distributions those defining
the point y through (2.18). We leave the sample space of XU(t) undefined
for the present. Its existence is assured by the fact that X(t) has transition
probabilities. Now let

M(tl tk El, Ek R)

for0 < t < < t,ti a(mi,ni), Eie, 1 <- i <= l, and ReE0,l,
designate {y e Y’P(EI(t) X X E(t)) e R/, where E(t) e 6tt and
the factors X have been omitted for the sake of brevity. We introduce
the function p.(t, y, M (t,
in the range of Y(t) by

t E, Ek R)) defined for points y

p.(t, y, M(t t E
(2.19a)

,E, ;R))

n= {XU(t -k-t) (t))P’ P’( E,} IGu* + R},

where P is the measure for the process X(t) and G*+(t) is the indicated
field for X(t). To extend (2.19a) to arbitrary M e ((Y) we can make use
of Lemma 2.1 applied to the process X(t) (it is clear that the limitation of the
process to > 0 does not invalidate the lemma, and Hypothesis holds
for X(t)). By Lemma 2.1 we may choose the conditional probabilities

P( E} IG*+(t)
in such a way as to define for and y fixed a measure on the least subfield of
IIl.(.,n)l t containing the cylinder sets determined by the

E(tl) X X E(t).

Since, moreover, this measure has the transition probabilities p(t, x, E),
it has a unique a-additive extension to IIl,(.n)l t. Designating this ex-
tension by P(QIG*+(t)) for Q eIIl,(,.)l 6tt, we define for

i lYe Y:P(Q) R}

(2.19b) pr(t, y, M) P{P(QIG*+(t) R}.

It follows that P(QIG*+(t)) is indeed a conditional probability of the event
in the future of X(t) after time defined by the set Q, and in particular that
(2.19b) is well defined. We will next show that p.(t, Y(t), M) is measurable
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over Hr(t) (the past of Y(t) up to time t), and hence afortiori measurable
over H+(t). For the case (2.19a) with/ 1 we use the fact that

(2.20)
P({XU(t + t) E}[G*+(t))

lim,= p(t + t(t), XU(t(t) ), E) a.So

(by the martingale convergence theorem, as in (2.2)). Let f(x) be a con-
tinuous function on [0, 1]. Since (2.19a) defines a measure in R e 6tt0.1]
it follows from (2.20) that

(2.21)
fo f(x)p,(t, y, M(h, El, dx)

limr_. f0 f(x)PY{P(h-t- t- tr(t),XY(tr(t)), E) dx}.

Indeed, let E(r, R) {x’p(t -- t- tr(t), x, E) R}.
E(r, R) , (2.21) is immediate. Moreover, we huve

Then since

P’(t){p(tl + t(t), X’(t)(t(t)), E) e R} Pr(t){X’(t)(tr(t)) E(r, R)}
F(t(t), E(r, R);t, w),

which is measurable not only over Hr(t) but over the field generated by Y(t)
as the inverse of ((Y). It follows that for each r,

fo f(x)pr(t){p(t -t- tr(t),xY(t)(tr(t)),E) edx}

is measurable over the same field, whence by (2.21) so is

fo f(x)P’(t){P’()({Z’(t)(t + tl) eE} G(t)*+(t)) edx}.

This implies the measurability of (2.19a) with y Y(t) when k 1. Since
the measures (2.19a) for k > 1 are connected by the transition probabilities
p(t, x, E), the measurability for k > 1 follows immediately. Measurability
of (2.19b) now follows from the fact that measurability is preserved under
monotone poinwise limits.

It is next to be shown that Y(t) is a Markov process with (2.19a, b) as
conditional probabilities given H+(t). Let S e H+(t), and let M(t, E, R)
be the set defined in (2.19a). For f(x) continuous on [0, 1] we then have

fs fo f(x)pr(t’ Y(t’),M(h,E,dx)) dP(w)

lira f()P(’{X’(’(()) N(r,d)l dP(w)

(2.22) lim f()F((),N(r,d);V, vo) dP(w)

lim f f()P(S n [p(h + - (), X(V -t- ()), E) e dx})

f(x)P(S n {Y(t’ -I- t) eM(tl,El,dx)}),
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where for the last step we need to observe that in the definition of

P({X(t’ -k- -k- t) E}IG*+(t + t))

by means of {t.(t’ + t)} it is possible to replace t(t’ + t) by t’ -t- t,(t), the mar-
tingale limits being a.s. the same for either ease. From (2.22) it follows that
py(t, Y(t’), M(t, E, R)) is the required conditional probability given
H+(t’). The extension of this result to

py(t, Y(t’), M(tl tk ;El, E ;R))

is completely analogous, using in place of (2.20)

r]i=l {XY(t "-J[- t) eE} G*+(t))p(

lim f f p(tk t-I ,x-l, EDp(tk_, t_2 ,xk-2, dx_)(2.23)
El /k--1

p(t + t- t(t),X(t(t)),dx) a.s.

Finally, the extension to py(t, Y(t’), M) for arbitrary M e 6t(Y) is valid
since, by the Lebesgue monotone convergence theorem, the property of being
a conditional probability of Y(t + t’) M} given H+(t’) is preserved under
simultaneous monotone limits of sets M and probabilities py(t, Y(t), M).
This completes the proof that Y(t) is a Markov process with the conditional
probabilities (2.19a, b).
We next let T be a stopping time for X(t) and show that the requirements

of the strong Markov property for Y(t) are satisfied by T. This will prove
that Y(t) is a strong Markov process if it is also shown that any stopping
time for Y(t) is also a stopping time for X(t). But if T < t} e H+(t) for
all t, then {T < t} (U_{T < 2-}) e F(t) for all t, and the second
fact thus follows from Definition 2. We will need to use (2.7) of Lemma
2.1 with Tx T and E(T), depending also on t, Ea, r, and R, defined by

(2.24) E(T; r, R) {x’p(t + T t,(T), x, El) e R}.

It is therefore necessary to show that for T =< T2

{i"(t(V’) + t) e E(T’; r, R)} e H+’(T) X L"(T’)

(we replace the ta of (2.7) by t). We have immediately

{X"(t,(T’) -F t) E(T’; r, R)}

(2.25)
{p(ta -t- T’ t,(T’), Z’(t(T’) -t- t), E) e R}

--UI,,(.,) [({t,(T’) (m, n)} X U,.)
n Ip(t + T’ a(m, n), X"(a(m, n) + t), El) RI].

By the measurability of p(t, x, El) in (t, x) it follows that each set in the
union is in H+’(T) X L’P(T) as required. Recalling the definition of
M(t, E1, R), we now have for any continuous function f(x) on [0, 1] a.s.
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fo f(x)p.(t, Y(T), M(tl, El, dx)

limr_, f0 f(x)F(tr(T) + T,E(T;r, dx); T,w)

(2.26) limr_. limn_, fo f(x)F(tr(T) + Tn ,E(T; r, dx); V w)

limn_, limr f0 f(x)F(t(T) + Tn ,E(T; r, dx); T w)

limn f0 f(x)pr(t (T T), Y(T), i(h, E, dx)).

Indeed, the first equality follows from (2.21) and (2.24). The second equal-
ity follows from (2.7) with T1-- T. T, together with the definition of
F(tr( T) + T E( T; r, R) T w) as a version of

P({X(t d- t(T)) E(T; r, R)}IH+(T,)),
which follows in turn from (2.7) with T1 T, "I’2 Vn. For, in view of
these equivalences, we have

Jo f(x)F(t(T) + T, E(T; r, dx); T, w)
(2.27a)

E(f(p(ct -I-- T t(T),X(t(T) -!- t),E))IH+(T)) a.s.,

jo f(x)f(tr(T) + t- T,E(T;r, dx);T,w)
(2.275)

E(f(p(tl -t" T tr(T), X(tr(T) -t- t), EI))IH+(Tn)) a.s.,

and the equality in question follows by martingale convergence in n.
The interchange of limits for the third equality is justified by (2.27b),

from which we see that the convergence in r is uniform in the martingale con-
vergence in n except for a set whose probability is small when r is large. In
particular, this proves the existence of the limit in n. The last equality,
like the first, is a result of (2.21). An extension of (2.26) to

M(tl, tk ;E, Ek ;R)
proceeds the same way, using (2.23) in the (new) definition of E( T; r, R).

If Theorem 1 is applied to the process Y(t), leaving aside the question of
measurability of Y(t), one formally obtains from (2.26) that

lim f f(x)P({Y(T / t) eM(t ,E ,dx)} U+(V,))
,0

[ f(x)Pr({Y(T + t) eM(h,E,dx)lIH+(T))
(2.28)

f f(x)Pr(IY(T + t) eM(t ,E,dx)}[G*+(V))

f f(x)p.(t, Y(T),M(tl ,E ,dx))
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where G*+(T) is the field G*+(T) for the process Y(t). Similarly, one would
obtain (2.28) with M(tl, tk ;El, Ek dx) in place of M(t, El, dx).
From this it then follows that

Pr({Y(T W t) eM(t, t ;E, ,E ;R)}[H+(T))
(2.29)

p,(t, Y(T),M(t,...,t;EI,...,E;R)) a.s.,

and (2.29) extends to arbitrary M e (Y) by taking monotone limits.
Hence Y(t) will satisfy the requirements of the strong Markov property for
T, and if T can be chosen arbitrarily, then Y(t) is a strong Markov process.
To complete the proof of Theorem 2 it remains only to show that Theorem

1 may be applied to the process Y(t) for any stopping time T.
It is easily seen that the probabilities (2.19a, b) can replace transition

probability functions in the proof. The missing property is measurability of
Y(t) over (R X Lr, where Lr is the -field generated by the sets {Y(t) e M},
M e ((Y). The only point at which this measurability is used in the proof

w" f" T’ M} H(T’n) X L Tpp), whereis in showing that {(w’, + t) ’
H(TPn) H’+(Tr,) because of the definition of the fields of the past for
Y(t). A check of the proof reveals, in fact, that it is sufficient that the above
set be only in the completion (H(Tr,) X L(T’))c with respect to u since
H’+( T, is complete with respect to P We now require the following lemma"

LEMMA 2.2.
ous function f(x) on [0, 1] and each stopping time T

lim ] f(x)p,(t, Y(T),M(t tn ,El ,dx)) f(F(tl ,E.; T,w))
tnO

Proof. From the definition of pr(t, y, M) we have

(2.30)

Let {t} be a sequence decreasing to O. Then for each continu-

aoSo

lim f f(x)p.(t Y(T),M(t t ,E,dx))
tnO

lim f f(x)P’(r){P’(r)({X’(r)(t)EliG’(r)*+(t,))dx}

j f(x)P’tr){P’(r)({X’(r)(tl)E,} G(r)*+(0))edx}.

Let a.s. designate a.s. for the process X(t). It remains to prove that

p’(r)({X’(r)(t) EllGr(r)*+(0))
(2.31)

F(tl E T, w) a.s.r(r), a.s.

By applying Lemma 2.1 to any process X’(r)(t) it follows that

p’(r)({X’(r)(t) )llGr(r)*+(O)
may be chosen to be a probability on ( for each t, and to have transition prob-

This lemma expresses the sense in which the regularity property of convergence
of the semigroup mentioned in the introduction to the identity at 0 is satisfied by
Y(t).
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abilities p(t, x, E). It is now sufficient to prove for this choice of conditional
probabilities that for any t, a.s. on the set

P’(r)({X’(r)(t T) e (.
(2.32)

E(t T, (.); T, w) a.s.y(r).

For (2.31) then follows by integrating (2.32) with p(T + tl- t, x, E)
as integrand and taking a union over rational t. If (2.32) holds for a par-
ticular process X’(r)(t) for a fixed y Y(T), then it holds for every process
with the same joint distributions. We will show that for almost all Y(T) a
process X(r)(t) may be defined for which (2.32) holds. Let us consider the
definition of X(t) extended to the space (U (9 ,(I X,),) i.e., to 2 to-
gether with a replica ofIX corresponding to each t’. For we (I-Iv x)
we define X(t, w) w::, i.e., the coordinate of w in X. We extend the
measure by setting P(S) 0 for all S c (J , (II x),, and stipulate that
S F(t) for all S c t,_t (IIx,),, for each t. If we construct Y(t)
on this new space, and extend the definition of T by setting T t’ on
(I X)t,, it is clear that (2.32) will then hold a.s. on {T < -<_ T -4- t} if
and only if it already holds for the original space and process Y(t). Indeed,
the original space is imbedded in the new space in such a way that Y(T) in
the new space is a.s. in the image of the original space. Let us now define
the sets 2(T, Y(T) by

(T, Y(V)) {we (2ttJt,(IIx),) "for T < < o,

F(t T, (.); T, w) F(t T, (.); T, wr(T))}

where w(T) is any point such that T(w,(r)) T and Y(T, w,(r)) Y(T).
In other words, 2(T, Y(T)) is the class of all points w defining the same T
and y e Y as appear in Y(T). Moreover, define the processes X(r)(t) by
X’(r)(t) X(T + t) on (T, Y(T)). It is possible to introduce the dis-
tributions defining X(r)(t) on the space 12(T, Y(T)) since, because of the
extension, 2(T, Y(T)) contains points of every cylinder set

X T + t E ,..., X T + t e Ek},

and is large enough, in fact, so that these distributions may be extended to a
probability measure. We will show that (2.32) holds a.s. on
{T < _<- T + h} for these processes X (r) (t). Indeed, for these processes
we have a.s. on (2 t [J , (II x,),) t T < t}, using (2.9),

lim.., p(t t(T), ZY(r)(t(T) T), E)

lim.., p(t t(T), Z(t(T) ), E)
(2.33)

P({X(t) e E}IG*+(T))
F(t- T, E; T, w).
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Since the first term is equal to

P({X( T) E}I*+(0)) a.s.,

for each Y(T), and since also

P({limr_. p(t tr(T), Xr(r)(tr(T) T), E)

F (t T, E; T, w)} Y(T))
Pr(r)({Pr(r)({Xr(r)(t T) E}[Gr(r)*+(0))

F(t-- T,E;T, w)}) a.s.,

by using (2.9) once more, the proof of (2.32) is completed by letting E range
through a countable field generating 5. This proves Lemma 2.2.

Let us note at this point that Lemma 2.2 and the proof remain valid if
M(t, t E, ,E dx) is substituted for M(t, E,. dx), and at
the same time

f f p(t t_,x_,E)p(t_- t_,,x_,,dx_)

F(tl,dxl T,w)

is substituted for F(tl, E T, w). From Lemma 2.2 and (2.26) it follows
now that f(F(tl, E T’, w’)) is measurable over (H’+(T) X L.(TtP))c.
Indeed, we see from (2.24) that E(t; r, R) defines the section at T
of a measurable set in t (B. It follows that

F(tr(T’) + T’,, E(T’; r, R); T’, w’)

is measurable over H’+(T) X L(T’), whence the conclusion follows from
the first and third lines of (2.26) upon applying Lemma 2.2. The same re-
sult holds after replacement of F(t, E Tr, wr’) by (2.18), by the extension
of (2.26) to that case. Again, the same result holds with T + in place of T,
the former being again a stopping time measurable over H+(Tn). We there-
fore have, since f(x) is arbitrary, that

{(w’, w")" Y’(T’ + t) e M(t, t E, Ek R)}
(2.34)

e (H+(T’) L(T’) )c.

But (2.34) then holds for arbitrary M e ((Y) by closure under monotone
limits. This completes the proof of Theorem 2.

It remains to consider the connection between the processes X(t) and Y(t).
This connection will be established by identifying a point y e Y with a point
x e X whenever for all and E

(2.35) P{X(t) El p(t, x, E).

We shall assume that for xl x. the functions p(., x, and p(., x.,
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are never identical. This may be brought about, if necessary, by a preliminary
identification of the points of X into equivalence classes [7, p. 45].

THEOREM 3. Under the above assumption, and after the identification (2.35),
Y( t) and X(t) agree except on at most a set of probability 0 for each and a
countable set of for each w.

Proof. According to a theorem of Doob [2, p. 363] the limits (2.8) exist
from the left, as well as from the right, a.s. for all t. It follows that a.s. there
are for each > 0 only finitely many discontinuities of oscillation greater
than e in (2.8) for fixed a(m, 1) and Ei. Consequently, a.s. the limits as

T 0, -f- r A, in (2.2) agree with the limits as r $ 0, -4- r A, except
for a countable set of depending on w. For each this common limit is
equal to p(tr(t) t, X(t), Ei) a.s. Indeed, we may adjoin to the (count-
able) set A. The martingale (2.2) on the enlarged parameter set will be
continuous at a.s. where the right and left limits on A are equal at
[2, Theorem 1 1.5]. Except for sets of the type stated in Theorem 3, therefore,
the limits (2.2) are found for all E by substitution of r 0. We then have
by extension of the measure, outside of these exceptional sets, F(tl, E; t, w)
p(tl, X(t), E) for all E e 63 and > 0, when t > tr(t) t. Letting r become
large in (2.4) and then letting t decrease to 0 through a sequence of values,
it follows from the definition of P{X (t) e E} that Y(t) X(t) in the sense
of (2.35) outside of sets of the type stated in the theorem.
As a concluding remark, we have the statement referred to following (2.1).

For x e X, let L(x) designate the point of Y defined from x by (2.35).

COROllARY. There exists a strong Markov process X in the narrow sense
on (, F, P) relative to the fields F(t), with state space Y and measurable field
63(Y), such that PIX(t) L(X(t))} 1 for all t.

Proof. It is clear that PI Y(t) L(X(t))} 1 unless is a fixed point of
discontinuity for one of the martingales (2.8), and the set D of these fixed
discontinuities is at most countable [2, Theorem 11.2]. Accordingly, we de-
fine _X (t) as follows:

;Y(t) if teD,(2.36) X_ (t) \i(X(t) if teD.

Then P{X(t) L(X(t))} 1 for all t.
To define the conditional probabilities for X(t) it is necessary to treat

separately the transitions starting or terminating at a time ta e D. For
these, we define

p({.(td " t) e M}[(td)) p(t, X(td), L-I(M)),

Let 63* be the a-field generated by the sets {x:p(a(m, n), x, E) R}, m > 0, n > 0.
Then X(t) is already a Markov process relative to 63* (see the remark following Theorem
2). Moreover, we can write 63* L-l(63(Y)). It follows by the completeness of F(t)
that for fixed the sets of L(63") are measurable for _X(t). However it is not necessarily
true that
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and for

0 if X_(t) L(X(t)),p( {X_ (t,) , M} _X(t)) t,(t t,X(t),L-i(M)) otherwise.
Since L-I((Y)) c (R), these definitions are meaningful. For the remaining
cases we define

p({X_ (t q- tl) M}IX_ (t)) p.(h X_ (t), M).
The functions thus defined are not stationary in time, but this has not been
required.
To show that X(t) is a strong Markov process in the narrow sense relative

to these conditional probabilities, three cases must be considered. For a
given narrow-sense stopping time T, we consider first the set {T D}. On
this set T is a Markov time by (2.1) and the fact that X(t) L(X(t)) a.s.
for each t. Next, consider the set {T ti, ti e D, P{ T t} > 0}, in which
at most countably many t can be involved. On this set Y(T) L(X(T)
X(T) a.s., and T is a Markov time again by (2.1). Finally, consider the
set S {T e D, T t, P{T t} 0}, in which uncountably many may
be involved. On this set T is a Markov time because of the strong Markov
property for Y(t), provided it is shown that pr(tl, Y(T), M) on S is meas-
urable over H(T), as required by the definition of the strong Markov property
in the narrow sense (measurability over H+(T) was proved above). How-
ever, we have

S n {T =< t} n {py(tl, Y(T), M) R}
(2.37)

where c {T t}. Each set in the first union is in F(t), and F(t) is com-
plete for P. Thus S {p.(tl, Y(T), M)eR} e H(T), and the corollary
is proved.
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