the Radius Of UNIVALeNCE OF beSSEl functions I^{1}

BY
Erwin Kreyszig and John Todd

1. Introduction

In this paper we begin a study of the radius of univalence of Bessel functions. It is necessary to normalize the function, and a natural form is

$$
\begin{equation*}
\widetilde{J}_{\nu}(z)=z^{1-\nu} J_{\nu}(z)=a_{1}^{(\nu)} z-a_{3}^{(\nu)} z^{3}+a_{5}^{(\nu)} z^{5}-\cdots \tag{1.1}
\end{equation*}
$$

where the coefficients $a_{2 m+1}^{(\nu)}$ are defined by the recurrence relation

$$
\begin{align*}
a_{1}^{(\nu)}=2^{-\nu} / \Gamma(1+\nu), \quad a_{2 m+1}^{(\nu)}=a_{2 m-1}^{(\nu)} / 4 m(\nu+m) & \\
& m=1,2, \cdots . \tag{1.2}
\end{align*}
$$

It is well known that $\widetilde{J}_{\nu}(z)$ is an entire function for any ν. With respect to the normalization factor $z^{1-\nu}$, we note that it is unique in the sense that $1-\nu$ is the only exponent for which $z^{1-\nu} J_{\nu}(z)$ is schlicht in some neighborhood of the origin when $\nu>-1$.

The index ν is assumed to be real.
We present here a complete solution for $\nu>-1$. In §5 we state some results for $\nu<-1$ which appear plausible in the light of our computational experiments; we expect to handle these in a later paper.

2. Some general properties of Bessel functions

We require various standard results from the theory of Bessel functions and one from the theory of conformal representation. These will be quoted with references, but without proof. We have quoted Watson [1], but the results will be found in many places, in particular in Erdélyi, Magnus, Oberhettinger, and Tricomi [2].

Lemma 1. For $\nu>-1$ the functions $J_{\nu}(z)$ and $\tilde{J}_{\nu}(z)$ have infinitely many zeros, and all are real. Cf. Watson [1], pp. 478, 483.

As usual we shall denote the positive zeros of $\widetilde{J}_{\nu}(z)$, in order of magnitude, as $j_{\nu, 1}<j_{\nu, 2}<j_{\nu, 3}<\cdots$. We note that, in addition, 0 and $-j_{\nu, m}$ $(m=1,2, \cdots)$ are zeros of $\widetilde{J}_{\nu}(z)$.

Lemma 2. For fixed $m, j_{\nu, m}$ is an increasing function of ν. Cf. Watson [1], p. 508.

[^0]Lemma 3. $\quad \sum_{m=1}^{\infty} j_{\nu, m}^{2}$ is convergent for any $\nu>-1$.
Proof. For fixed ν, it follows from the asymptotic formulae that the large zeros are spaced at an interval of approximately π. Convergence follows by comparison with $\sum_{m=1}^{\infty} m^{-2}$. Cf. also Watson [1], pp. 495-497.

The canonical product of $\widetilde{J}_{\nu}(z)$ is

$$
\begin{equation*}
\widetilde{J}_{\nu}(z)=\left(z / 2^{\nu} \Gamma(1+\nu)\right) \prod_{m=1}^{\infty}\left(1-z^{2} j_{\nu, m}^{2}\right) \tag{2.1}
\end{equation*}
$$

Cf. Watson [1], pp. 497-499.
Lemma 4. Let C be a simple closed contour and D its interior. Suppose that $f(z)$ is regular in D and continuous in $D \mathrm{u} C$. Suppose that as z describes C in the positive direction, $w=f(z)$ describes a simple closed contour Γ once. Then Γ is described positively, and $w=f(z)$ gives a one-to-one and conformal representation of D on Δ, the interior of Γ. Cf. Littlewood [4], p. 121.

3. Determination of the radius of univalence

Theorem 1. For $0 \leqq \theta \leqq \frac{1}{2} \pi, r<j_{\nu, 1}$, and $\nu>-1$, the function

$$
h(\theta)=\left|\widetilde{J}_{\nu}\left(r e^{i \theta}\right)\right|
$$

increases.
Proof. We have

$$
\begin{aligned}
h^{2}(\theta)= & \widetilde{J}_{\nu}\left(r e^{i \theta}\right) \widetilde{J}_{\nu}\left(r e^{-i \theta}\right) \\
= & \left(2^{-\nu} / \Gamma(1+\nu)\right) r e^{i \theta} \prod_{m=1}^{\infty}\left(1-r^{2} e^{2 i \theta} j_{\nu, m}^{-2}\right)\left(2^{-\nu} / \Gamma(1+\nu)\right) r e^{-i \theta} \\
& \cdot \prod_{m=1}^{\infty}\left(1-r^{2} e^{-2 i \theta} \bar{j}_{\nu, m}^{2}\right) \\
= & \left(2^{-\nu} / \Gamma(1+\nu)\right)^{2} r^{2} \prod_{m=1}^{\infty}\left(1-r^{2} \bar{J}_{\nu, m}^{2} \cos 2 \theta-i r^{2} \bar{j}_{\nu, m}^{-2} \sin 2 \theta\right) \\
& \cdot\left(1-r^{2} \bar{j}_{\nu, m}^{2} \cos 2 \theta+i r^{2} \bar{j}_{\nu, m}^{2} \sin 2 \theta\right) \\
= & \left(2^{-\nu} / \Gamma(1+\nu)\right)^{2} r^{2} \prod_{m=1}^{\infty}\left(1+r^{4} \bar{j}_{\nu, m}^{-4}-2 r^{2} \bar{J}_{\nu, m}^{2} \cos 2 \theta\right)
\end{aligned}
$$

As θ increases from 0 to $\frac{1}{2} \pi$, $\cos 2 \theta$ decreases from 1 to -1 . Hence each factor in the last product increases, and so therefore does the product itself, provided each factor is positive-and this is certainly the case when $r<j_{v, 1}$.

Consider $\widetilde{J}_{\nu}(x)$ for $x \geqq 0$. Since

$$
\widetilde{J}_{\nu}(x)=\left(x / 2^{\nu} \Gamma(1+\nu)\right)+O\left(x^{3}\right)
$$

the function starts by increasing. Since $\widetilde{J}_{\nu}(x), \nu>-1$, has positive zeros, there is a least positive number $\rho_{\nu}<j_{\nu, 1}$ for which $\widetilde{J}_{\nu}(x)$ is maximum. Clearly the radius of univalence cannot exceed ρ_{ν} because values of $\widetilde{J}_{\nu}(x), x<\rho_{\nu}$, are repeated for $x>\rho_{\nu}$. We shall show that ρ_{ν} is the radius of univalence of $\widetilde{J}_{\nu}(z)$.

By differentiating (2.1) logarithmically we can specify ρ_{ν} more quantitatively as the least positive zero of the function

$$
\begin{equation*}
g_{\nu}(x) \equiv \frac{d}{d x}\left[\log _{e} \widetilde{J}_{\nu}(x)\right]=\frac{1}{x}-2 x \sum_{m=1}^{\infty} \frac{j_{\nu, m}^{2}}{1-x_{j}^{2} j_{\nu, m}^{-2}} \tag{3.1}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\frac{1}{2} \rho_{\nu}^{-2}=\sum_{m=1}^{\infty}\left(j_{\nu, m}^{2}-\rho_{\nu}^{2}\right)^{-1} \tag{3.2}
\end{equation*}
$$

Theorem 2. If $0<\theta<\frac{1}{2} \pi$, then, for $\nu>-1$,

$$
0<\arg \tilde{J}_{\nu}\left(\rho_{\nu} e^{i \theta}\right)<\theta
$$

Proof. From (2.1) we obtain

$$
P_{\nu}(\theta) \equiv \rho_{\nu}^{-1} e^{-i \theta} \widetilde{J}_{\nu}\left(\rho_{\nu} e^{i \theta}\right)=\left(2^{-\nu} / \Gamma(1+\nu)\right) \prod_{m=1}^{\infty}\left(1-\rho_{\nu}^{2} e^{2 i \theta} j_{\nu, m}^{2}\right)
$$

We have to show that

$$
-\theta<\arg P_{\nu}<0, \quad\left(0<\theta<\frac{1}{2} \pi, \quad \nu>-1\right)
$$

We set

$$
\vartheta_{\nu, m}=\rho_{\nu}^{2} j_{\nu, m}^{2}, \quad m=1,2, \cdots
$$

and

$$
p_{\nu, m}=1-\vartheta_{\nu, m} e^{2 i \theta}
$$

Then

$$
-\arg p_{\nu, m}=\arctan \left(\vartheta_{\nu, m} \sin 2 \theta /\left(1-\vartheta_{\nu, m} \cos 2 \theta\right)\right) .
$$

Now for $0<\theta<\frac{1}{2} \pi$ we have

$$
0<\sin 2 \theta<2 \theta \text { and } 1>\cos 2 \theta>-1
$$

Since $\vartheta_{\nu, m}>0$, we thus obtain

$$
\vartheta_{\nu, m} \sin 2 \theta /\left(1-\vartheta_{\nu, m} \cos 2 \theta\right)<2 \theta \vartheta_{\nu, m} /\left(1-\vartheta_{\nu, m}\right)
$$

Since

$$
\vartheta_{\nu, m}<1, \quad m=1,2, \cdots
$$

and $\arctan x<x(x>0)$, it follows that

$$
0<-\arg p_{\nu, m}<2 \theta \vartheta_{\nu, m} /\left(1-\vartheta_{\nu, m}\right)
$$

Summing with respect to m and using (3.2) we have

$$
0<-\arg P_{\nu}<\theta \quad\left(0<\theta<\frac{1}{2} \pi, \quad \nu>-1\right)
$$

This proves Theorem 2.
Theorem 3. The radius of univalence of $\tilde{J}_{\nu}(z), \nu>-1$, is ρ_{ν}.
Proof. We consider $\widetilde{J}_{\nu}(z)$ for any fixed $\nu>-1$. Let C denote the curve consisting of three arcs, namely
the segment $C_{1}: 0 \leqq x \leqq \rho_{\nu}$ of the real axis, the arc $C_{2}: 0<\theta<\frac{1}{2} \pi$ of the circle $|z|=\rho_{\nu}$, and the segment $C_{3}: \rho_{\nu} \geqq y>0$ of the imaginary axis.
In virtue of what has already been said, the reflection properties of $\widetilde{J}_{\nu}(z)$,
and Lemma 4 , it is only necessary to prove the map Γ of C by $\widetilde{J}_{\nu}(z)$ has no double points.

Let Γ_{i} be the map of $C_{i}, i=1,2,3$. On C_{1}, the function \tilde{J}_{ν} is real and increases steadily with x, since ρ_{ν} is the first positive maximum of $\widetilde{J}_{\nu}(x)$. Hence Γ_{1} is simple. On C_{2}, the absolute value $\left|\widetilde{J}_{\nu}\right|$ increases steadily with θ (cf. Theorem 1). Hence Γ_{2} is simple. From the power series in (1.1) it follows that on $C_{3}, \widetilde{J}_{\nu}$ is purely imaginary, and its imaginary part decreases steadily with decreasing y. Hence Γ_{3} is simple. By Theorem 2, \widetilde{J}_{ν} is genuinely complex on C_{2}. Hence Γ_{1} or Γ_{3} cannot have points in common with Γ_{2}. Since \tilde{J}_{ν} is real on C_{1} and purely imaginary on C_{3}, the $\operatorname{arcs} \Gamma_{1}$ and Γ_{3} cannot have common points. This completes the proof.

4. The radius of univalence ρ_{ν} considered as a function of ν

We now consider ρ_{ν} as a function of ν for real values of $\nu>-1$.
Theorem 4. For $\nu>-1$, the radius of univalence ρ_{ν} increases steadily with ν.

Proof. From (3.1) we obtain

$$
\begin{equation*}
g_{\mu}(x)=g_{\nu}(x)+2 x \sum_{m=1}^{\infty}\left\{\left(j_{\nu, m}^{2}-x^{2}\right)^{-1}-\left(j_{\mu, m}^{2}-x^{2}\right)^{-1}\right\} \tag{4.1}
\end{equation*}
$$

From (3.1) and (3.2) it follows that

$$
g_{\nu}(x)>0 \quad \text { for } \quad 0 \leqq x<\rho_{\nu} \quad \text { and } \quad g_{\nu}\left(\rho_{\nu}\right)=0
$$

Take $\mu>\nu$. Then, by Lemma $2, j_{\mu, m}>j_{\nu, m}, m=1,2, \cdots$, and for $x \leqq \rho_{\nu}$ the terms of the series in (4.1) are positive. Hence

$$
g_{\mu}(x)>0 \quad\left(0 \leqq x \leqq \rho_{\nu}\right)
$$

and therefore $\rho_{\mu}>\rho_{\nu}$. This completes the proof.
Theorem 5. Suppose that ν is real, and $\nu>-1$. Then

$$
\begin{equation*}
\text { (a) } \lim _{\nu \rightarrow \infty} \rho_{\nu}=\infty, \quad \text { (b) } \quad \lim _{\nu \rightarrow-1} \rho_{\nu}=0 \tag{4.2}
\end{equation*}
$$

Proof. We prove (4.2a). From (1.1) we obtain

$$
\begin{equation*}
\widetilde{J}_{\nu}^{\prime}(x)=\sum_{m=0}^{\infty}(-1)^{m} b_{2 m}^{(\nu)} x^{2 m} \equiv \sum_{m=0}^{\infty}(-1)^{m} \beta_{2 m}^{(\nu)}(x), \tag{4.3}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{0}^{(\nu)}=2^{-\nu} / \Gamma(1+\nu), \quad b_{2 m}^{(\nu)}=\frac{2 m+1}{2 m-1} \frac{1}{4 m(\nu+m)} b_{2 m-2}^{(\nu)} \tag{4.4}
\end{equation*}
$$

Denoting the sum of the first two terms in (4.3) by $\alpha_{\nu}(x)$ and the remainder after these terms by $\omega_{\nu}(x)$, we have

$$
\tilde{J}_{\nu}^{\prime}(x)=\alpha_{\nu}(x)+\omega_{\nu}(x)
$$

Let

$$
x_{0}^{(\nu)}=2 \sqrt{(\nu+1) / 3}
$$

Then

$$
\alpha_{\nu}\left(x_{0}^{(\nu)}\right)=0,
$$

as follows from (4.3) and (4.4). We prove that for $0<x \leqq x_{0}^{(\nu)}$ the absolute values of the terms of $\omega_{\nu}(x)$ form a monotone decreasing sequence whose limit is zero. From (4.3) and (4.4) we have

$$
\begin{equation*}
q_{m}^{(\nu)}(x) \equiv \frac{\beta_{2 m}^{(\nu)}(x)}{\beta_{2 m-2}^{(\nu)}(x)}=\frac{2 m+1}{2 m-1} \frac{x^{2}}{4 m(\nu+m)} \tag{4.5}
\end{equation*}
$$

Hence

$$
q_{m}^{(\nu)}(x) \leqq \frac{2 m+1}{2 m-1} \frac{\nu+1}{3 m(\nu+m)} \quad\left(0 \leqq x \leqq x_{0}^{(\nu)}\right)
$$

and thus

$$
q_{1}^{(\nu)}(x) \leqq 1, \quad q_{m}^{(\nu)}(x)<1 \quad\left(0 \leqq x \leqq x_{0}^{(\nu)} ; m=2,3, \cdots\right)
$$

Further

$$
q_{m}^{(\nu)}=O\left(m^{-2}\right) \quad(m \rightarrow \infty)
$$

Hence

$$
\omega_{\nu}(x)>0 \quad\left(0 \leqq x \leqq x_{0}^{(\nu)}\right)
$$

and therefore

$$
\tilde{J}_{\nu}^{\prime}(x)>0 \quad\left(0 \leqq x \leqq x_{0}^{(\nu)}\right)
$$

This means that $\rho_{\nu}>x_{0}^{(\nu)}$. Since $x_{0}^{(\nu)}$ tends to infinity as ν tends to infinity, (4.2a) is proved. We prove (4.2b). When $\nu \sim-1$, it is clear that $\widetilde{J}_{\nu}(z)$ vanishes at points near $x= \pm x_{0}^{(\nu)}$. Since $x_{0}^{(\nu)}$ tends to zero as ν tends to -1 , those points tend to zero, too. This proves (4.2b).

Similar arguments lead to an upper bound for ρ_{ν} which shows that ρ_{ν} $(\nu>-1)$ is of order $\nu^{1 / 2}$ exactly. We prove that

$$
\begin{equation*}
\rho_{\nu}<x_{1}^{(\nu)}=\sqrt{12(\nu+2) / 5} \tag{4.6}
\end{equation*}
$$

For this purpose we consider (4.3), written in the form

$$
\begin{equation*}
\widetilde{J}_{\nu}^{\prime}(x)=a_{\nu}(x)-b_{\nu}(x)-\sum_{m=3}^{\infty} c_{\nu, m}(x) \tag{4.7}
\end{equation*}
$$

where

$$
\begin{gathered}
a_{\nu}(x)=2^{-\nu} / \Gamma(1+\nu)-\beta_{2}^{(\nu)}(x)+\beta_{4}^{(\nu)}(x)-\frac{2}{3} \beta_{6}^{(\nu)}(x) \\
b_{\nu}(x)=\frac{1}{3} \beta_{6}^{(\nu)}(x)-\beta_{8}^{(\nu)}(x), \quad c_{\nu, m}(x)=\beta_{4 m-2}^{(\nu)}(x)-\beta_{4 m}^{(\nu)}(x)
\end{gathered}
$$

The above value of $x_{1}^{(\nu)}$ is chosen as it is the value of x for which

$$
2^{-\nu} / \Gamma(1+\nu)-\beta_{2}^{(\nu)}(x)+\beta_{4}^{(\nu)}(x)
$$

is minimum; this minimum is $2^{-\nu}(\nu-8) / 10 \Gamma(\nu+2)$. Using the values

$$
\begin{aligned}
& b_{2}^{(\nu)}=3 \cdot 2^{-\nu} / 4 \Gamma(\nu+2) \\
& b_{4}^{(\nu)}=5 \cdot 2^{-\nu} / 32 \Gamma(\nu+3), \\
& b_{6}^{(\nu)}=7 \cdot 2^{-\nu} / 384 \Gamma(\nu+4),
\end{aligned}
$$

we find that

$$
\begin{align*}
& 2^{\nu} \Gamma(1+\nu) a_{\nu}\left(x_{1}^{(\nu)}\right) \\
& \quad=-\left(17 \nu^{2}+293 \nu+768\right) / 250(\nu+1)(\nu+3)<0 \quad(\nu>-1) \tag{4.8}
\end{align*}
$$

Furthermore,

$$
q_{m}^{(\nu)}\left(x_{1}^{(\nu)}\right)=3(2 m+1)(\nu+2) / 5 m(2 m-1)(\nu+m)
$$

as follows from (4.5) and (4.6). Hence

$$
q_{m}^{(\nu)}\left(x_{1}^{(\nu)}\right)<1 / m \quad(m \geqq 4)
$$

and therefore

$$
\begin{equation*}
b_{\nu}\left(x_{1}^{(\nu)}\right)>0, \quad c_{\nu, m}\left(x_{1}^{(\nu)}\right)>0, \quad m=3,4, \cdots \tag{4.9}
\end{equation*}
$$

From (4.7)-(4.9) we obtain

$$
\tilde{J}^{\prime}\left(x_{1}^{(\nu)}\right)<0
$$

From this, (4.6) follows.

5. Numerical results

The results which have been established rigorously above were suggested by the results of a series of calculations made on the Datatron 205 at the California Institute of Technology. Three basic subroutines were prepared; the first produced the coefficients of $\widetilde{J}_{\nu}(z)$ when ν was assigned; the second computed the real and imaginary parts of $\widetilde{J}_{\nu}\left(\rho e^{i \theta}\right)$ when ρ and θ were assigned; the third computed the extrema of $\widetilde{J}_{\nu}(z)$ on the real and imaginary axes.

With a little experience, reasonable estimates of ρ_{ν} could be obtained rapidly. Curve plotting equipment would have been convenient. Figure 1 shows ρ_{ν} in the interval $-5 \leqq \nu \leqq 2$.

Nothing further need be said about the range $\nu>-1$, except to note that the critical point is on the real axis of the z-plane.

In the intervals $-1>\nu>-2$ and $-3>\nu>-4$ the critical point appears to be on the imaginary axis. In the intervals $-2>\nu>-3$ and $-4>\nu>-5$ the critical point is genuinely complex.

Added in proof November 21, 1959. R. K. Brown [3] has discussed the radius of univalence of $J_{\nu}(z)$ and $\left[J_{\nu}(z)\right]^{1 / \nu}$ for certain complex values of ν (with $\mathcal{R} \nu>0$) using the methods of Z. Nehari and M. S. Robertson.

References

1. G. N. Watson, A treatise on the theory of Bessel functions, New York, Macmillan, 1944.
2. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. Tricomi (Bateman Manuscript Project), Higher transcendental functions, Vol. II, New York, McGraw-Hill, 1953.
3. R. K. Brown, Univalence of Bessel functions, Notices, Amer. Math. Soc., Abstract 559-118, vol. 6 (1959), p. 512.
4. J. E. Littlewood, Lectures on the theory of functions, Oxford University Press, 1944.

The Ohio State University
Columbus, Ohio
California Institute of Technology
Pasadena, California

[^0]: Received September 29, 1958.
 ${ }^{1}$ The work described here was supported in part by the Office of Naval Research. It was presented to the American Mathematical Society, October 25, 1958.

