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Introduction

An important class of discrete Markoff chains are the random walks
X., n 0, 1, 2, whose state space is a set of consecutive integers and
whose one-step transition probabilities

P Pr{Z+ j X i}

form Jcobi mtrix; that is, P 0 if i j > 1. As transitions cn
occur only to the neighboring states, we myregard such process s discrete
version of continuous diffusion model.
We shll use the notation P_ q, P r, P,+ p throughout.

The m-step transition probabilities
(m)P Pr[Z, j JX i}

form mtrix P() which stisfies

p0 I, P( (P) P,

p(+) p()p pp(m),

SO that pm) is simply the product of m copies of P.
It is convenient to distinguish three cses ccording s the state space is the

finite set 0, 1, N, or the semi-finite set 0, 1, n, or the doubly
infinite set -1, 0, 1, .... In the next two sections we discuss only the
semi-infinite cse, nd the modifications necessary for the other two cses
re presented in Section 3.
The "problem" of rndom wlks my be described s follows" The fund-

mental mtrix P is given, and it is required to relate qualitative properties
of the Mrkoff process to qualitative properties of P nd to compute vrious
functionls of the process in terms of P.

In recent years numerous publications hve ppered treating specialized
spects of random wlk processes [5], [6], [7]. Our pproch will be to obtain
n integral representation for the transition mtrix through which the prob-
bilistic structure of the process my be nlyzed. The integral representa-
tion involves system of polynomials orthogonl with respect to distribu-
tion (x) in the closed interwl [-1, 1].
A formalism which suggests the integral representation is as follows" Associ-
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ate with the nth state a polynomial Qn(x) of degree n, defined by the recur-
rence relations

(1)
xQ,,(x) p Qn+l(x) -F r,, Q,(x) q-qQ-l(x), n >- O,

Qo(x) i, Q-l(X) 0.

Note that the coefficient of Q,(x) on the right is precisely the probability of
moving from state n to state m in one transition. In a similar manner we
find that

P Q.,(x).

By appealing to the theory of moments [10], it can be shown that Q,(x) con-
stitute a system of polynomials orthogonal with respect to a distribution
(x). Exploiting this orthogonality property of Q we deduce that

Q(z)Q(x) d(x) d(x).

From (I), it also follows that

q q qQ() d(x)
po p... p-"

Although this formalism may be fully justified along the lines indicated, the
natural meaning of the formula (2) is as a spectral representation of the linear
operator P acting on an appropriate Hilbert space. In Section 2 this point
of view is employed.
The relevance of Hilbert space theory was also recognized by Feller [3]

and McKean [9] in developing a general theory of dusion operators. Feller
dealt primarily with the problem of classifying diffusion models, while McKean
was concerned with obtaining an abstract representation theory for such
processes. Our results are refinements of this general theory for the special
important case of discrete random walks.
The integral representation (2) exhibits in the simplest possible way the

dependence of P on k, n, and m. By utilizing the properties of the com-
ponents Q(x) and (x) of the integral formula we are able to analyze the
usual recurrence and absorption characteristics of the process. These results
are described in Section 2 which also includes a discussion of the important
problem of computing the distribution . Several examples are also appended
to illustrate the theory. In Section 3 we obtain a new ergodic ratio theorem.
This result is considerably deeper than the classical Doeblin ratio theorem
and is a property of random walks not common to general Markoff chains.

In the final section we develop the corresponding theory for random walks
whose state space is either a finite set of integers or the full set of all positive
and negative integers. The representation formula in this case involves
a matrix of spectral functions and two systems of polynomials.
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1. Representation formula
We assume that p > 0, r >= 0, q+l > 0 for i >= 0, and p - q -t- r __< 1.

The possible inequality p - q - r < 1 may be interpreted in terms of an
ignored state i* which is a permanent absorbing state of the process, the
one-step transition probability from i to i* being 1 (p q r).
The matrix P determines a linear transformation in the space of all sequences

f {f(i)}, i >= 0, of complex numbers, by means of the formula

(Pf)(i) _,oP,f(j).
The series on the right has at most three nonzero terms. The solution of
Pb x, where x is a real or complex constant, is unique to within a constant
factor. We normalize the sequence {(i)} by the relation (0) 1.
The nth term in the sequence is then a polynomial Q,(x) in x of exact degree
n, and these polynomials satisfy the recurrence relations

Qo(x) 1,

(i) xQo(x) roQo(x) + poQ(x),

xQ(x) q, Q_l(x) -t- r Q,(x) -t- p Qn+(x).

We introduce the quantities {r} defined as the solutions of the symmetry
equations Pr Pr normalized by the condition 90 1. We then have
for n >- 1, r, (popz p,-z)/(qzq q,). With these we form the Hilbert
space L.(r) of all sequences f {f(i)} of complex numbers such that

I! f I! =o0 if(i) ] is finite, and note the following"

LEMMA 1. The sequence transformation f ---, Pf induces in L,(r) a bounded
self-adjoint linear operator T of norm

_
1.

Proof. The self-adjointness follows from the symmetry equations, and
the norm inequality from the fact that rP _-< r for every j.
Thus f e L(v) implies Pf Tf, and by iteration P()f Tf. In order

to express the components of the matrix P() in terms of the operator T, we
(0 ei)introduce the sequences e( (e defined by /r. Using the

symmetry equations in the form p r q++, we find by direct computa-
tion that

Te( q e(i-1) - ri e
(i) -t- Pie(i+),

with an obvious modification for i 0, and hence by an inductive argument
based on the recurrence relation (1), Q,(T)e() e(), n 0, 1, 2, .... Now

()/ and thereforethe inner product (Te(), e() is equal to P
() T)e(O) Q(T)e()).P r(T Q(

The polynomials Q,(x) have real coefficients so the operator polynomials
Q,(T) are self-adioint, and since they commute with T,

(T Q(T)Q(T)e(), e()).
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Consequently, if {E} is the resolution of the identity corresponding to the
self-adjoint operator T, and if (x) (E e), e()), then

(2)

where the integral includes any jumps which may be present at x 1 or at
x -1. This formula is the basic representation of the transition prob-
ability matrix of the random walk, and is called the spectral measure function
of the random walk.

THEOREM 1. There is a unique positive regular distribution on 1 x 1
such that (2) is valid for all i, j, n.

Proof. The existence of one such has been demonstrated. But (2) with
i j 0 determines all the moments of and hence determines uniquely.

Setting n 0 in (2) we see that the polynomials Q(x) are the orthogonal
polynomials belonging to , in fact,

(3) : Q(x)Q(x) d@(x) .
An important interesting case urises when every r is zero. If this is so,

we say that the random walk is symmetric, the name being justified in part by
the fact that the distribution is symmetric about x 0. To see this, observe
that when every r is zero, it is clear from the probabilistic significance of

that is zero or positive according as n is odd or even, and hence from
(2), all the odd order moments of are zero so is symmetric. The name
is further justified by the following converse statement"

LEMMA 2. Every positive symmetric distribution function on -1 x 1
not supported by a finite set of points, and with total mass one, is the spectral
measure function of a symmetric random wal. The random walk is unique
if it is required in addition that po 1 and p q I for n 1.

Proof. The system of polynomials orthogonal with respect to have all
their zeros in the open interval -1 < x 1. Let Q,(x) denote these poly-
nomials normalized by the condition Q(1) 1. The symmetry of implies
Q is even or odd with n, so the recurrence relation is of the form

xQ qnQ- + p,Q+.

Since Q(x) I for x 1, it follows that all p > 0, and setting x 1 gives
p W q 1. Multiplying the recurrence formula by x- nd using the
orthogonlity gives I q I_, where I ] xQ(x)d(x). Since the
coefficient of x in Q is greater than 0, we see that I > 0 and hence q, O.
Thus the recurrence relation determines a unique matrix P (built from the
p’s and q’s) which is the one-step transition probability matrix of sym-
metric random walk, and it is clear that is the spectral measure function
of this random walk.
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2. Recurrence, absorption, and examples
The nonignored states of the random walk form a single communicating

class. The representation formula (2) provides a tool for relating recurrence
properties of the process to properties of the spectral measure b on the one
hand, and to properties of the basic matrix P on the other hand. Problems
of this sort have already been investigated in connection with birth and death
processes (see [8]). With appropriate modifications the methods used for
birth and death processes apply once more for random walks, and similar
results can be obtained. Consider, for example, the first passage time dis-
tributions. For i j, let f- be the probability that if the initial state is i,
then the state j is reached for the first time on the nth transition, and let f
be the probability that if the initial state is i, then the state i is visited again
for the first time on the nth transition. Then the generating functions

() Z () ZPs .=0Ps, Fi s .= f s

are connected by the wall-known formulas [2]

(4)
P(s) F,(s)P(s), i j,

P,(s) 1 + F,(s)P(s).

These relations and (2) make it possible to express the F(s) in terms of
spectral integrals. For example,

() F,,() 1- 1

Alghough he momengs of ghe firsg passage disgribugions have been deger-

mined by ogher meghods [], ig seems worgh while o describe how ghe ingegral
represengagion yields ghese same resulgs. his discussion serves Nso as an
ingroduegion go ghe analysis invNving ghe eompugagion of presenged below.
he process is reeurrengi.e., he nonignored sgages form a reeurren elassif

and only if F,() 1 as 1, and ghis is equivaleng go ghe divergence of
I (1 )- d(). Using he analytical oNs of he heory of orhogonal
polynomials, ingegrals of ghe form

re, Q(x)Q(x)
which arise in computing moments of first passage distributions, can be
evaluated in terms of the constants p, q, r of the process. The computa-
tions can usuMly be made to depend on the results of similar calculations
carried out in [8]. For example, a necessary condition for recurrence is that
r0 p0 1 and for n 1, q, r p 1. If this condition is met, then
the polynomials R(x) Q,(1 x) satisfy a recurrence formula

-xR= q, R_ (p + q,)R p R+
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and are orthogonal on 0 -<_ x =< 2 with respect to a distribution 0 obtained from
b by an obvious change of variable. Using results of [8],

d(x) 2dO(x) _, 1
1 x x n=opnrn

Thus the random walk is recurrent if and only if 1/p r, is divergent [5].
For a recurrent process the expected first passage times are all finite if

and only if lim_. P’ is positive, and in this case the process is called ergodic.
Since x2 --+ 0 monotonically on -1 < x < 1 as n -- , it is seen from (2)
that the process is ergodic if and only if has u iump ut eitherx I or x 1.
If has no jump at x 1, then the amount of jump at x 1 is

-lim fl x’"+ dC,,(x) -lim P:’+’ =< 0,

so there is no jump at x --1. Consequently, the process is ergodic if and
only ifhasajumpatx 1. Nowajumpatx l occurs if and only if
x 1 is an eigenvalue of the self-adjoint operator T, and this is the case if
and only if the series

Q(1)rn

is convergent, in which case p is the amount of the jump. It can be deduced
from the recurrence .formula that the series diverges if % -F r. -F p, 1 for
some n. It is also clear probabilistically that this condition, which means
positive probability of absorption at n, makes the process transient. If
r0-F p0 land%-F r H- p= 1 foralln

_
1, thenQ(1) lforalln

--1and p ], and the process is ergodic if and only if this series con-
verges. We note in passing that if all r vanish so that is symmetric, then
any jump at x 1 is matched by an equal jump at x -1; but on the
other hand if some r, is positive, then lim. P0"0 exists, and this implies
that no jump at x -1 is present.
Next suppose that q0 1 (r0 -F p0) is positive. Each time the zero

state is visited there is a probability q0 that absorption will occur on the next
transition. Let A denote the probability that when the initial state is i,
absorption from the zero state takes place on the nth transition. Clearly

n--1A q0P0 and hence

A(s) . A ’s qos
Q,(x) d/(x).

n=l 1 XS

If q, H- r H- P, 1 for n >_- 1, the computation of the moments of the ab-
sorption time distribution may be reduced to results of [8] by means of the
device described above.
The kh associated random walk (k >- 0) belonging to the given random walk

is defined as the process obtained by starting the given random walk at some
state i > / and stopping it when the state/c is first visited. In particular,
therefore, the 0 associated random walk has the zero state as an ignored
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absorbing state. The idea of the ] associated random walk is not new and
has been implicitly used on numerous occasions [4], [5]. Let be the spectral
measure function of a random walk and a the spectral measure function of
the 0h associated random walk. The event of first passage from state 1 to
state 0 for the given random walk may be viewed as an absorption event for
the 0th associated process. Expressing the distribution of the time of oc-
currence of this event on the one hand in terms of , and on the other hand
in terms of a, we obtain the identity

Poo(S) Flo(S) qls
1 xs’

which on simplification yields

The Sgielges ransform of a finige measure funegion 0 on -1 N z N 1 is de-
fined by

dO(x).
J-1 X Z

Equation (6) is equivalent to the identity

(7) B(z; ) -1/(z ro + poq B(z; ))

between the Stieltjes transforms of and a. This identity is frequently useful
for computing spectral measure functions.

Examples. (i) The simplest semi-infinite random walk has p p for
n _-> 0, q q for n >_- 1. The process is sometimes referred to as "gambling
agMnst an infinitely rich adversary" (see [2] for interpretations). The
Stielties transform of the spectral measure B(z; ) B(z) satisfies (7) which
reduces to

pqB2(z) + zB(z) + 1 O,
and hence

(7a) B(z) (-z + (z 4pq)l/)/2pq,
where the square root is determined by analytic continuation from positive
values for real z > 1. The formula which gives in terms of B(z; ) is

d(x) _1 lim Im B( + iv) d,
71" ---, +

where e > 0 and x0 is any point where $ has no jump.
sists of the continuous density

Consequently b con-

’(x) (4pq- x)l/2rpq
over the interval -(4pq)1/ < x < (4pq)1/2. The recurrence formula

xQ, qQ_ + pQ+I
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can be reduced by transformation of variables to

and one finds that
Qn(x) (q/p)n/2U,(x/(4pq)U)

where the U() are the Chebycheff polynomials of the second kind [1].
(ii) To further illustrate the use of (7), consider the random walk with

q. q, p p for n >- 1, but p0 and r0 arbitrary. If is the spectral measure
function of the process, and a the spectral measure function of the 0h associ-
ated process, then a is the same as the of example (i), and (7) becomes

ro- (1 po/2p)z -I- (po/2p)(z 4pq)uB(z; b)
(1 po/p)z 2r0(1 po/2p)z + r) + pq/p’

from which can be calculated.
We record two special cases"

(A) Let r0 0. Then

1 po(4pq- x)/
(x) x (p po) + Poq

l 0 otherwise.

Also, h(x) has jumps located at :i: p q/(po p)) of magnitude

4 )1/2if (4pq)1/ < x < pq

provided po > 2p.
as described above.

(B) Letp0 pandr0 q 1-p.

1

b’(x) 2r(1 p)

0

(4pq x)1/2
1 X

When po < 2p, then the distribution b is pure density

elsewhere,

and for p < 1/2, (x) possesses an additional jump located at 1 of magnitude
(1 2p)/(l p).
By virtue of (7), either or a can be found if the other is known. By

iteration of this relationship the spectral measure function of a rndom walk
can be computed provided all but a finite number of the pn, r, q are equal
to those of a random walk whose spectral measure function is known.

(iii) As a final application of (7) we determine the spectral measure func-
tion of a random walk with p, q, r periodic. For simplicity, let

p p, q q 1 p n > 0

p+ pl, q:+ q 1 p n >- 0

po p, ro O.

Then

if (4pq)1/ < x < (4pq)1/,

1/2(Po- 2p)/(po- p)
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By (7) iterated twice, we obtain

pqzB ( pq -t-" pq)B z O,
and hence

B(z, ) (z pql + plq) -t- ((z pq + pq) 4pqz)2
2plqz

If pq pq O, then (x pq pq) 4plqx is negative on the two
intervals

J (pq)l (pq)lI < x < (pql)12 - (plq),
J ((pq) "t- (pq)l) < x < (Pq) (Pq) I,

and on these two intervals b has the continuous density

’(x) (4plqx (x pq -[- Pq))/
2’pqx

There is in addition a jump at x 0 of magnitude 1 pql/pq if pq < pq
but no jump at x 0 if pq > plq. The case pq pq is Example (i).

In many cases useful random walks are generated by known distributions.
As an example, consider the ultraspherical density

d(x) C(1 x))’- dx

(C is a normalization constant). If O, the orthogonal polynomials of this
1distribution are the Chebycheff polynomials of the first kind. To ),

correspond the classical Legendre polynomials, and the Chebycheff poly-
nomials of the second kind are determined by the parameter value 1.
If we normalize the polynomials so that Q(1) 1, then

xQ, p, Q,+(x) + q, Q,_(x),

where
Qo(x) 1, Q(x) =-- x,

q 1/2(1 ,l(n + h)).

3. Ratio theorem

If the random walk is symmetric, the classical limit theorem on Markoff
chains states that P converges. This is also evident by virtue of formula
(2) since is a symmetric distribution and Q(x) are even or odd polynomials
according as/ is even or odd. In the nonsymmetric case limn_ P" exists
and is different from zero if and only if the process is ergodic. If the process
is null recurrent or transient, then lim P. 0, and further information
relating to these probabilities may be derived by considering the ratios

These quantities are in general very difficult to study. As a recourse
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Doeblin investigated and established various limit theorems by replacing
numerator and denominator of (*) by their partial sums, viz.,

We shall demonstrate the intrinsic power of the integral representation formula
by showing that under suitable conditions P’/Pk converges to a finite positive
limit as n -- . This may be viewed as a Tauberian theorem on top of the
Doeblin ratio theorem.

LEMMA 3. If the random walk is recurrent and some r is positive, then

Proof. Since the process is recurrent, the integral ILx(1 x)- d diverges
and hence 11-, dff is positive for every e > O. This implies that for fixed
real p O,

In fact, for any , 0 < e < 1,

L /L /xd$ -z"d$ (1 e)/ (1 {e)

SO S n --
x+ d

X d

(x+- )d
[1 + 0(1)]

-< [1 (1- e)’][1 + 0(1)],

and since e is arbitrary, the result follows. A similar argument shows that
if {nk} is a subsequence of the sequence of positive integers such that

)lim x dq x" d a,

then for each integer p ->- 0,

(f_: )lim x"+ &k x" d (-1)a.

If the conclusion of the lemma is false, then there is a subsequence {n} such
that

)lim xd x"d a# O.
koo
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Any polynomial Q(x) can be written as a sum of an even polynomial R(x) and
an odd polynomial S(x), and we obtain

x"Q(x) d
lira

xk d
k-oo

lira
x’k(R + S) d + x"(R + S) d

rio x" d
k--,o

R(1) -t- S(1) + aiR(l) S(1)]

Q(1) + aQ(-1),
and similarly

)im x’+lQ(x) db x’ db Q(1) aQ(-1).

By taking Q(x) Q(x) and noting that ]_1 x’Q(x) db Po >-_ O, it follows
that al -< Q(1)/I Q(-1)]. If the process is recurrent, then r0 + p0 1,
qn + r + p 1 for n _--> 1, and the recurrence formula shows that Q(1) 1
for every i. On the other hand, the constants a (-1)Q( 1) satisfy

ao 1,

2r0aom p0r0(CZl- oo),

and hence
2r a r p rn(O/n+l Oln) Pn--l?l’n--l(Oln O/,--1),

This shows that 1 a0 =< a =< as =< and that if some r is positive and
the series ;o (1/p ’i) diverges, thena -- as n -- . Since the divergence
of the series follows from the recurrence of the process, we have Q(- 1) --* o
as i -, and consequently a O. This proves the lemma.
The preceding argument also proves the following"

COROLLARY.
on [-- 1, 1], then

Subject to the same conditions as Lemma 3, .if f(x) is continuous

)lim xf(x) d(x) x db(x) 0

for every positive

THEOREM 2. If the random walk is recurrent and some r, is positive, then

Proof. By Lemma 3,

)x d liralim P x’Qi(x)Q(x) db x

z Q(1)Q(1) .,
and the rest is immediate.
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If the process is not recurrent, the limit may still exist but does not neces-
sarily have the value given by Theorem 2. That the limit may fail to exist
is shown by means of Example (B) of Section 2 with p0 p, r0 q 1 p,
andp > 1/2 In fact, it is easilyverified 2 2n D2n.-l/D2n+lthatP01/Poo and-01 00 converge
to distinct positive limits. If every r is zero, the limit fails to exist because
P. is zero if i j and n are of different parity, but we have the following-

THEOREM 3. For any symmetric random walk

lim P vj Qi(a)Qj(a)
if i j, ] are even,p r Q(a)Q(a)

D+I Q(a)Q(a) if i j, ]c are odd,
n kl

where - <- x <= is the smallest interval containing the support of the spectral
measure b.
The proof makes use of the symmetry of the distribution h and arguments

similar to those used in Lemma 3.
A final result in this direction is as follows: Suppose all r >= i > 0. It

can be shown that if [-a, a] defines the smallest symmetric interval con-
taining the support of k, then in fact the spectrum of lies in the interval
[-a + 2i, a]. However, because of the definition of a, it follows that the
distribution b has measure in any interval (a , a) for s arbitrarily
small and positive. This implies readily the truth of Lemma 3 from which
we secure the existence of lim_ (P./P). An extension of the method
of Lemma 3 and Theorem 2 shows that the condition ’0 r/pi im-
plies the existence of lim_ (P./P). We omit the proof.

4. Finite and doubly infinite cases

For a random walk with a finite set of states 0, 1, N and fundamental
matrix P (P) we define r0 1, r. (pop"" p,-)/(qq."" q,) for
1 _<_ n _-< N. The Hilbert space L(v) is now (N -t- 1)-dimensional, and the
matrix P induces on L(r) a self-adjoint operator T as before. The recur-
rence formulas,

Qo(x) 1

xQo(x) roQo(x) - poQ(x)

xQ,(x) q. Q,_(x) + r, Q.(x) + p, Q.+(x), 1 <- n <= N 1,

determine a system of N -t- 1 polynomials Q0, Q1, Q.
obtain from the vector equation PC= x one more equation

In addition, we

(8) xQ(x) q Q_(x) + r Q(x),

Examples, showing the limit does not exist for general Murkoff chains even with
single recurrent class, were found by Chung and Dyson.
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and the spectrum of T is the set of values of x which satisfy this equation. As
before, we define e) to be the vector ’/vJl and deduce that

(9) Q(T)e() e() i O, 1 N.

It then follows that if (x) is the step function (E e(), e()) where IE} is the
resolution of the identity for T,

(10) P r x Q,(x)Q(x) d(x)

Each point where has a jump is in the spectrum of T, so there can be at
most N W 1 jumps. On the other hand, theN + 1 functions Q(x), 0 i N
are orthogonal with respect to so there are at least N W 1 and therefore ex-
actly N W 1 jumps.
A doubly infinite random walk has a fundamental matrix P (P),- < i,j < ,whereP q,r,paccordingasj i- 1, i,i 1

and is zero otherwise. It is assumed that p q > 0 for every i. The equation
P has for each real or complex x a two-dimensional family of solutions.
Let " { }, a 1, 2, i 0, 1, be the two solutions such that 1,, 0, V 0,5 1, andletQ(x) ,Q(x) V. Thenwehave
the recurrence relations

q(z) 1, Qo(x) 0,

(11) Q(x) 0, Qh,(z) 1,

The Q(x) are polynomials in x. The solution of P P r is unique to
within a constant factor, and if we normalize by setting 0 1, then for n > 0,

(pop p,-1)/(qq q,),

-, (qoq- q-.+)/(p-p- p-.).

In the Hilbert space L(v) the matrix P determines a bounded self-adjoint
operator T of norm 1. For each i let

e() /}.

Then Te() q e(-) r e() p e(+), and starting with the trivial cases
i 0, -1, we easily verify by induction based on (11) that

e(O) T)e(-) e()Q(T) + q(

for every i. Consequently,

P. (T’e() e())
e(0)(T{Q(T)e() + Q(T)e(-)}, Q(T) + Q(T)e(-’)).
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If now {Ex is the resolution of the identity for T, then it follows that

(12) P" ’ I x’ ’ Q. (x)Q(x) d,a(x),
a,,l

where
kn(x) (E= e(), e<)),
l(x) k.l(x) (E= e(>, e(-)),
(x) (E e(-1), e-)).

The 2 X 2 matrix I,(x) with components ,(x) is a positive definite monotone-
increasing function of x which vanishes for x < -1. This is easily seen by
noting that for any constants c,

c. f, f)

where f cle
() - ce(-). Moreover, this shows that for x > 1, n(x) 1,

kl.(x) k.(x) 0, (x) 1/v_. The matrix is called the spectral
matrix of the random walk.

It will be shown next that the spectral matrix can be expressed in terms of
the spectral measure functions of two semi-infinite random walks. Let f.. be
the first passage times and Fj(s) the corresponding generating functions (see
Section 2). As before, these quantities are related to the transition proba-
bilities by the identities (4). Let + denote the spectral measure function of
the random walk on the states 0, 1, 2,... with one-step transition probu-
bilities P+ given by

P+- Pj, i, j >- 0.

This is a process with an ignored absorbing state corresponding to the possible
transition from 0 to -1 of the doubly infinite process. Let P+.(s), F+.(s) be
the generating functions of the transition probabilities and first passage times
of the + process. Similarly, let h-, P(s), F.(s) be the corresponding
quantities belonging to the semi-infinite random walk with states -1, --2,
-3, and one-step transition probabilities P P, i, j =< -1. From
the four identities

Foo(S) F+oo(S) + qosF_o(s),

F_o(s) p_sP-__(s),

it is found that

(13)

Similarly,

(14)

Poo(S) 1 --[- Foo(s)Poo(S),

P+oo(s) 1 -b F+oo(s)P+oo(s),

Poo(S) P+oo(S)
1 p_lqosP+oo(s)P-_(s)"

P__(s) P-_(s)
1 p_lqosP+oo(s)P=_(s)"
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Finally, P-lo(S) F-o(s)Poo(S) gives

(15) P_o(S) P-sP+(s)P--l(s)
1 p_qosPo(s)P:_(s)"

Now (13), (14), and (15) are equivalent to the Stieltjes transform relations

B(z; +)(16) B(z;
1 p-lqoB(z; b+)B(z; -)’

(17) qo B(z;
p_ 1 p_qoB(z; b+)B(z; -)

--p_B(z; b+)B(z; b-)(18) B(z; )
1 p_lqoB(z; +)B(z; -)’

which express in terms of b+ and -, in principle at least.
Example. The spectral matrix for the doubly infinite random walk with

p, p, r, O, qn q (p - q 1) foralln, willbecomputed. With the
notation of (16), (17), (18), we first note that B(z; +) and B(z; -) are both
solutions of pqB zB 1 O, so are both equal to the B(z) given by (7a).
Hence, from (16),

B(z; b) 1/(z 4pq)

so the distribution 211 consists of the continuous density

bPn(x) 1/7(4pq- x2)1/2

over the interval -(4pq)1/2 < x < (4pq)1/. Since + b-, it follows from
(16), (17) that q0h p_lb. Finally, by substituting the values of B(z; +/-)
in (18), one obtains

1 zB(z; ) q
4pq z(z 4pq)/

z 4pq

nd consequently the distribution 12 consists of the continuous density

b’.(x) x/2-q(4pq- x2)1/2

over the interval-(4pq)1/2 < x < (4pq) 1/2.
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