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1. Introduction

In this paper we shall deal with various generalizations of the concept of
finite projective dimension. Modules of finite projective dimension and rings
of finite global dimension have been extensively studied by a number of
authors; see, for instance, [1, 3, 4, 5, 6]. These studies have added signifi-
cantly to our knowledge of rings with minimum condition. The chief draw-
back, however, to the concept of finite projective dimension is that not enough
modules have it. It is for this reason that we initiated this investigation into
various generalizations.

Throughout the paper, module will mean finitely generated module, and
ring will mean ring with minimum condition on the kind of ideals that match
the modules. Since we do not change rings, we will write the functors Horn
and Ext without mention of the rings. Notation and terminology will follow
that of [3].

In Section 2 we develop a theory on "how many" modules are necessary
for a projective resolution. The results in that section rest heavily on the
work of Eilenberg concerning minimal resolutions. A handy tool in the study
of minimal resolutions is the use of Ext(A, C) as a module over the endo-
morphism ring of C where C is irreducible. In this case, Ext(A, C) becomes
a vector space, and we can count modules in the projective resolution for A
by computing the dimensions of certain of these vector spaces.

In Section 3 we prove two versions of Nunke’s theorem [10] for the type of
modules under consideration. There, the class of rings for which we prove
the theorem is more general than the class of rings with minimum condition
with finite global dimension. However, we only consider finitely generated
modules. Actually the theorem can be proved from the work of Auslander
[1] for semiprimary rings of finite global .dimension without the assumption of
finite generation of the modules involved. Our method of proof works only
for finitely generated modules.

2. Projective types
In this section, we shall be concerned with "how many" projective modules

appear in the minimal projective resolution of a module. Because of the
restrictions that we have imposed on the rings and modules that we are con-
sidering, we have the following facts at our disposal:
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1. Every module M has a minimal projective resolution

Mr. r)...Mo __M__O
which is characterized either by the property that Extr(M, F) ._ Horn(Mr, F)
for all irreducible F, or by the fact that r’.Mr -- Mr-1 inducesan isomorphism
of Mr/NMr with Im r/N Im ir where N is he radical of R.

2. The projective modules are direct sums of indecomposable projective
modules each of which is isomorphic to an idempotent-generated left ideal
of R.

3. R has a finite number of distinct irreducible modules F1, F and
the same number of distinct indecomposable projective modules P, Pn
such that Pi/NPi Fi. Moreover, each indecomposable projective
module is isomorphic to one of the Pi.

The above properties of finitely generated modules over rings with minimum
condition are proved in various places, among which are [1, 3, 4].

Let a (a) be a sequence of nonnegative integers. We shall say that a
module M has projective type a if for each r >__ 0 the rh projective module Mr
in the minimal projective resolution for M decomposes into the direct sum
of ar indecomposable projective modules. That the projective type is well
defined follows from the uniqueness of the minimal projective resolution and
the uniqueness of the decomposition of a module into the direct sum of inde-
composables.
Note that if M is of projective type a for a which is ultimately a zero se-

quence, then M has finite projective dimension (and conversely).
In order to compute the projective type of a module we recall, at this point,

some of the properties of the functor Ext. If A is a module and X a projective
resolution of A, then Ext(A, C) can be computed as the homology groups of
Hom(X, C). If (C) is the (module) endomorphism ring of C, then C,
Hom(X, C), and Ext(A, C) become (C)-modules in a natural way. That
Ext(A, C) is a (C)-module comes from the fact that the differentiation in
Horn(X, C) is a (C)-homomorphism, so images,kernels, and their quotients
are again (C)-modules. In the case under consideration, C will be one of
the irreducible modules F, and (F) is therefore a division ring. Thus we

may compute the dimensions for each r of Extr(A, F.) over (F).
Perhaps we might be allowed to digress for a moment to the "group of

extensions". In [3] it is shown that there is a one-to-one correspondence
between the elements of Exti(A, C) and equivalence classes of exact sequences
of the form 0 -- C -- X -- A -- 0, and in this way Exti(A, C) can be thought
of as the group of extensions of C by A (or A by C). This might lead one
to believe that there is a one-to-one correspondence between the elements of
Extl(A, C) and the "set" of modules X which can be fitted into the above
exact sequence. This, however, is not the case. There are apt to be far
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fewer solutions, X, to the above sequence than elements in Extl(A, C). The
idea of considering Extl(A, C) as a module over (C) allows one to cut down
the number of extensions. For instance, it is not hard to show that if u is
a unit of ((C), and if e is in Ext’(A, C), then the middle modules in the
exact sequences corresponding to e and ue are actually isomorphic. Thus,
as a corollary, we see that if C is irreducible and Ext’(A, C) has dimension
one over (C), then there are realy at most two extensions of C by A (count-
ing isomorphic ones as the same). It should be noted that the whole thing
works iust as well over (A).
The following theorem gives a computation of the proiective type of a

module in terms of the dimensions of Extr(A, F.) over (F.).

THEOREM 2.1. The projective type of M is a (at) where ar
=1 [Extr(M, F.)" (F.)].

Proof. As mentioned above, we know that

Extr(M, F.) Hom(Mr, F) Hom(Mr/NMr, F)

(--- as (F.)-modules), where Mr is the rh proiective in the minimal resolu-
tion for M. Then Mr/NMr is the direct sum of irreducible modules, and the
number of these which are isomorphic to F. is also the number of copies of
P. which occur in the direct sum decomposition of Mr. Thus, computing
the dimension of Hom(Mr/NMr, F) over (F.) we see that this is the
number of copies of F. in the direct sum decomposition of Mr/NMr. Putting
all these equalities together we see that [Extr(M, F.)" (F.)] is the number
of copies of P. in the direct sum decomposition of Mr. The total number of
indecomposable modules in the direct sum decomposition of Mr is obtained
by summing over j.
We include at this point a corollary to the theorem.

COROLLARY 2.2. The number of copies of P occurring in the direct sum de-
composition of Mr is [Extr(M, F.)’(F.)].

We remark that someone might find it interesting to study how often the
different P. occur in a projective resolution. If so, the above corollary may
be of some value. In this paper we shall restrict ourselves to merely counting
the total number of pro]ectives occurring at each point in the projective
resolution.
For two sequences a and , a -b t is obtained by adding term by term.

a -<_ will mean that every term of a is less than or equal to the corresponding
term of . For an integer n and a sequence a, na means a added to itself
n times. It is notationally convenient to think of our sequences as doubly
infinite with zeroes corresponding to the negative integers. Then we can
define a shift operation without supplying new terms at the beginning. If
a (at), we define a’ (air) by the equation a ar+. Using this notation
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and the exact sequence of homology for Ext we can prove the follow-
ing theorem.

THEOREM 2.3. If 0 A B --> C ---* 0 is an exact sequence of modules
and A, B, and C are of projective types , , and , respectively, then the following
inequalities hold:

(1)

_
a q-3,.

(2) _-< v’+ .
(3) v’ -<_ ’ q- a.

Moreover, if the sequence splits, then fl a q- v.

Proof. From the exact sequence of homology for Ext we have the following
exact sequence

Ext’(C, F) --, Ext’(B, F.) --, Ext’(A, F.)-- Exff+(C, F) - Ext+(B, F.).

We note at this point that all the connecting homomorphisms are (F.)-
homomorphisms. If we let Ext 0 for negative r, the above sequence can
be thought of as a piece of a doubly infinite exact sequence. Computing
dimensions over (F), we obtain the following set of inequalities holding
for all r:

(1’) [nxtr(B, F.): (F)] -< [Extr(A, F): (F.)]

+ [Extr(C, F.): (F)].

(2’) [Extr(A, F): (F.)] =< [Ext+l(C, F.): (F.)]

+ [Ext’(B, F.): (F)].

(3’) [Extr+l(c, F.): (F.)] -< [Extr+l(B, F.): (F)]

+ [Exff(A, F.): (F.)].

Since the inequalities still hold when summed 6ver j, the first part of the
theorem then follows from Theorem 2.1.

If the sequence 0 - A -- B C -- 0 splits, then

Ext*(B, F.) - Extr(A, F) @ Ext’(C, F.)

((F.)-isomorphism and direct sum). Then computing dimensions and
summing over j gives/ a + ,.
The above theorem shows that in the exact sequence 0 -- A --* B -- C -- 0

the projective types of any two of the modules limit the possibilities for the
third. For example, if any two are of bounded projective type (i.e., the
type of a bounded sequence), then so is the third. Of course, the analogous
property holds for modules of finite projective dimension.
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We note here a corollary which will be of some use later.

COROLLARY 2.4. If 0 --- A --> B -- C -- 0 is exact, the number of copies of
P5 occurring in the direct sum decomposition of the rth term in the minimal pro-
jective resolution for B is less than or equal to the sum of the corresponding num-
bers for A and C.

Proof. The proof is shorter than the corollary and consists of equation (1’).
Now let al, an be the projective types of all the irreducible modules

for the ring R, and define supl</_<n ci p. In analogy to projective dimen-
sion we shall say that R has global projective type p. The following theorem
shows the connection between the global projective type of the ring and the
projective type of each of its modules.

THEOREM 2.5. If R has global projective type p, and if M is an R-module
of composition length t, then the projective type of M is less than or equal to to.
Moreover, p is the smallest sequence with this property.

Proof. The proof is by induction on t. The definition of p insures that it
is true for 1. Assume that it has been established for modules of com-
position length less than t, and let M have composition length t. We split
off an irreducible factor to obtain the exact sequence 0 -+ A -+ M --, F -+ 0
where F has composition length 1 and A has composition length 1. The
desired inequality now follows by applying the inequality (1) of Theorem
2.3 and the induction hypothesis. From the definition of p it is clear that
no sequence smaller than p could satisfy the conditions of the theorem even
fort 1.
We would like, now, to give some estimates on the global projective type

of a ring in terms of the internal structure of the ring. We can get one such
estimate from the composition factors for the indecomposable projective
modules. The indecomposable projective P. has a unique maximal submodule
NPs, and, as mentioned before, Ps/NP5 is isomorphic to F5. Looking
farther down in P5, we consider the factor NPs/N2Ps, a direct sum of ir-
reducible modules. We define the n X n matrix B with integer entries by
the condition that hi5 is the number of copies of Fi that appear in the direct
sum decomposition of NPs/NPs. Finally we define the matrix D where
di5 is the number of composition factors of NP5 isomorphic to Fi. It should
be noted that these matrices are related to the Cartan matrix of the ring [6].
The following theorem gives a rather crude bound on the global projective
type in terms of these matrices. It is not hard to show that the estimate is
good for rings with radical square zero, but it can be quite misleading for
many other rings as we shall see later. Before we consider the theorem we
prove a lemma which will be of some help.

LEMMA 2.6. If M has t5 composition factors isomorphic to Fs, then the
minimal projective mapping onto M is a direct summand of 5= t5 Ps (t5 P5
means the direct sum of t5 copies of Ps.)
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Proof. Induce on the composition length of M. Certainly it is true for
one composition factor. If M has composition factors, we can split off
an irreducible to obtain the exact sequence 0 -- S -- M -- F -- 0, and by the
induction hypothesis the lemma holds for both ends of the sequence. The
inequality (1’) with r 0 then shows that the lemma holds for the module M.

THEOREM 2.7. If Mr is the rth module in the minimal projective resolution

for Fj, then the number of indecomposable projectives in the direct sum decom-
position of Mr isomorphic to P is less than or equal to the ij entry of the matrix
Dr-lB for r >- 1.

Proof. As noted above we may take for M0 the module P and map it
onto F.. The kernel of this map is NP. For M1 we may use the direct
sum =1 bi. P since this maps onto NP/N2P and, by projectivity, onto
NP. Thus the theorem is true for r 1. Actually, we can claim equality
at this stage. However, at this point we cannot identify the kernel of the
map of M into M0 in terms of that part of the structure of the ring that we
have singled out.
Assume now that the inequality has been established for integers less than

r, and that the number t of copies of P in the direct sum decomposition of
Mr_ is less than or equal to the ij entry in Dr-2B. Thus Mr-1 Z= tk Pk
and by minimality we may assume that

Ker r-1

_
= t NP

We do not know the composition factors for Ker r--1, but we do know that
they appear among those of n= tk NP, so that the number of composition
factors of Ker tir-- isomorphic to F is less than or equal to =1 dk t. Thus
by the lemma, we may conclude that the number of copies of P occurring in
the direct sum decomposition of Mr is less than or equal to k=d tk which
in turn is less than or equal to the ij entry of the matrix D(Dr-2B) Dr-B.
This completes the proof of the theorem.
We can use the theorem to get an estimate of the global projective type

of the ring.

COROLLARY 2.8. The global projective type of the ring R is less than the
sequence tr) where t is the supremum over j of the sum of the elements in the
jeh column of
We remark that if the radical of R is square zero, then the matrices D and

B are equal, and that the inequalities of the theorem and its corollary may
be replaced by equalities. This follows from the fact that for such rings at
every stage of the minimal projective resolution for F, Ker tit is actually
equal to NMr rather than being merely contained in it.
We conclude this section with some examples. Let q be a fixed positive

integer and consider the sequence (qr) of positive powers of q. This is the
global projective type of the ring of q 1 by q 1 matrices with coefficients
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in a field having the same entry down the diagonal, arbitrary entries in the
bottom row, and zeroes everywhere else. One sees this by observing that
the ring has only one irreducible and that at every stage of the minimal pro-
jective resolution of that irreducible it is necessary to have q times as many
projectives in the direct sum decomposition as in the stage before.
The following example shows that our bound on the global projective type

developed in Theorem 2.7 and Corollary 2.8 is sometimes a bit big. Let R
be the ring of matrices of the form

wigh coefficients in a field. I is not hard go show ghag ghis ring has global
dimension 2. However, he magriees B and D of Theorem 2.7 and Corollary
2.8 are

B= (01 ;) and D =(11
A little matrix computation will show that the conclusion of Corollary 2.8
does not even indicate that this ring is of bounded global projective type.

3. Nunke’s theorem

In this section, we shll prove two vritions of Nunke’s theorem. Nunke
showed [10] that for the integers Z if Hom(A, Z) 0 Ext’(A, Z), then
A =0.
We were led to this study by the attempt to develop duality theories for

modules over rings th minimum condition. Usually, a good place to start
looking for a duality is the functor Hom(A, R) which converts left modules A
to their duals (since R is two-sided). This idea has been studied for quasi-
Frobenius rings in [9] and more recently generalized by Azumaya [2]. In the
latter case, however, the dual of a module is a module over a different, ring.

There are two objections to the use of Hom(A, R) for a duality. In the
first place it is only half exact, and in the second place it can happen that
Hom(A, R) is zero but that A is not. The assumption that R is quasi-
Frobenius eliminates both of these objections by making R injective and
putting enough different irreducible submodules into R.

In order to circumvent the above difficulties, we might try to use the whole
of Ext(A, R) for the dual of A, and it is this which leads us to a version of
Nunke’s theorem. In this version we assume that Ext’(A, R) 0 for all
n 0 and try to show A 0.
We shall make use of the following concept which is defined in terms of a

projective resolution of a module. Let M be an R-module; we shall say that
M has an ultimately closed projective resolution

M, e""Mo MO



GENERALIZATIONS OF FINITE PROJECTIVE DIMENSION 341

if there exists n such that Im i can be decomposed into a direct sum of modules
Ti such that each Ti is a direct summand of Im q for q n.

If we adopt the convention that the zero module is a direct summand of
every module, it is clear that modules of finite projective dimension have
ultimately closed projective resolutions. There are a number of other ex-
amples; for instance, if R is a ring with minimum condition with the property
that R has only a finite number of finitely generated indecomposable modules,
then every finitely generated module has an ultimately closed projective
resolution. In fact, for such a module any projective resolution (consisting
of finitely generated projective modules) is ultimately closed. This can be
shown by applying the Krull-Schmidt theorem to the modules Im . until
new indecomposables fail to appear. See [7, 8] for conditions on finite-dimen-
sional algebras which imply that they have only a finite number of finitely
generated indecomposable modules.

If R is a ring with minimum condition and with radical square zero, then
every finitely generated R-module has an ultimately closed resolution. This
can be seen by taking the minimal projective resolution for the module and
observing that Im ti for this resolution is a direct sum of irreducible modules
of which R has only a finite number.

It should be pointed out that the condition for a module to have an ulti-
mately closed projective resolution is a rather strong condition on the kernels
involved in the projective resolution. It is not a condition on the projective
modules themselves. It is conceivable that there is a module with a pro-
jective resolution which consists of the same projective repeated over and
over but that the resolution is not ultimately closed. We doubt whether
this can happen for we do not feel that there is enough room inside a projective
for that many submodules and factor modules.
We shall say that a ring R with minimum condition is ultimately closed if

every finitely generated R-module has an ultimately closed projective resolu-
tion consisting of finitely generated projectives.

THEOREM 3.1. If A is a finitely generated module over an ultimately closed
ring R, and if Extn(A, R) 0 for all n >- O, then A (0).

Proof. Assume A is such an R-module, and form the ultimately closed
projective resolution of A. Now take the homomorphism groups of it into R"

0 - Hom(/0 R) Hom(/ R)

Since the groups Extn(A, R) are assumed to be zero, the above sequence is
exact. Moreover, it is a sequence of R-modules (of the opposite hand from
A and M) because R is a two-sided module.
Now we can make use of the fact that the functor Horn( R) ("the dual")

defined on the category of finitely generated projective R-modules is exact
and contravariant to the same category. In addition, the functor composed
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with itself is naturally equivalent to the identity functor. The exactness
comes from the fact that the modules are all projective. That the functor
composed with itself is the identity functor is the familiar proof that "the
dual of the dual is the thing itself". In order to show that the second dual
is not too big, one observes first that it is not too big for indecomposable pro-
jectives. Such a projective is an idempotent-generated (say left) ideal Re,
and its dual is eR. Clearly, the second dual is again Re. Now in the general
case apply the Krull-Schmidt theorem, and induce on the number of inde-
composable direct summands.
Now we note that

0--Hom(M0,R),....)x* Hom(M,R) 2")
implies that if for some i > 1, Im * is projective, then the sequence splits all
the way back. That is, Im i is projective for j =< i. Then we have

0-- Hom(M0 R) * Hom(M1, R) Im i2" 0

is exact with Im i2" a finitely generated projective.
Applying the remark about duals and forming the homomorphism of this

sequence into R, we have

M0 -- 0

exact. This implies A 0.
That is, the theorem will be proved if we can show that for some n > 1,

Im t* is projective. In fact we need not even go that far. If we can show
the projective dimension of Im ti* is less than n 1 for some n >= 2, that will
be enough. This follows from the fact that

0-- Hom(M0, R) -- -- Hom(Mn_l, R) -- Im ti* -- 0

is a projective resolution for Im ti*, and if the projective dimension of Im
is less than n 1, then some Im ti must be projective for j > 1.

It should be noted that we have only used so far that A is finitely generated
over R with minimum condition. In fact, what we need to prove the con-

clusion that A 0 is that for some n >= 2 the projective dimension of Im
is -< n 1. In a corollary following the theorem we will assume a condition
of this sort, and the above argument would give the same conclusion.

Let us return to the proof of the theorem. The module Im ti* can be identi-
fied with the module Hom(Im ti, R) for each i >- 1. This is because of the
string of equivalences

Im i* Ker ti*+l {flf’+ 0} {fl Kerf Im

{f Kerf Ker tii} {f If e Hom(Im ti, R)}.

By the assumption on the nature of the resolution of A, there exists n > 1
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such that Im n @’=1 T and each T is a direct summand of some
Imqfor q < n.

Hence, we have

Im ti* --- Hom(Im in, R) --- ttom(T,, R)

(equivalences as R-modules).
Also, for each i there exists q < n such that T Tt Im q, and thus

Hom(T, R) @ Hom(T, R) Imq*. Then dim Hom(T, R) is less
than or equal to q 1 which is strictly less than n 1. But since Im t*
’:@ Hom(Ti R), we see that dim Im* max dim T.is also strictly less
than n 1. Thus the theorem follows from the remarks above.
As we remarked in the proof of the theorem we can get a similar theorem

from the proof if we can insure that the projective dimension of Im * < n 1
for some n. Recall that the right finitistic global dimension of a ring is the
supremum of the right projective dimensions of the right modules with finite
projective dimension.

COROLLARY 3.2. If a ring R with minimum condition has right finitistic
global dimension < oo, and if A is a finitely generated left module such that
Ext’(A,R) O for all m >- O, then A O.

The proof follows from the preceding remarks.
Actually, what we need in the proof of the corollary is that there does not

exist for the ring R an infinite exact sequence

O-- Mo--- MI---, ...--M,..

of projective modules with no splitting at any point. This is a little less
than finite finitistic global dimension. We remark that it may be true that
the finitistic global dimension of rings with minimum condition is always
finite. We do not even know of an example of a semiprimary ring with
"infinite" finitistic global dimension.
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