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1. Introduction

In this paper we begin a study of the radius of univalence of Bessel func-
tions. It is necessary to normalize the function, and a natural form is

(1.1) ](z) zl-J(z) a)z a)z + a()z

where the coefficients 2m+1 are defined by the recurrence relation

a})= 2-/r(1 + ,), + a2,_l/4m(, + m)
(.2)

m= 1,2, .-..

It is well known that J,(z) is an entire function for any u. With respect to
the normalization factor z1-", we note that it is unique in the sense that
1 u is the only exponent for which z-"J,(z) is schlicht in some neighbor-
hood of the origin when u > -1.

The index , is assumed to be real.
We present here a complete solution for u > -1. In 5 we state some

results for u < --1 which appear plausible in the light of our computational
experiments; we expect to handle these in a later paper.

2. Some general properties of Bessel functions

We require various standard results from the theory of Bessel functions and
one from the theory of conformal representation. These will be quoted with
references, but without proof. We have quoted Watson [1], but the results
will be found in many places, in particular in Erdlyi, Magnus, Oberhettinger,
and Tricomi [2].

LEMM_ 1. For , > --1 the functions J(z) and j(z) have infinitely many
zeros, and all are real. Cf. Watson [1], pp. 478, 483.

As usual we shall denote the positive zeros of ](z), in order of magnitude,
as j,l < j.2 < j,a < .-.. We note that, in addition, 0 and -j.
(m 1, 2, ...) are zeros of J(z).

LnMMh 2. For fixed m, j,, is an increasing function of ,. Cf. Watson [1],
p. 5O8.
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.-2 is convergent for any , > 1LEMM_ 3. =13,
Proof. For fixed , it follows from the asymptotic formulae that the large

zeros are spaced at an interval of approximately v. Convergence follows by
comparison with =1 m-2. Cf. also Watson [1], pp. 495-497.
The canonical product of ](z) is

2.--2(2.) ,(z) (z/2"r( + ))= ( -,.).

Cf. Watson [1], pp. 497-499.

]EMMA 4. Let C be a simple closed contour and D its interior. Suppose that

f(z) is regular in D and continuous in D u C. Suppose that as z describes C
in the positive direction, w f(z) describes a simple closed contour F once.
Then F is described positively, and w f(z) gives a one-to-one and conformal
representation of D on A, the interior of F. Cf. Littlewood [4], p. 121.

3. Determination of the radius of univalence

THEOREM 1. For 0 0 <= 1/2, r < j,., and , > --1, the function

increases.

Proof. We have

h2( O) ](re)](re-i)
2i .--2 --i(2-’/r(1 + ,))reiII=l (1 re 3.,)(2-/F(1-t-))re

H=I(1- re

(2-/r( + )’
._

r 11= (1 r 2., cos 20 zr 3., sin 20)
2 2(1 r2, cos 2 r, sin 20)

(2-/F(1 + )): ’- 2r 1= (1 r3, r3, cos 20).

As 0 increases from 0 to , cos 20 decreases from 1 to -1. Hence each
factor in the last product increases, nd so therefore does the product itself,
provided each factor is positiveand this is certainly the case when r j,.

Consider J(x) for x 0. Since

](x) (x/2r( + )) + O(x),

the function starts by increasing. Since (x), > -l, has positive zeros,
there is a least positive number p < j, for which ](x) is maximum. Clearly
the radius of univalence cannot exceed p because values of ](x), x p,

are repeated for x > p. We shall show that p is the radius of univalence
of ](z).
By differentiating (2.1) logarithmically we can specify p more quantita-

tively as the least positive zero of the function
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(3.1) d [log ](a(x)

Hence

(3.2)

THEOREM 2.

"P’ Zml .2 2--1

If O < 0 < ir then, for , > --12

0 < arg](pe) < 0.

Proof. From (2.1) we obtain
20 .--2P,(O) =--ple-iJ,,(p,ei) (2-’/F(1 A- ))1:--1 (1- p, e

We have to show that

We set

and

Then
arg P,m

--0 < argP < O, (0 < O < 1/2r, > -1).

--2O,.m pg,.m, m 1, 2,

P,,,m 1 0.,, e2i0.

arctan (t. sin 20/(1 O.m cos 20)).
Now for 0 < 0 < 1/2r we have

0 < sin 20 < 20 and 1 > cos 20 > -1.

Since t,m > 0, we thus obtain

O,m sin 20/(1 . cos 20) < 20./(1 .).
Since

v%, < 1, m-- 1, 2,

and arctan x < x (x > 0), it follows that

0 < arg p. < 20.,ff (1 t.m).

Summing with respect to m and using (3.2) we have

0 < -argP < 0 (0 < 0 < Xr2 > -1).

This proves Theorem 2.

THEOREM 3. The radius of univalence of ](z), , > -1, is p.

Proof. We consider ](z) for any fixed > -1. Let C denote the curve
consisting of three arcs, namely

the segment C1 0 -<_ x -<_ p of the real axis,
the arc C" 0 < 0 < 1/2 of the circle z p, and
the segment Ca "p _>- y > 0 of the imaginary axis.

In virtue of what has already been said, the reflection properties of ](z),
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and Lemma 4, it is only necessary to prove the map P of C by ](z) has
no double points.

Let Pi be the map of Ci, i 1, 2, 3. On C1, the function v is real and
increases steadily with x, since p is the first positive maximum of (x).
Hence F1 is simple. On C2, the absolute value ] increases steadily with

(cf. Theorem 1). Hence F2 is simple. From the power series in (1.1) it
follows that on Ca, J is purely imaginary, and its imaginary part decreases
steadily with decreasing y. Hence Fa is simple. By Theorem 2, J is genu-
inely complex on C2. Hence F1 or Fa cannot have points in common with
F2. Since
cannot have common points. This completes the proof.

4. The radius of univalence

We now consider p as a function of for real values of > -1.

THEOREM 4. For , > --1, the radius of univalence p increases steadily
with .

Proof. From (3.1) we obtain

(4.1) g,(x) (,.-) -(,,-x) }.
From (3.1) and (3.2) it follows that

g,(x) > 0 for 0_-< x < p, and g,(pv) O.

Take
the terms of the series in (4.1) are positive. Hence

g,(x) > o (o <= x <= ,),

and therefore p, > p. This completes the proof.

THEOREM 5. Suppose that , is real, and , > -1. Then

(4.2) (a) lim, p o, (b) lim_ p 0.

Proof. We prove (4.2a). From (1.1) we obtain

(4.3) ]:(z) =0 (- 1) o2,x =--- -’=0 (- 1)((x),

where

(4.4) b() 2-/r(1 + )’

Denoting the sum of the first two terms in (4.3) by a(x) and the remainder
after these terms by (x), we have

Z(x) (x) + (x).
Let

x0
() 2V/( + 1)/3.
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Then
(x0() 0,

as follows from (4.3) and (4.4). We prove that for 0 < x __< x0
() the abso-

lute values of the terms of w(x) form monotone decreasing sequence whose
limit is zero. From (4.3) and (4.4) we have

(2 (z) 2m + 1 z(4.5) q,,),.xj(
fl()_2(z) 2m 1 4m(9 + m)"

Hence

and thus

q)(x) < 2m -t- 1 9 + 1
2m 13m(9 + m)

(0-<_ x _<_

q) (x) _-< 1, q() (x) < 1 (0 _-< x =< x0(); m 2, 3, ...).

Further

Itence

and therefore

q) O(m-) (. ).

(x) > o (o <= x <= x(o)),

3’(x) > o (0 _-< x -_<

This means that p :> x0(). Since x0
() tends to infinity as 9 tends to infinity,

(4.2a) is proved. We prove (4.2b). When 9 -1, it is clear that ](z)
vanishes at points near x :i:x0(). Since x0

(’) tends to zero as 9 tends to -1,
those points tend to zero, too. This proves (4.2b).

Similar arguments lead to an upper bound for p which shows that p
(9 :> -1) is of order 91/ exactly. We prove that

() %/12(9 + 2)/5(4.6) p < xl

For this purpose we consider (4.3), written in the form

(4.7) ]:(x) a(x) b(x) ,-_a c,,(x),

where
a(x) 2-’/r(1 + 9) fl)(x) + ()(x) 6a()(x),

b(x) ’() ’() (x) fl( (x).-, (x) ()(x), c,.(x) ,_
The above value of x) is chosen as it is the value of x for which

2-/r(1 + 9) )(x) -[- ()(x)
is minimum; this minimum is 2 (9 8)/10F 9 + 2).

b() 3.2-/4r(, + 2),

b() 5.2-’/32F(9 + 3),

Using the values

b) 7-2-/384F( + 4),
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3

2

I.

--5 --4 --3 --2 --1 0 2 v

Figure 1

we find that

(4.8)
2F(1 - ,)a(x())

--(17v - 293v - 768)/250( + 1)( -b 3) < 0 (v > --1)

Furthermore,
3(2m -b 1)(v zc 2)/5m(2m 1)(v + m),

as follows from (4.5) and (4.6). Hence

<
and therefore

(4.9) b(x()) > O, c.,(x)) > 0,

(m _-> 4).

From (4.7)-(4.9) we obtain

From this, (4.6) follows.
< 0.

5. Numerical results
The results which have been established rigorously above were suggested

by the results of a series of calculations made on the Datatron 205 at the
California Institute of Technology. Three basic subroutines were prepared;
the first produced the coefficients of (z) when , was assigned; the second
computed the real and imaginary parts of ](pe) when p and 0 were assigned;
the third computed the extrema of (z) on the real and imaginary axes.
With a little experience, reasonable estimates of p could be obtained

rapidly. Curve plotting equipment would have been convenient. Figure 1
shows p in the interval -5 -< <= 2.
Nothing further need be said about the range v > -1, except to note that

the critical point is on the real axis of the z-plane.
In the intervals -1 > > -2 and -3 > > -4 the critical point ap-

pears to be on the imaginary axis. In the intervals -2 > > -3 and
-4 > ), -5 the critical point is genuinely complex.

Added in proof November 21, 1959. R.K. Brown [3] has discussed the
radius of univalence of J(z) and [J(z)] 1/" for certain complex values of g

(with 6t > 0) using the methods of Z. Nehari and M. S. Robertson.
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