SOLVABLE FACTORIZABLE GROUPS I

BY
W. R. Scorr

Let G = HK where H and K are subgroups of G. A number of authors
have given sufficient conditions on H and K that G be solvable. In case H
and K are both Abelian, Itd [1] showed that G® = 1, i.e., that G is solvable in
two steps. It will be proved here that if H is finite Abelian and K finite
Hamiltonian, then @* = 1 (see Corollary 1).

Most of the papers on the subject limit themselves to the case where H and
K are both finite. An easy theorem (Theorem 2) permits one to allow either
H or K, but not both, to be infinite in a great many of these theorems. In the
present case, if H is Abelian and K Hamiltonian, with one of them finite,
then G® = 1. Actually generalizations of the results quoted above are
proved here.

Let G be a group with identity element 1. Let G denote the commutator
subgroup of G, and let G"*° = G for all natural numbers n. Let H C @
mean that H is a subgroup of G and H <] G mean that H is a normal subgroup
of G. Let Z(G) denote the center of G. If a, b e G, let [a, b] = aba™'b"" and
o’ =bab™". If HC Gand K C G, then [H, K] means the subgroup generated
by all commutators [, k] with & ¢ H and k ¢ K. Let o(G) denote the order of
G. Let a ~ b mean that a is conjugate to b.

Lemma. If a1, - ,@m, b1, - ,bueG, then (a1 - Qm, by --- by] s
in the subgroup normally generated by the set {[a; , b;] |1 £ ¢ = m,1 £j < n}.

Proof. 1If a, b, ¢ € G, then
(1) la, be] = [a, blla, c]’,  [ab, c] = [b, c]'la, cl.
The lemma follows easily by induction.

TaroreMm 1. If G = HK 1is a finite group, H an Abelian subgroup,
o(K®) = p, a prime, and K < Z(K), then G = 1.

Proof. By a theorem of 1t6 [2], [H, K] < G. Hence L = [H, K]IK" is a
normal subgroup of G. Let u generate K®. Let M be the subgroup nor-
mally generated by u, and N the subgroup normally generated by the set
{[a, 4] | @ e H}. All conjugates of u are obtained by conjugating u by elements
of H since K < Z(K) and G = HK. Butif h e H, then u" = [h, ulu ¢ L.
Hence LD M D N.

(;\)Ne shall show that (i) G < L, (i) @® < M, (iii) G® < N, and (iv)
7 = 1.

(i) Every commutator is of the form [ax, by] with a, b ¢ H and z, y ¢ K.
Hence by the lemma, G® < L.
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(ii) Temporarily, let r, s ¢ [H, K]. Then, in order to prove that
[ru’, su’] € M, it suffices to show that [r, s] € M since [r, u] ¢ N by (1) and the
fact that u ¢ K® < Z(K).

Let a, b e H,z,y e K. There exist ¢, d, ¢’ ¢ H and 2, w, 2’ ¢ K such that
2’ =z, d = dw, ()" = Z¢. By (1)

la, 2]° = [a°, 2°] = [a, 2c] = [a, 2];

[a, 2]’ = [a", 2] = [dw, 2"] = [w, 2"]"[d, 2"];

o, 2]” = ([a, a]")" = [w, 2"[d, 2’]" = [w, 2")"'[d, 2'];

la, 2]”* = [a, 2]" = [dw, 2"] = [w, 2*]"[d, 2'].
Then
2) o, 2, vy, b7 ~ [a, 2] ([a, 2]")

= [w, «1"'[d, Zld, 217 (fw, 2'1") .

Since [w, 2*] ¢ K and [w, 2*] ¢ K®, to prove that [[a, ], [y, b7']] € M, it
suffices to show that [d, 2'][d, 2"] " ¢ M.

Now 2¥ = w'z for some integer r. Hence 2'¢’ = (2¥)" = (W)’ = (u")%e¢,
and 2 = (u")"%c” where ¢” ¢ H. By (1)

d, 2lld, 2T = [d, 2lld, '] (mod M).

If 2¥ = 2, then the right member of the last congruence is 1; if 2¥ > 2, then for
some integer s, the right member equals

[d, 2lld, zu'T™" = [d, 2]([d, u']")"'[d, 2] " € M.

Therefore, if a, b e H and z, y ¢ K, then [[a, x], [y, b]] e M. Now [b, y] =
ly, b Also
[0, w71 = ww, vjw = (W, ww)™,

so that if [s, w] ¢ M, also [v, w™] ¢ M. Therefore,ifa, b ¢ H, 2, y ¢ K,
then [[a, 2], [b, yl] € M.

Hence, by the lemma, G® < M.

(iii) Recalling the definition of N and using the lemma on [aua™, bub™],
we get @¥ < N.

(iv) Leta,ceH,x e K. Then xa = by for some b ¢ H, y ¢ K. Thus
by (1),

[a, u]z = [va, u]lz, u]—l = [by, u] = [b, u];

[a, ul° = [ea, ulle, ul™ = [ca, ulle, u]’

for some natural number 7, since ( is finite. Hence N is the set of all products
of elements of the form [a, ], or alternatively of the form_[lu, al,aeH.
Now apply (2) withz = v = u, u* = 2¢c = 2¢, a* = dw. We may

take z = 2/, ¢ = ¢/. Then we get

lla, ul, [u, b1 ~ [d, 2lld, 2" ([w, 2]") " ~ [w, 2] " = Lor
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for some integer r. If [[a, u), [u, b™"]] = 1for all a, b ¢ H, then by the lemma,
Q™ = 1. If there are a, b ¢ H such that [[a, u], [u, b™]] = o with (r, p) = 1,
then u ¢ @, If, inductively, u ¢ G, then since [a, ] and [u, b™"] € G*™ by
normality of G, [[a, u), [u, b)) e @™, so that u e G"™. But that implies
that u e G™ for all n, so that G is not solvable.

If ¢ is a prime different from p, z e K, y ¢ K, 0(y) = ¢’, and [z, y] # 1, then
xyx" = yu’ where (s, p) = 1. Hence

1= (aya ™) = ()" = y"u'" = &7,

a contradiction. Hence y ¢ Z(K). It follows that any Sylow g¢-subgroup

K, of K is central in K, if ¢ % p. Therefore any Sylow p-subgroup K, | K.

Hence K is nilpotent. By a theorem of 1t6 [2], G is solvable, a contradiction.
Therefore G = 1.

CoroLLARY 1. If G = HK where H 1s finite Abelian and K is finite Hamal-
tondan, then G® = 1.

Proof. Since K is Hamiltonian, o(K®) = 2.

DeriniTioN. A class C of groups is hereditary if it is closed under the taking
of subgroups and homomorphic images.

TaeorEM 2. Let C be a hereditary class of solvable groups, D a hereditary
class of finite groups, such thatif L = UV, U ¢ C, V ¢ D, and U finite, then L
s solvable. If G = HK with H ¢ C, K € D, then G is solvable.

Proof. The index [G:H] is finite. Hence there is an N < H such that
N <« G and G/N is finite. Then G/N = (H/N)(KN/N). Now H/N ¢C
andisfinite; KN/N =~ K/(KnN) e D and is finite. Hence G/N is solvable.
Since N e C, N is solvable. Therefore @ is solvable.

Theorem 2 has many corollaries. Just one example will be given here.

CorOLLARY 2. Let @ = HK with H nilpotent, K Abelian or Hamiltonian,
and H or K finite. Then G s solvable.

Proof. The class C of nilpotent groups is hereditary, as is the class D of
Abelian or Hamiltonian groups, and either class remains hereditary if the
adjective “finite’’ is added. The corollary now follows from Theorem 2 and
Scott [3, Theorem 1].

TueoreM 3. Let C and D be as in Theorem 2. Suppose further, that there
are natural numbers, m, n, such that if H ¢ C then H m —~ 1 andif L = UV
with U ¢ C, V eDand U finite,then L' = 1. IfG=HEK withHe C, K ¢ D,
then G = 1.

Proof. Let N<|{ G, N C H,and let G/N be finite. Then
G/N = (H/N)(KN/N);
hence (G/N)™ = 1. Since N eC, N = 1. Hence G = 1.
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CoroLLARY 3. If G = HK, H Abelian, o(K®) = p, a prime, K© < Z(K),
and K finite, then G® = 1.

Proof. Let C be the class of Abelian groups, and D the class of finite
groups which are either Abelian or satisfy the hypotheses that K satisfies.
Then C is hereditary with m = 1. Again D is hereditary. By Theorem 1,
n = 4. Heunce by Theorem 3, G® = 1.

CoroLLARY 4. If G = HK with H Abelian and K finite Hamiltonian, then
G® = 1

CoroLLARY 5. If G = HK with H finite Abelian, o(K®) prime, and
K® c Z(K), then G® = 1.

Proof. The proof is similar to the proof of Corollary 3.

CoroLLARY 6. If G = HK with H finite Abelian and K Hamiltonian, then
¥ = L
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