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1. Summary
Let (ft, (B, u) be a probability measure space on which is defined a sto-

chastic process {x,} with finite state space. In 1-3 we define a notion of
fractional dimension, in terms of and {x}, for any set M c t. If t is
the unit interval, if is Lebesgue measure, and if = x(o)s is, for each, the base s expansion of , the definition reduces to the classical one due to
Hausdorff. In 4 and 5 we obtain, under the assumption that {x} is a
Markov chain, the dimensions of certain sets defined in terms of the asymp-
totic relative frequencies of the various transitions i--. j. In 7 these
theorems are specialized to the case in which {x.} is independent. In the
classical case these results become extensions of theorems due to Eggleston
[4, 5] and Volkmann [16, 17]. In 6 we use the preceding theorems to ob-
rain a result on "generalized Lipschitz conditions" on certain measures, a
result which reduces in the classical case to one of Kinney [11]. In 8 the
dimensions obtained in the first part of the paper are shown to be related to
entropy and certain allied concepts of information theory.

2. Introduction and definitions

Let {x, ., -.-1 be a stochastic process defined on a probability measure
space (ft, , ). Suppose that the state space of the process is a finite set ,
the states of which for notational convenience we take to be the first s in-
tegers" {1, 2, s}. Thus x with probability one for all n. A set
of the form

{’x() a., ], ..-,

where (a, a, a) is a sequence of states, we call a cylinder or, more
specifically, an n-cylinder. (While the sets {’x() a or b} and
{o’x(0) a} are cylinders according to the usual definition, they are not
according to the one given above, which will be adhered to throughout
the paper.)

If M is a subset of t, if p > 0, and if X) is an enumerable (possibly finite)
collection of cylinders, then we say that X) is a p-covering of M provided
u(v) < p for all v0 and Mc V =U {v’vex)}. (We will consistently
denote a collection of cylinders by a script letter, with or without subscripts,
and the union of the collection by the corresponding Latin letter.) If a => 0,
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let Lp(M, a) inf g(v)"’X), where g(v)"’0 denotes g(v)" summed
over all v e 0, and the infimum extends over all p-coverings 0 of M. If
there exist no p-coverings of M, then Lp(M, a) . As p decreases to 0,
L,(M, a) obviously increases to a limit L(M, a). It is easy to show that
L(., a) is monotone and subadditive, that is, that it is an outer measure.

Suppose that L(M, a) < and that > 0. Let 0 be an n-l-covering
ofMwith ’.(v)’0 < L(M,a) + 1. Ifn-1 < p, thenL(M,a+ e) <
(L(M, o)+ 1)n-. Letting n we see that Lp(M, a), and hence
L(M, a), is 0. Thus L(M, a) < implies that L(M, o+ e) 0 for
all e > 0, and it follows that there exists an s0, 0 =< s0 -<_ 1, such that
L(M, a) if 0 =< a < s0 and L(M, a) 0 if s0 < a-_< 1. This s0

we take to be the Hausdorff dimension of M" s0 dim M.
We always have 0 =< dim M =<_ 1, although for example in the extreme

case in which z consists of a single element, it can be seen that L(M, a)
for all a, 0 <- a < , for every set M, even the empty set. However if
t{o’x,(co) an, n 1, 2,.-.} 0 for every sequence {an} of states, that
is, if every D-cylinder has measure 0, then we have L(M, a) 0 for a > 1.
Thus in this case, the only one of real interest, dim M is actually the point at
which L(M, o) changes from to 0.
Note that dim M depends not only on M but on the measure t and the

process {Xn} aS well. If M is in the Borel field generated by {Xn}, then

L(M, 1) >= (M)
so that t(M) > 0 implies dim M 1. At the other end of the spectrum,
it can be shown that every countable set has dimension 0, provided every
w-cylinder has measure 0. The above notion of dimension measures the
magnitudes of sets in such a way that two sets of probability 0 can be com-
pared to see which is "larger". It is the main purpose of the present paper
to compute the dimensions of various sets where the strong law of large num-
bers is violated, under the assumption that {x} is a Markov chain.

3. The kebesgue case

In this section we relate the above definition of dimension to the classical
one due to Hausdorff. Suppose ft is the unit interval, 63 the collection of
Borel subsets of ft, and t is Lebesgue measure. For any o eft let

be the nonterminating base s expansion of co. Then {x, x., is a stochas-
tic process on (ft, 63, t); it is, in fact, the classical model for independent
trials with a fair s-sided die [1]. When (ft, 63, t) and {x} are defined in this
way, we will say, using Doob’s phrase, that we are in the Lebesgue case.
The definitions of Lp(M, a), L(M, a), and dim M given in 2 apply of

course in the Lebesgue case. (It is of no importance that here the state
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space is {0, 1, s 1} rather than/1, 2, s}.) Now in the Lebesgue
case the cylinders are exactly the half-open intervals of the form

(3.].) (t/s, ( + 1)/,],

where land n are integers. Thus Lo(M a) inf Ely I-o, where Iv
denotes the length of v, and the infimum extends over all coverings of M
by intervals of the form (3.1) of length less than p. Let L’o(M a) be the
same infimum but without the restriction that the intervals of the coverings
have the specific form (3.1). Let L’ (M, a) and dim’ M be defined in terms
of L:(M, a) just as, in 2, L(M, a) and dim M were defined in terms of
Lp(M, a). Then dim’ M is Hausdorff’s original definition [10] of the frac-
tional dimension of a subset M of the line. (Of course Hausdorff’s defini-
tion applies in any metric space.) We will prove that

(3.2) dim M dim’ M,

thus showing that the definition of 2 is a generalization of that of Haus-
dorff.

Since clearly Lp(M, a) > Lo(M, a), we have dim M __> dim’ M. In
order to establish (3.2) it suffices to prove that dim M __< dim’ M, and to
prove this it is obviously enough to show that

Lo(M, a) <__ (s nt- 1)L:(M, a).

Finally, (3.3) will follow easily if we can show that if u is any interval, then
there exist s -t- 1 intervals vl, v,+l of the form (3.1) such that

u c U+i=1 Yi

and ]v] < ul, i 1, 2, s2-t- 1. To prove this last statement, letu
be an interval with endpoints a and b, a < b. Define the integer n by
1/s"+1 < lul 5 1Is, and the integerkby/s+ < b (/c+ 1)/s+. If
(lc- s + 1)/s"+ N a, then

1/s+1 < b a < (lc+ 1)/s"+ ( s+ 1)" +/s

which is impossible. If s) /s+ a, then

1Is b- a > k/s+- (- s:)/s+,
which is also impossible. Hence

-s -sl

A referee points out that (3.2) has been proved for the case s 2 by A. S. BESICO-
VITCH, On existence of subsets of finite measure of sets of infinite measure, Indag. Math.,
vol. 14 (1952), pp. 339-344.
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From this it follows in the first place that the s + 1 intervals

(!--s /--s-11 (l k 11
cover u, and in the second place that the common length 1Is+: of these
intervals is less than ]u] b a. Since these intervals are of the form
(3.1), we hve proved (3.3) und hence (3.2).

4. Preliminary lemmas

We now prove some preliminary results which we will need. Each theorem
is a generalization of one which is well known in the Lebesgue case.

THEOREM 4.1. (i) If M M’, then dim M =< dim M’. (ii) If M
[J r M where F is any index set, then dim M >__ supr dim M. (iii) If the
index set F in (ii) is enumerable, then dim M sup r dim M.

Proof. Since (ii) follows immediately from (i), which is obvious, we
need only prove dim M __< supr dim M under the assumption that F is
countable. But if a > dim M for each,F, then L(M,) 0, and
since L(., a) is subadditive, L(M, a) 0, and the result follows. Part
(iii) is in general not true if F is uncountable, and a basic problem is to prove
it in special cases.
The next result generalizes Theorem 1 of [5].

THEOREM 4.2. Suppose that for each n, 2, is an enumerable collection of
cylinders and that M lira sup V. If .= u(v)"’X), < , then
dim M _< a.

Proof. Given p > 0, choose no so large that

Then U>__n02 is a p-covering of M, and hence L,(M, a) <__ p. Thus
L(M, a) 0, and the theorem follows.

If the stochastic process /x} is altered on a set of probability zero, then
for most purposes of probability theory the process is not essentially changed.
The purpose of the present theory however is to analyze sets of probability
zero, and hence we need some sort of assumption of a nonprobabilistic nature
which links the process {xn} with the space . The following condition seems
to be the weakest one which leads to simple results.

CONDiTiON (C). All but a countable number of sequences (a, a,...)
of states have the property that either the set I’x(o) a, 1, 2, ...} is
nonempty, or else lo’xk(oo) ak, k 1, 2,..., n} 0 for some n.

Condition (C), which is essentially a compactness condition, will be a
hypothesis in most of the theorems which follow. Note that this condition
is satisfied in the Lebesgue case; in fact since "--1 x,,(co)s is in this case
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the nonterminating expansion of o, the sequences {a} which violate the re-
quirements of the condition are exactly those with a. 0 for all sufficiently
large n. A probability measure space to carry a stochastic process with
given properties is ordinarily constructed by taking the countable combina-
torial product of the state space with itself. In this case Condition (C)
is always satisfied.
Theorem 4.2 enables one to find upper bounds for the dimension of a set.

The following result, which is a generalization of Theorem 5 of Eggleston [5],
enables one to find lower bounds. The two theorems used together enable
one to find the exact dimensions of certain interesting sets (see 5).

THEOREM 4.3. Suppose that for each integer n we have a finite set , of
cylinders which are pairwise disjoint. Suppose tat each element of n-+l i8
contained in some element of and that each elenent of X) contains exactly
b’a+l elements of 5,,+ Suppose further tbat {f v’ e 72,/ and v #,
then t(v)/t(v) p,+ where p+ > 0 is independent of v and v. Suppose
that for all a < ao there exists an n, such that

(4.1) P P-

n:na (Pna pn)lTa( < o0.

Pn Pn)

If V = V, then dim V ao, provided Condition (C) is satisfied.

Proof. We may assume that consists of exactly one cylinder. For
otherwise we may remove from all cylinders but one and remove from

any cylinder not contained in the remaining element of . Since this
has the effect of decreasing V, the original V has dimension not less than a
if the modified one does.
Assume then that consists of a single cylinder v, and define

(v,)p... p and N ..- ,for n 2. Then () N., where
denotes the number of elements in a set, and (v) 6, for all v e .

It follows immediately from (4.1) that

(4.2)

for any a < a0.

Given a < a0, choose n0 so that

(4.3) :0 6,-,/ Y < ,
which is possible by (4.2).
cylinders such that

Let 1 be a finite or enumerable collection of

and

(4.5) g(u) < /t for u el.

(4.4) t(u)"’ < 1
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We will show that t does not cover V. From this it will follow that

L(V, a) >= L,,o(V o) >= 1,

and hence that dim V _-> a. Since c can be taken arbitrarily close to
the theorem will follow.
Suppose then that satisfies (4.4) and (4.5), where no satisfies (4.3).

Those sequences of states which violate the requirements of Condition (C)
we will call the exceptional sequences. Let a(j)- (a(j), a(j),...),
j= 1, 2,..., be an enumeration of the exceptional sequences. For each
j 1, 2, let e [’x() a(j), 1, l} be a cylinder such
that

(4.6) (e) < [(1 #(u)a’)/2J]i/a, (e) < 0.
Such a cylinder exists because {w’x() a(j), k 1, 2,-..} is empty.
Now let be the collection {e:j 1, 2,..-}. If does not
cover V, then certainly does not. By (4.6) we have

(4.7) (w)"’W < 1,

nd

(4.8) (w) < n0 for e,
that is, satisfies the same conditions does.
For i 1, 2, let be the set of elements of for which

(4.9) o+- (w) > o+.
By (4.7) each contains finitely many elements, and by (4.8)

U=.
An element of 0+ which meets an element of is contained in it, having
a smaller probability. Now by (4.7) and (4.9)

(4.10) 1 > (w)"’W

Let be the set of elements of n0+ which meet elements of, i.e., which
are contained in W. Then B Wi, and by (4.9) and (4.10)

(4.11) (B) (Wi) (Wi)no+i-i < no+i-l/:o+i,
If 1 i t, then each element of 0+t is contained in exactly one element
of 0+, and each element of 0+ contains exactly No+,/No+ elements
of no+t. Moreoverif v e 0+and v e 0+t, then (v)/u(v) 0+,/0+,.
It follows that if et. is the set of elements of n0+* which are covered by
elements of , then

,(C,.,)/(B,) Nno+, -0+,/N0+,
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By (4.1.1) we have

(4.12) t,(Ct,) < N,o+t ,,o+ &o+-/+", o+ N,,o+
If t U i=1 e,., then by (4.12) and (4.3)

u(C,) < N.0+, .0,/2 u(Vo+,)/2.
Therefore (t is a proper subset of

It is easily seen that if an element v of X),0+t meets an element of U
then v ,. Thus the set Xt of elements of X,0+ not met by any element
of U*i=1 is nonempty. Clearly each element of X,+ is contained in some

t!
element of U. Let X be the set of elements of containing infinitely
many elements of U.>, X). Since X) is finite, X), is nonempty. Since each
element of X)" "clearly contains some element of X,+, it is possible to con-

tf ttstruct inductively a decreasing sequence {v’} of cylinders with v e X),. Let
t!v" =lvt {o’xk(o) ak, /c 1, 2,...}.

Suppose that (a, a.,-..) is one of the exceptional sequences, say a(j).
t!Then there exists some to such that vt c e for all => to. Since e e,

e. e for some i. If exceeds both to and i, then v
t! It

which is impossible since v, e , X)t. Thus (a, a., is not one of the
exceptional sequences. On the other hand, (v)= t}n0+ > 0 for all t,
which clearly implies that {o’(o) a, k 1,..., l} > 0 for M1 1.
Since (al, a,-..) is not exceptional, it follows that v" is nonempty.
By construction, v" V0+, for each so that v" V. On the other

hand, v" is not contained in any element of U*=e for any t. Thus e does
not cover V, and the proof of the theorem is complete.

5. Main theorems

In this section we compute the Hausdorff dimensions of various sets under
the assumption that {xn} is a Markov chain with stationary transition prob-
abilities.

Fori, j 1,..-,s, n 1,2,..-,andcoe2,1ettii.(o,n) be 1/ntimes
the number of/c, 1 -< /c -< n, such that x(o) i and x+1(o) .7". Thus
i-(o, n) is the relative frequency of the transition i --. j in the first n steps
of the process. Let

i,(o, n) ti,.(o, n) E=I ij(50, n),
(5.)

ti.,(o, n) ;=1 (’i(o, n).

Then tii.(o, n) and .(o, n) are the relative frequencies of i among
{x(o), ..., xn(o)} and {x.(o), xn+(o)}, respectively.
Assume now that {x.} is a Markov chain with transition matrix P (pi.).

See [6] or [3] for the properties of Markov chains needed here. Let be
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the set of ordered pairs (i, j) with i, j and p. > 0. Consider points
() of 9(’)-dimensional Euclidean space with coordinates indexed

by the elements (i, j) of ’ (taken in some arbitrary but fixed order). Let
A be the set of such that . => 0 for all (i, j) e ’ and , i" 1. We
denote by p the ordinary Euclidean metric on A. For e A let r()
i and c() . ., where the summation extendsin the first case

over those j such that (i, j) e ’, and in the second over those j such that
(j,i) ’. ForAlet

(5.2) H(:P) ’ ’ lg /r() , lg /c(), i. lg p, , lg p

where 01g 0 is taken to be0. Ifc() 0, then. 0forallj, and we
take ilg /c()= O. The function H(:P), in terms of which our
Hausdorff dimensions will be expressed, is essentially an entropy and is
discussed in 8 below.

Let B be the set of points of A such that r() c() for all i. Then
B is a closed subset of A. If S is any subset of A and/(n)} is a sequence of
points of A, we say that (n) approaches S as n approaches , and write
(n) --* S, if lim p((n), S) O.
For n 1, 2, and o e t, let t(0, n) be the point of A with coordinates

(0, n) for all (i, j) e ’. Then r(i(, n)) ti.(0, n) and c((, n))
i.i(, n). Since obviously .(, n) .(, n) <- l/n, (o, n) -- B.

If S B, let
M(S) {’ti(0, n) -- S},

(5.3)
N(S) {’p(ti(o, n), S) 0(n-)}.

If S consists of a single point , we write M() and N(). Our main result
gives the dimensions of M(S) and N(S) under the assumption that {x}
is a regular Markov chain, that is, under the assumption that there are no
transient states and just one ergodic class, with or without cyclically moving
subsets.

THEOREM 5.1. Suppose that x,} is a regular Markov chain with transition
matrix P (pi). If S B, then

dim M(S) dim N(S) dim (J s M()
(5.4)

dim U N() sups H(’P),
provided Condition C) is satisfied.
Note that we have made no assumption about the initial distribution.

We prove Theorem 5.1 by a series of lemmas.
Let (a, a.,..., a,,+) be a sequence of states.. Fori, j 1, ..., slet

f be the number of /c, 1 __< /c _< n, such that a i and a+ j. Let
fi. Z--ifij and f. -_fi. The s X s matrix F (f) we will
call the transition count of the sequence. Clearly f. -f.i
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i 1, s. If F is any s X s matrix with nonnegative integral entries,
we will call it admissible provided ifi" n, .., f.i > 0, i 1, ..., s,
andf. -f. tiu- i, i 1,..., s for some u andv. If F is admis-
sible, let N()(F) be the number of sequences (u, al, a2, a) which
have F as transition count. Lemma 5.2 below, which is due to Whittle [18],
gives a simple expression for N()(F). This result has been proved by
Whittle by integration methods and by Dawson and Good [2] and Goodman
[9] by graph-theoretic methods. The following simple inductive proof may
be of independent interest.

If G (g) is an s X s matrix, we denote by G the (i, j)t cofactor of
G. If this cofactor is independent of i, we denote it by G..
LEMMA 5.1. gi O, j 1, S, then G G. does not depend

on i, and

(5.5) G. ( g)G..

Proof. If the rank r of G is less than s- 1, then G is identically 0,
and the result is trivial. Since clearly r s, we may assume r s- 1.
But then Gg det G 0, so that (G, ..., G) must be
a scalar mulgiple of (1, ..., 1), since i 0. Thus
Clearly ( g)G G. det G ..
LEMM 5.2. If F is admissible and n > s, then

(5.6) N’)(F) (f.l/fi)fl.,,
where is the matrix with entries -f/f..

Proof. Since F is admissible, f. > 0 nd ffff. is well defined. Since
(i- fifff.) 0, . is independent of i by Lemma 5.1.

The result being easy to establish for n s 1, assume (5.6) holds for
n 1. If F(i, j) is F with the (i, j) element diminished by 1, then clearly

(5.7) N()(F) v N(-I)(F(u, v)),

where the summation extends over those v for which fu > O. It suffices to
verify that the right-hand side of (5.6) satisfies (5.7) or, since ,,(u, v)
F, that

F., :=f, -
which follows immediately from (5.5), taking G I- F.

LEMMh 5.3. Suppose that {x,} is a Marov chain with transition matrix
P (P). US B, then

(5.8) dim M(S) supers H(’P).

Proof. Note that we have not assumed Condition (C), and we have made

This argument is due to O. S. Rothaus.
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no assumptions on the chain {Xn}. Since ti(o, n) approaches S if and only
if it approaches its closure, and H(. :P) is continuous on B, we may assume
that S is closed. Then S is compact, and for any > 0 there exists a finite
number Lc of points (e, 1), 1, ..., Lc such that (e, l) e S and

(J { A’I . .(, t) < , (i, j) ’}.(5.9)

Let
v(, ) {:l ,(, n) ,.(, )1 < , (i, j) ’},

Vn() O V( , ).

Denote the right-hand side of (5.9) by E for the moment. Then E is open
in A, E S, and V,(t’)= [:(, n)eE}. If eM, then e V(t’)
for all but a finite number of n. Therefore

(5.10) M(S) lim inf V(e),

for anye > 0.
Clearly V(e, l) and V(e) are unions of collections ,(e, l) and (e)

U :1 (e, l) of n-cylinders. We will show that for any given

a > sups H(:P)
there is an e > 0 such that

(5.11) :=1 (Y)a:Vn($) < .
It will follow from (5.10) and Lemma 4.2 that dim M(S) sups H(:P).
Now clearly

,(v)":V(, l) N)(F)(pHpi.)",
where the first summation extends over transition counts F satisfying

f/u (, ) < , (i, j) ’,

and f 0, (i, j) e a’, and, for fixed F, the second summation extends over
those u such that f.-f. - for some v. Let K be an upper
bound of the values of all determinants of order less than s having entries
in [0, l]. Then K1 < , and it follows from Lemma 5.2 that

(.) ,(,)":v,(, ) (Hf./Hf)(H li) ",

where the F-summation is the same as before. The inequality (5.12) will
remain valid if we increase the range of the F-summation to include all s X s
matrices of nonnegative integers satisfying

.=1f/n 1,

(.) f/n (, ) < , (i, j) ’
f 0, (i, j) ’.
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In other words we drop the requirement that F satisfy f. f. ,
i 1, s, for some u and v.
We consider only those such that

(5.14) e < 1/2s4.
If io and j0 are appropriate functions of e and l, with (i0, j0) e ’, then

(5.15) 0]o(, l) mx(.),, (, l) 1/s s.
Now let T(, l, n) be the s X s mtrix with entries

t(e, l, n) [n((e, l) + )], (i, j) ’, (i, j) (i0, 0)

(5.16) t(, l, n) 0, (i, j) ’,

tioo( , l, n) n ()(oo)ti,
where [x] denotes the integral part of x.
For any matrix F with nonnegtive integral entries satisfying f n

and fi 0 for (i, j) e ’, let Q(F)"= (Hf.i!/(Hfi,)’.(Hp,i’) ". Let
(i, j) a’ be distinct from (i0, j0), and let F’ and F" be two matrices of
the above form satisfying

f"oio foo 1

(.7) f’ f + 1

f: f’o if (u, v) (i, j)nd (u, v) (io,jo).

In other words, suppose F" is obtained from F’ by transferring one count,

from (io,jo) to (i, j). Let K max(,, p( < . If j j0, then

Q(F’)/Q(F") K(f + 1)/fo
If j jo, then

(5.19)

Suppose that

(5.20)

Q(F’)/Q(F") -< K fio/foio

f/n j(e, l) (i, j) r’.

If (5.20) and (5.18) hold, then

Q(F’)/Q(F") <__ 2K2fj/foo <-_ 4K2(1 d- s2)/s K3

by (5.14) nd (5.15). If (5.20) and (5.19) hold, then

Q(F’)/Q(F") <- 2K2/s <- K.

Therefore Q(F’)/Q(F") <__ Ka if (5.17) and (5.20) hold. If n exceeds some
n(e), then (5.20) holds for F’ T( e, l, n), where T( e, l, n) is defined by
(5.16). If F satisfies (5.13), then it can be carried into T(e, l, n) by at most
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2ne transformations of the form F’ -- F’t. Moreover, every F’ encoun-
tered in the process will satisfy (5.20). It follows that

Q(F) <= KnQ( T( , l, n) ).

The number of matrices F stisfying (5.13) is t most (2ns) ’. Thus by
(5.12) and the definition of 2, (v), we have, provided n n(v),

(.2) () () < :(2) (T(, , n)),

where K nd K depend only on the p.
Now let

(, t) (, t) + , (, j) ’, (i, j) (0, j0),

0(, ) ()-00)(, t),

nd let *(v, l) be the vector with components .(v, 1). It follows from
(5.14) nd (5.15) that *(, l) lies in A nd, in fct, hs positive coordinates.
Moreover,

(n.2) .(, ) (, ) < , (, j) ’.
By the definition (5.16)
(5.23) lim t(s, l, n)/n .(, l), (i,j) ez’.

Now fix a, nd l. Since (, l) > 0, t(, l, n) . Applying Stirling’s
formul to Q( T(, l, n)) we hve, as n ,

--1n lgQ(T(v, l, n)) a, -n t(e, l, n) lg p, n-t(, l, n) lg t(, l, n)/t.(, l, n) + o().

From (5.23) it now follows that if > 0 then there exists an n(a, , )
such that

n lg Q(T(, l, n)) a, .(, l) lg p
(5.2) , .(, ) *(, t)/c(*(, )) + , , 2, ..., L,
provided n n(a, ’, ). The functions, lg p nd , lg ffc()

being uniformly continuous on A, it follows from (5.22) that there is for
each > 0 n s0() such that if < 0(), then, .(v, l) lg p , (, l) lg p + ,
5.5) E, .(, ) .(, t)/(*(, )), (, ) ,(, t)/c((, )) .
If v < 0() nd n n(a, , ), then by (5.24), (5.25), nd (5.2),

n lgQ(T(, l, n))
(5.26)

(- E, $(, ) p) (H((, ).P) ) + (2 + ),.
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Now -.,, ii(e, l) lg pi- _>_ min(.),,(- lg p.) K-1 > 0, where
K < depends only on the p.i. If d sups H(’P), then from (5.26)

(5.27) n-llg Q( T( e, l, n) Kl(d a) + (2 + a).

Given a > d, select > 0 so that

(5.28) 2 lg K + K(d a) + (2 + a) < -.
Then choose e < rain (1/2s*, e0(), ). If n n2(a, ’, v), it follows by (5.21),
(5.27), and (5.28) that

(v)"’V() L sKi(2)e-’.
From this (5.11) follows, and Lemm 5.3 is proved.

LEMM 5.4. Suppose x} is a regular Marko chain with transition matrix
P (p). IfeB, then

dimN() H(’P),

provided Condition C) is satisfied.

Proof. Some of the r() may be 0. We will suppose the last s s of
them are’ri() > O, i s r() O, i > s". Thes" X s"matrixZwith
entries given by z /r() if (i, j)
(i, j s") is a stochastic matrix. If z (r(), r,,()), then zZ z,
and hence z is a stationary distribution for Z. Since all z are positive,
there are no transient states. We will suppose for notational conven-
ience that there are two ergodic classes a {1, 2,..., s’ und
{s’ + 1, s’. The cases of one or of three or more ergodic classes are
hndled in the sme wy. Let a ,= nd b ,=,+. Then
a, b > 0, a + b 1. Let a, mx(2, [an]) ndfl mx(2, [bn]).
For ech n let (an, anal) be sequence of states with

a

and having transition count F(n) (f)) (i, j 1,..., s’), where

(5.29) /. :/a] 0( ).

Similarly, let (bnl, bn) be a sequence of states with

bl b. s’

and having transition count G(") (g)) (i, j s’ + 1,..., s’), where

(n)g /a ffb 0().

It is easy to see that such sequences of states exist. Since P has only one
ergodic class, there exist sequences (c, c) and (d, d) with
c d 1, c dl s’ + 1 and

(c, c+) z’, (d, d+) e a’ 1, m 1
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Let vo 0 and "Yn al +’’" + an + 1 +’’" + n + 2n(m 1).
Let consist of all /-cylinders v {o:xz(o) ez, l, ’n} deter-
mined by sequences (el, e..) with the property that

(e’/4-1

has transition count F(*+), (e,+.+-l, e,+,,+m/) has transition
count G(l+1), (e,+,,,.--, e,,,+_l) (c,..., c), and

(e,/,_+,-.., e,/) (d,..., d),

for 0, 1, n 1. These sequences are exactly the ones which can
be constructed in the following way. Take a,..., an, b,’.., bto be
sequences of states with transition counts Fm, F(n), G(1), G(n), re-
spectively. Form the compound sequence

Each starts and ends with 1, and each 51 starts and ends with s’ + 1.
Between each a and 51 insert (c, cm_), and between each fil and
insert (&, d_l).

Let j(n) be the s X s partitioned matrix

j() = F() 0 0= IG() 0
"00

Let J’ and J" be the transition counts of (c1, ".-, c) and (d, d),
respectively. Finally, let K() (hi9) j(n). + nJ’ + (n 1)J". Then
any sequence (e, --., ev) satisfying the requirements of the preceding
paragraph has transition count K().

It follows by (5.29) that =f})/=l al i1/a =0(=1 a/)-1.
Since =l d() < , and (a/1 a 1/) 0(1), we have

(l)/

Similarly, 7=, y/u 0(7= 5,)-. Since n/y O, it follows
that

(5.30)
k)/y, 1 0(-), (i, j) o.’,

) 0, (i, j) t ’.

Suppose (e,, e2, is an infinite sequence of states such that for each
n, (e,..., e,) has K(n) as transition count. If H(’) is the transition
count for (e, e..), it follows from (5.30) and the fact that y. n2/2
that ,o’(n)/n i O(n-), (i, j) o". Recalling the definition of
we see that f3 =1 V. N(). Therefore it suffices to prove

(5.31) dim NT= Vn ’ H(’P).
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Let v. be the number of v’ of X) contained in a single v of
v does not depend on v, and in fact N"") (F()),.’+lr() (G().
this and Lemma 5.2 we have

gi

Then
From

As n --+ , F
given by

goes elementwise to the s’ X s’ matrix Y with entries y

i,j <- s’, (i,j) er’,

The upper left-hand s’ X s’ submatrix of Z (defined above) is an indeeom-
posable stochastic matrix since ( is an ergodie class. It follows easily that
the transpose (I Y)* of I Y is an indeeomposable stochastic matrix
with stationary distribution (rl(), rs,() ). Since

=1Yis 0, j 1, d,

we have Yo" Y.s and ’-1Yo Y.i 0, j 1, s’ by Lemma 4.1.
Since (I Y)* has a unique stationary distribution, we must have

Y., kr,((), j 1,

for some constant k. If k were 0, the rank of Y* would be less than s’ 1,
which is impossible since I Y* is indecomposable. Since (’) -+ Y ele-
mentwise, we have/!) -- Y.1. Because of its combinatorial significance,
/().1 is positive, and hence k must be positive also. Thus /?!) goes to a
positive constant, and it follows that

(5.32) lim_ lg 0.

Now as n -- we have, by Stirling’s formula and the fact that

since ( e B,

(5.33) a lg II;’=1 f!})t ’ (")/Hi,S=lfij Ei,a’=l a o lg ,/r,() + o(1).

By (5.32), (5.33), similar expressions for the g, and the fact that
a,/ (a, + ) a, we have

(5.34) (a. + )-1 lg u, , lg /r() + o(1).

If v e )n--1 and v’ e 2, and v Yn--1 then
s’ f(n) .(n)

(Vt)/$J.(V) no Hi,j=l .:i.i H:,j=s’+l p.i On

where p0 pc’"p_p,’"pa_ nd p. does not depend on
vndv’. Asn ,
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From this and similar expression for the g) we get

(5,35) (Oln + #n) -1 lg Pn r’ ij lg Pij + o(1).

Given a < H(" P), choose e so that

(5.36) 0 < e < ---, . lg p(H(’P) a).

By (5.34) and (5.35) there exists an no such that if n no, then

( + )- g , ig /r() ,

It follows that if n n0 then

1
lg Pno’’’Pn--

0- (o"" )+"(n0 n)

4c + , lg p , lg p + , lg ,,:/r().
n n0-Z

Since the second term on the right goes to 0, and s satisfies (5.36), there is
some n n0 such that

1
lg

(p0 p-t)
.- .0-, (0 )’+"(0 ) < -

provided n n. Since n/2, it follows that (4.1) holds. There-
fore (5.31), and hence Lemm 5.4, follows from Theorem 4.3.
We now prove Theorem 5.1. With the definition (5.3) we clearly have

N() M(),M(S) N(S),UsN() N(S),andUsM() M(S).
It follows from Lemmas 5.3 and 5.4 and Theorem 4.1 thstU s N(), U M(),
M(S), N(S) all have the same dimension, namely sups H(’P), and Theorem
5.1 is proved. It follows lso for example that

dim U s M() sup dim M(),

und if S is uncountable, we have an instance where Theorem 4.1 (iii) holds
with an uncountable index set.
The dimensions of a number of interesting sets defined in terms of the

asymptotic properties of the relative transition frequencies can be obtained
through Theorem 5.1. In each case (5.4) gives the answer, and there is
no more Hausdorff dimension theory involved. However, the supremum in
(5.4) may be difficult to compute.
Before proceeding to an example we recast Theorem 5.1 in & more sug-

gestive form.

TasoRs 5.2. Suppose that {Xn} iS a regular Mar]coy chain with transition
matrix P (p). Suppose that is a continuous mapping of A into some
regular space . Suppose that G and -IG O. Then
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dim l’(ti(0, n)) -- G} dim Uo[w’(ti(o, n)) --sup [H(’P)’()e
provided Condition C holds.

Proof. If ’n F, then by / -- G we mean that if G’ is any open set con-
taining G, then ,n e G’ for all but a finite number of n. Let

{.() 1.
Since is continuous, (() G if and only if ( -- S. Thus the theorem
follows from Theorem 5.1.
As an example of Theorem 5.2, take 4() H((’P). If 0 -<_ , -<_ 1 and

G {,}, then the set where

lim * (’ n) lg ij(, n)
lim H(ti(, n)" P)

has dimension ,. If we take G [0, /], it follows that the w set where

lim H(ti(, n)’P) =< ,
and the set where lim sup H(5(w, n)’P) <-_ each have dimension , also.
Further examples are given in 7.

In this section we have for simplicity confined ourselves to the regular
case. It is possible to reformulate Theorem 5.1 so as to include the case
of more than one ergodic class.

Since a Markov chain of arbitrary order can be reduced to one of first
order, it is clear that if [x} is such a chain, and if M is defined in terms of
the asymptotic relative frequencies of occurrence of the various k-tuples of
states, then one can in principle write down the dimension of M.

6. A theorem on generalized derivatives

As before let (t, ) be a measurable space, and let {x} be sequence of
measurable functions. Suppose we have two probability measures and
on . We will denote dimensions computed with respect to t and (and
{x,} by dim, and dim respectively. Now suppose that {x,} is a regular
Markov chain with respect to t and with respect to . That is, suppose
that

{x,+ u,-[lx- u, <= n} pu,u,+,

where P (p-) and Q (qi.) are regular stochastic matrices. We assume
that P and Q are distinct. Let the stationary probabilities corresponding to
P and Q be {p} and /q}, respectively. We do not assume however that
t{x i} por {x i} q. We will assumethut Condition (C) is
satisfied by {x} together with u.
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For each o e 2 and n 1, 2, -.., let v(0) be the n-cylinder

v() l"x(’) x(), , ..., n}.
Now let

f,(o) (v,(co))/,(v,(o)) if v(v(0)) > 0,

0 otherwise.

Let f(0) be the Radon-Nykodym derivative of (the absolutely continuous
component of) t with respect to v. Of course f is determined only to within
a set of v-measure 0. It follows from the theory of derivatives (see Chapter
VII, 8, of [3]) that f(c0) -- f(co) except on a set of v-measure 0. Since by
the strong law of large numbers for Markov chains (see Chapter V, 6, of
[3]) we have ti.(o, n) --+ pi p. on a set of t-measure 1, a.nd ti,.(o, n) -- qi q
on a set of v-measure 1, and since P Q, it is clear that t and v are singu-
lar with respect to each other. Hence f(o) 0, and the limit

(6.1) limn_ v(v, (o))/t(v,(o))

is if a 1, except on a set of v-measure 0. On the other hand, the limit
(6.1) is 0 if a 0. Thus it is natural to investigate the set of a such that
(6.1) is 0 except on a set of v-measure 0. This amounts to finding a gen-
eralized Lipsehitz condition.

THEOREM 6.1. Under the above assumptions there exists a set E e 63 such
that

(i) v(E)= 1,
(ii) dim, E H(Q’P) q qii lg qi/ q qi lg pi.,

(iii) if o e E, lhen the li’mit (6.1) equals 0 if 0 <= a < H(Q" P) and equals
if a > H(Q’P).

Proof. Let E be the o set where .(o, n) --. q q.. Then (i) follows
from the strong law of large numbers and (ii) from Theorem 5.1. Now
if o e E, then

P(l)n(O)) P((-Ot’Xl(5of) Xl((-O)} Hit qniqiqiiW(n),
and hence

(6.2)

Similarly,

(6.3)

lg u(v,(oo) n qi qii lg qii -Jr- o(n).

lg tt(v,(o)) n qi qij lg Pij + o(n).

But (iii) follows immediately from (6.2) and (6.3).
If (2, (g, {x}, u) constitutes the Lebesgue case, and is a second prob-

ability measure on. (2, (g) satisfying the above conditions, then Theorem 6.1
reduces to a result of Kinney [11]. In this case (iii) becomes an ordinary
Lipschitz condition.
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7. The independent case

We now specialize the results of 5 to the case in which the process Xn}
is independent. Let A’ be the set of vectors (, ) of s-space
such that >= 0 and 1. Let p’ denote Euclidean distance on A’.
If (, n) is defined by (5.1), and ’(, n) ((, u), (, n)), then
’(, n) eA’. If , peA’, let H(:p) lg/lgp. For an
information-theoretic interpretation of H(: p) see 8. If S’ A’, let

n)

N’(S’) {:p’(’(, n), S’) 0(n-l)}.
THEOREM 7.1. Suppose {x} is an independent process with

{:x() i} p > 0.
If S’ A ’, then

dim M’ (S’) dim N’ (S’) dim s, M’()
(7.1)

dim s, N’() sups, H(’p),

provided Condition C holds.

Proof. Let S be the set of eB such that (r(),..-, r())e S’. It
follows from Theorem 5.1 that the sets listed in (7.1) have sups H(:P) as
their common dimension, where P (p) with p p. Since a condi-
tionM entropy never exceeds the corresponding entropy [14],

,,.,,)lg.,,] lgci(),

or, assuming e B, , i lg ffr,() r() lg r,().
Hence

sups H(:P) < sups
r() lg r()

sups, H(:p).

On the other hnd, if f e S’, then ( i) e S. Hence

sups H(:P) sups, H((f fi):P) sups, H(f:p),

proving the theorem.
Consider Theorem 7.1 with p, nd suppose S’ consists of the single

point (p, p). We get

dim {: (, n) p O(n-), i 1,..., s} 1.

A referee points out that in the Lebesgue cse with s 2 nd
the dimension of M’(S’) hs been obtained by A. S. BESICOVITCH, On the sum of digits
of real numbers represented in the dyadic system, Math. Ann., vol. 110 (1934), pp. 321-
330.
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It is an immediate consequence of the law of the iterated logarithm [6] that

n) lg n) i 1, s} o.
Thus if one considers the set where 8(o, n) --. p at a certain rate and then
increases the rate, the measure of the set drops to 0 long before the dimen-
sion drops below 1.
Theorem 7.1 can be specialized to the following one just as in 5.
THEOREM 7.2. Suppose that {x} is an independent process with

i} > 0.

Suppose that is a continuous mapping of A’ into some regular space F.
pose that G F and -G O. Then

dim {o:4(’(o, n)) -- G} dim Uo{o’((’(o, n)) -- y}

sup {H(’p)’() e 0},
provided Condition C holds.

We indicate briefly some applications of Theorems 7.1 and 7.2. In the
Lebesgue case with S’ consisting of a single point, Theorem 7.1 gives

lg ’i/lg s-1

as the classical Hausdorff dimension of the o set where (o, n) --. ’ for each
i, a result originally due to Eggleston [4]. In [7] Good gives the dimension
of M’(-) in the general independent case. Good’s formulation of the prob-
lem is somewhat different from the present one since he takes ft to be the
unit interval, t to be Lebesgue measure, and then defines Ix,} as what he
calls a "generalized decimal".

If 0 -_< , =< s 1, let r be the root of :0 (i ,)z 0 lying between
0 and 1, and let f(,) lg (1 r + - rS-i)/lg s. Eggleston [5] has
shown in the Lebesgue case that the dimension of the set where

limk=l xk(o) /n /

is f(,). He has shown further that if / =_< (s 1)/2, then f(/) is also the
dimension of the set where lim’= xk(oo)/n <__ . (A simplified proof
of this latter fact has been given by Kinney [11].) These results follow
from Theorem 7.2 if one takes () -0 i’ and computes the supremum
involved by Lagrange multipliers. Theorem 7.2 then also gives f(/) as the
dimension of the w set where

lim sup,=x(o)/n <__ /

provided / <= (s 1)/2, as well as results on the rate of convergence.
If F is Euclidean and is a linear transformation, () R, we have as

a special case of Theorem 7.1

(7.2) dim {o’R’(0, n) -- ,} sup {H(’p)"R "r},
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assuming that , e RA’. A result essentially equivalent to (7.2) has been
obtained in the Lebesgue case by Volkmann [17, Part IV] under the addi-
tional assumption that the matrix R of the transformation has the special
property that in each column there is exactly one positive entry, the others
being 0. Volkmann’s result appears quite different from (7.2), even in the
Lebesgue case, because his method gives the supremum in a different form.
The equivalence of the two forms can be established by maximizing H(: p)
subject to R" , by the method of Lagrange multipliers.
As a final illustration, consider the set

T(/) {o’- Z._.I i((.0, n) lg Pi --where min, lg p71 =< ’ =< max lg p71. If / ’=1 Pi lg p, the entropy
[14] of (pl, p), it follows as a special case of the Shannon-McMillan
theorem [13, 14] that (T(,)) 1, so that dim T(?) 1. For general ?
let r be the positive root of -=1 (, + lg p)p 0. Then in the general
independent case dim T(V) r - -1.=1 p: Again this result is obtained
by Lagrange multipliers.

8. Connection with information theory
If p (p,..., p) and q (q,..., q) are two probability distribu-

tions on a l, 2, s}, then, as in 7, define

H(q’p) E qi lg q//E q lg pi

provided q, 0 for any i such that p 0. If p 1Is then H(q’p) be-
comes H(q) - qi lg q/lg s, the relative entropy of q [14]. For a general
p it is thus natural to call H(q" p) the relative entropy of q with respect to p.
Now Leibler and Kullback [12] define the function

I(q’p) q lg (q/p)

and i.nterpret it as the mean information per observation for discrimination
between p and q when q is the true distribution. They then define (in case
p 0 if and only if qi O) J(q, p) I(q’p) -[- I(p’q) as the divergence
between the distributions p and q. It is a simple matter to show that

H(q’p) H(q)/(H(q) + I(q’p)).

We now turn to the Markov case. Let P and Q be regular stochastic
matrices with stationary distributions p and q, where we assume that
q.,:.. 0 if p.. 0. As in 5 we set

H(Q’P)

_
q q lg q/_, q q lg p.

If pi l/s, this becomes H(Q) _, q qi lg q/lg s, the relative

That the dimension, in the Lebesgue case, of the o set where 6(o, n) q is this
relative entropy has been noted by Good [8] and Shannon [15].

Their definitions apply of course to distributions on spaces much more general
than o-.
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entropy [14] of a Markov source with matrix Q. Such a source we will
denote by Q itself. Just as in the independent case, we take H(Q: P) to be
the relative entropy of Q with respect to P.
Suppose we want to decide whether a source is governed by Q or by P.

If we have received a number of symbols from the source, and the last one
is i, then according to the Leibler-Kullback definition, the mean amount of
information the next symbol from the source contains for making the de-
cision isj qis lg (qi/p), if the source is in fact governed by Q. Averaging
over i we have

I(O:P) q q lg (q/pj)

as the information per symbol for discrimination between P and Q when
the source is actually Q, an extension of the Leibler-Kullback notion. If
q- 0 implies p. 0 as well as conversely, we may take

J(Q, P) I(Q:P) --[- I(P:Q)

as a definition of divergence between P and Q. As in the independent case
it is easy to show that

H(Q:P) H(Q)/(H(Q) + I(Q:P)).

Let a be the set of sequences a (ai, a2, an) with a e a. Let
p() be the distribution on a defined by p()(a) Pa Paa Pa,_a,, and
define q(’) similarly in terms of Q. Then p()[q()] simply gives the prob-
abilities of obtaining the various sequences of length n from the source P [Q].
Let I(q(’) :p()) be the ordinary Leibler-Kullback function, and take

I,(Q:P) I(q():p()).
One can show that lim n-I,(Q: P) I(Q: P), a result well known in the
case p 1Is [14].
We have shown that the dimensions obtained in the preceding sections all

have information-theoretic interpretations. The appearance of the supremum
in the theorems shows that a "maximum-entropy principle" is a central
feature of the theory.
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