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COMMON BOUNDED UNIVERSAL FUNCTIONS FOR
COMPOSITION OPERATORS

FRÉDÉRIC BAYART, SOPHIE GRIVAUX AND RAYMOND MORTINI

Abstract. Let A be the set of automorphisms of the unit disk
with 1 as attractive fixed point. We prove that there exists a

single Blaschke product that is universal for every composition
operator Cφ, φ ∈ A, acting on the unit ball of H∞(D).

1. Introduction

This paper is devoted to the construction of common universal functions
for some uncountable families of composition operators on the unit ball B of
H∞(D). If φ : D → D is an analytic self-map of the unit disk D, the composi-
tion operator Cφ : f �→ f ◦ φ acts continuously on B (note that B will always be
endowed with the topology of uniform convergence on compact sets). A func-
tion f ∈ B is said to be B-universal for Cφ (or just universal, if no ambiguities
arise) if O(f) = {f ◦ φ[n];n ≥ 0} is dense in B, where φ[n] = φ ◦ φ ◦ · · · ◦ φ
denotes the n-th iterate of φ. The operator Cφ is B-universal if it admits a
B-universal function, and this happens ([3]) if and only if φ is a hyperbolic or
parabolic automorphism of the unit disk. In this case, the universal function
can be chosen to be a Blaschke product. Our aim in this paper is to con-
struct common universal Blaschke products for some uncountable families of
composition operators Cφ acting on B, the φ’s being hyperbolic and parabolic
automorphisms of D.

Results on universal Blaschke products first appear in a paper by Heins [10].
A general theory of universal Blaschke products and their behaviour on the
maximal ideal space of H∞ was developed in [8] and [11]. Finally, these
functions were the building blocks for studying B-universality for sequences
of composition operators (Cφn) in [3].
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Our study of universal Blaschke products in the present paper is motivated
by previous results on common hypercyclicity of [1], [4], and [5]. Indeed, the
operators Cφ act boundedly on different spaces, such as the space H(D) of
holomorphic functions on D, or the Hardy spaces Hp(D), 1 ≤ p < +∞, and
when φ is a hyperbolic or parabolic automorphism, Cφ is hypercyclic on H(D)
(resp. Hp(D)), i.e., there exists a function f ∈ H(D) (resp. f ∈ Hp(D)) such
that O(f) is dense in H(D) (resp. Hp(D)). It is then natural to ask about
the existence of a function f which would be hypercyclic for all composition
operators Cφ. Since each function in Hp(D) has a radial limit almost every-
where on the unit circle T [7], such a common hypercyclic function cannot
exist on Hp(D): if A is a family of hyperbolic or parabolic automorphisms
of D, the fact that the family (Cφ)φ∈A has a common hypercyclic vector nec-
essarily implies that the subset B of T consisting of all the attractive fixed
points of the automorphisms φ ∈ A has Lebesgue measure zero. Hence, a
natural family to consider is (Cφ)φ∈A0 , where A0 is the class of hyperbolic
or parabolic automorphisms of D with 1 as attractive fixed point. Then this
restricted family of composition operators acting on Hp(D) admits a common
hypercyclic vector ([4] or [5]).

We deal here with the same question, but our underlying space is now the
unit ball B of H∞(D). The main difficulty in this new setting lies in the
fact that all the techniques of [1], [4], or [5] are “additive” and strongly use
the linearity of the space, making it difficult to control the H∞-norm of the
functions which are constructed. We have to use “multiplicative” techniques
instead to prove the following theorem, which is the main result of this paper.

Theorem 1. There exists a Blaschke product B which is universal for all
composition operators Cφ associated to hyperbolic or parabolic automorphisms
of D with 1 as attractive fixed point.

The proof of this result uses an argument of Costakis and Sambarino [6].
The hyperbolic and parabolic cases will be treated separately in Sections 2
and 3, respectively, the hyperbolic case being as usual, easier than the par-
abolic one, since we have a better control of the rate of convergence of the
iterates to the attractive fixed point.

2. The hyperbolic case

We first consider for λ > 1 the family of hyperbolic automorphisms

z �→
z + λ−1

λ+1

1 + z λ−1
λ+1

of D with 1 as attractive fixed point and −1 as repulsive fixed point. The ac-
tion of such an automorphism is best understood when considered on the
right half-plane C+ = {w ∈ C;Rew > 0}: if σ : D → C+ is the Cayley map de-
fined by σ(z) = 1+z

1−z , such an automorphism is conjugated via σ to a dilation
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ϕλ : w �→ λw, where λ > 1, We will denote by φλ the hyperbolic automor-
phism of D such that φλ = σ−1 ◦ ϕλ ◦ σ. A general hyperbolic automorphism
with 1 as attractive fixed point has the form φλ,β = σ−1 ◦ ϕλ,β ◦ σ, where ϕλ,β

acts on C+ as ϕλ,β(w) = λ(w − iβ) + iβ, λ > 1, β ∈ R. We first show that the
parameters β play essentially no role in this problem.

Lemma 2. Let B be a Blaschke product which is universal for Cφλ
, λ > 1.

For any β ∈ R, B is universal for Cφλ,β
.

Proof. Let f ∈ B and let K be a compact subset of D. For z ∈ K, we define

z1(n) = σ−1
(
λn

(
σ(z) − iβ

)
+ iβ

)
= φ

[n]
λ,β(z),

z2(n) = σ−1
(
λn

(
σ(z) − iβ

))
= φ

[n]
λ

(
σ−1

(
σ(z) − iβ

))
.

It is easy to show that there exists a constant C1 which depends only on K
and β, such that

|z1(n) − z2(n)| ≤ C1

λ2n
.

In fact, if w1(n) = λn(σ(z) − iβ) + iβ and w2(n) = λn(σ(z) − iβ), then

|z1(n) − z2(n)| =
∣∣∣∣
∫

[w1(n),w2(n)]

2
(1 + w)2

dw

∣∣∣∣ ≤ |β| max
w∈[w1(n),w2(n)]

2
|1 + w|2

≤ |β| 2
λ2n[min{Reσ(z) : z ∈ K}]2

≤ C1

λ2n
.

On the other hand, there is another constant C2, depending only on K and
β, such that

|z1(n)| ≤ 1 − C2

λn
and |z2(n)| ≤ 1 − C2

λn
.

This can be seen in the following way:

|1 − zj(n)| = 1 −
∣∣∣∣wj(n) − 1
wj(n) + 1

∣∣∣∣ = 2/|wj(n) + 1| ≥ C2

λn
.

Since B belongs to H∞(D), Cauchy’s inequalities show that B(z1(n)) −
B(z2(n)) converges uniformly on K to 0. In fact,

|B(z1(n)) − B(z2(n))| ≤
∫

[z1(n),z2(n)]

|B′(ξ)|(1 − |ξ|2)
1 − |ξ|2 |dξ|

≤ |z1(n) − z2(n)| 1
min{1 − |z1(n)|2,1 − |z2(n)|2}

≤ C3

λn
.

On the other hand, since B is universal, there exists a sequence (nk) such
that B ◦ φ

[nk]
λ (σ−1(σ − iβ)) converges uniformly to f on K (the map z �→

σ−1(σ(z) − iβ) is an automorphism of D). We conclude that B ◦ φ
[nk]
λ,β converges

uniformly on K to f . �
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In order to construct a common universal Blaschke product for all the Cφλ
’s,

we will decompose ]1,+∞[ as an increasing union of compact sub-intervals
[ak, bk]. Following [6], we then decompose each interval [a, b] as [a, b] =⋃q−1

j=1[λj , λj+1] where λ1 = a, λ2 = λ1 + δ
2N , . . . , λj+1 = λj + δ

(j+1)N if λj +
δ

(j+1)N ≤ b and λj+1 = b if λj + δ
(j+1)N > b. Here, N is a positive integer

which will be chosen very large in the sequel, and δ is a positive real number
which will be chosen very small. The interval [a, b] has been divided into q
successive sub-intervals (q depending on δ and N , of course). The interest
of such a decomposition of [a, b] in our context is explained in the following
lemma. Recall that ‖f ‖K denotes the supremum of the function f on the
compact set K.

Lemma 3. Let f be a finite Blaschke product such that f(1) = f(−1) = 1.
For every compact subset K of D and each interval [a, b] ⊆]1, ∞[, there exists a
positive constant M depending on K, f and a such that for every j = 1, . . . , q
and every λ ∈ [λj , λj+1[ the following assertions are true:

(1) for every l < j, ‖CjN
φλ

C−lN
φλl

(f) − 1‖K ≤ Ma−(j−l)N ;

(2) for every l > j, ‖CjN
φλ

C−lN
φλl

(f) − 1‖K ≤ Ma−(l−j)N ;

(3) ‖CjN
φλ

C−jN
φλj

(f) − f ‖K ≤ Mδ.

We will use repeatedly the following fact, which is a consequence of the
Schwarz–Pick estimates.

Lemma 4. Let u ∈ B. Then for every z ∈ D,

|u(z) − 1| ≤ 1 + |z|
1 − |z| |u(0) − 1|.

Proof. We obviously have that u(z)−u(0)

1−u(0)u(z)
= zg(z) for some g ∈ B. Hence,

|u(z) − 1| ≤ |u(z) − u(0)| + |u(0) − 1| ≤ |z| |1 − u(0)u(z)| + |u(0) − 1|
≤ |z|

∣∣(1 − u(0)
)
+ u(0)

(
1 − u(z)

)∣∣ + |u(0) − 1|.

Therefore, |u(z) − 1|(1 − |z|) ≤ |1 − u(0)|(1 + |z|) for every z ∈ D. �

Thus, in order to prove Assertions 1 and 2 above, for instance, it suffices
to control in a suitable way the quantities f(φ−[lN ]

λl
(φ[jN ]

λ (0))).

Proof of Lemma 3. For every z ∈ D we have

CjN
φλ

C−lN
φλl

(f)(z) = f

(
σ−1

(
λjN

λlN
l

σ(z)
))

.
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Since f(1) = 1 and f is Lipschitz with constant C up to the boundary of D,
we have

∣∣f(
φ

−[lN ]
λl

(
φ

[jN ]
λ (0)

))
− 1

∣∣ ≤ C

∣∣∣∣σ−1

(
λjN

λlN
l

)
− 1

∣∣∣∣ =
2C

λjN

λlN
l

+ 1
·

Assertion 1 follows from this estimate: since l < j,

λjN

λlN
l

≥ λjN

λlN
j−1

≥ λ
(j−l)N
j−1

(
1 +

δ

λj−1Nj

)Nj

≥ λ
(j−l)N
j−1 ≥ a(j−l)N .

By Lemma 4, there exists a positive constant M1 such that

‖CjN
φλ

C−lN
φλl

(f) − 1‖K ≤ M1

a(j−l)N
for l < j.

Assertion 2 is proved in the same fashion, using this time the fact that
f(−1) = 1, so that

∣∣f(
φ

−[lN ]
λl

◦ φ
[jN ]
λ (0)

)
− 1

∣∣ ≤ 2C

λjN

λlN
l

λjN

λlN
l

+ 1

and that for l > j,
λjN

λlN
l

≤ λ
(j−l)N
j+1 ≤ a(j−l)N .

As to Assertion 3, we have for every z ∈ D

|CjN
φλ

C−jN
φλj

(f)(z) − f(z)| ≤ C

∣∣∣∣σ−1

(
λjN

λjN
j

σ(z)
)

− z

∣∣∣∣
≤ C

∣∣∣∣λ
jN

λjN
j

− 1
∣∣∣∣ · 2|σ(z)|

| λjN

λjN
j

σ(z) + 1|2
·

Since | λjN

λjN
j

σ(z)+ 1| is bigger than its real part, which is bigger than 1, and

since 0 ≤ ( λ
λj

)jN − 1 ≤ (1 + δ
aNj )Nj − 1 ≤ 2δ/a when δ is small enough, we

have
‖CjN

φλ
C−jN

φλj
(f) − f ‖K ≤ M3δ

for some positive constant M3. �

We need a last lemma.

Lemma 5. The finite Blaschke products f such that f(1) = f(−1) = 1 are
dense in B (for the topology of uniform convergence on compact sets).

Proof. We use Carathéodory’s theorem that the set of finite Blaschke prod-
ucts is dense in B, as well as a special case of an interpolation result given in
[9, Lemma 2.10]: for every ε > 0, every compact subset K ⊆ D and α,β ∈ T

there exists a finite Blaschke product B1 satisfying B1(1) = α,B1(−1) = β
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and ‖B1 − 1‖K < ε. Thus, given f ∈ B and a finite Blaschke product B0 that
is close to f on K, we solve the interpolation problem with α = B0(1) and
β = B0(−1) and set B = B0B1, in order to get the desired Blaschke prod-
uct. �

With these two lemmas in hand, we prove the following proposition.

Proposition 6. Let (fk)k≥1 be a dense sequence of finite Blaschke products
with fk(1) = fk(−1) = 1. Let (Kk) be an exhaustive sequence of compact
subsets of D, and ([ak, bk])k≥1 an increasing sequence of compact intervals
such that ⋃

k≥1

[ak, bk] = ]1,+∞[.

There exist
• a sequence (Bn)≥1 of finite Blaschke products;
• an increasing sequence (pn)n≥1 of positive integers
such that the following properties are satisfied for every k ≥ 1:

(1) Bk(1) = 1;
(2) ‖Bk − 1‖Kk

< 2−k;
(3) for every λ ∈ [ak, bk], there exists an integer nk(λ) ≤ pk such that for

every i ≥ k,

(1)
∥∥C

nk(λ)
φλ

(B1 · · · Bi) − fk

∥∥
Kk

< 2−k.

As a corollary, we obtain the corollary below.

Corollary 7. There exists a Blaschke product B which is universal for
all the composition operators Cφλ,β

, λ > 1, β ∈ R.

Proof. Consider B =
∏∞

n=1 Bn: this is a convergent Blaschke product by
Assertion 2 of Proposition 6, and going to the limit as i goes to infinity
in equation (1) implies that for every λ ∈ [a, b] and k large enough ([a, b] ⊆
[ak, bk]), ∥∥C

nk(λ)
φλ

(B) − fk

∥∥
Kk

≤ 2−k.

Since the family (fk)k≥1 is locally uniformly dense in B, this proves the uni-
versality of B for Cφλ

, hence for Cφλ,β
. �

We turn now to the proof of Proposition 6.

Proof of Proposition 6. The proof is done by induction on k. We consider
a first partition a1 = λ1 < λ2 < · · · < λq1 = b1 of [a1, b1] with parameters N1

and δ1, and the finite Blaschke product

B1 =
q1∏

l=1

C−lN1
φλl

(f1).
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We have B1(1) = 1. Since f1(−1) = 1, C−lN1
φλl

(f1) tends to 1 uniformly on
compact sets as N1 tends to infinity, and if N1 is large enough,

‖B1 − 1‖K1 < 2−1.(2)

Since |
∏s

j=1 aj −
∏s

j=1 bj | ≤
∑s

j=1 |aj − bj | whenever aj , bj ∈ D, we have for
every j = 1, . . . , q1, every λ ∈ [λj , λj+1[, and any compact subset K of D

‖CjN1
φλ

(B1) − f1‖K ≤
q1∑

l=1,l �=j

‖CjN1
φλ

C−lN1
φλl

(f1) − 1‖K

+ ‖CjN1
φλ

C−jN1
φλj

(f1) − f1‖K .

But, by Lemma 3, the quantity on the right-hand side is less than
q1∑

l=1,l �=j

M

a
|j−l|N1
1

+ Mδ1 ≤ 2M

∞∑
k=1

1
akN1
1

+ Mδ1.

Thus, if N1 is large enough and δ1 small enough

‖CjN1
φλ

(B1) − f1‖K1 < 2−1.(3)

We now fix N1 large enough and δ1 small enough so that inequalities (2)
and (3) are satisfied. It is easy to check that Assertions 2 and 3 of Proposi-
tion 6 are satisfied with p1 = q1N1 and n1(λ) = jN1 for λ ∈ [λj , λj+1[. This
terminates the first step of the construction.

If now the construction has been carried out until step k − 1, we consider
again a partition ak = λ1 < · · · < λqk

= bk of [ak, bk] with parameters δk and
Nk, and set

Bk =
qk∏
l=1

C−lNk

φλl
(fk),

so that Bk is a finite Blaschke product with Bk(1) = 1. Just as above if Nk

is large enough and δk small enough, we have for every j ≤ qk and every
λ ∈ [λj , λj+1[

‖CjNk

φλ
(Bk) − fk ‖Kk

< 2−(k+1)

and
‖Bk − 1‖Kk

< 2−k.

Because B1(1) = · · · = Bk−1(1) = 1, we can also choose simultaneously Nk

large enough so that CjNk

φλ
(B1 · · · Bk−1) is very close to 1 on Kk. This gives

(1) for i = k.
It remains to check that if r ≤ k − 1, λ ∈ [ar, br],∥∥C

nr(λ)
φλ

(B1 · · · Bk−1Bk) − fr

∥∥
Kr

< 2−r.

We already know that∥∥C
nr(λ)
φλ

(B1 · · · Bk−1) − fr

∥∥
Kr

< 2−r,
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and since Bk can be made arbitrarily close to 1 on any compact set if Nk is
large enough, we also choose Nk so that ‖Bk − 1‖K is small enough, where

K =
⋃

r≤k−1,λ∈[ar,br]

φ
nr(λ)
λ (Kr),

and then Assertions 2 and 3 are satisfied at step k. �

3. The parabolic case

We consider now the family of parabolic automorphisms of D with 1 as
attractive fixed point. If Tλ : C+ → C+ is the translation defined by w �→
w+ iλ, λ ∈ R \ {0}, then such parabolic automorphisms have the form ψλ(z) =
σ−1 ◦ Tλ ◦ σ. Our aim in this section is to construct a Blaschke product which
is universal for all composition operators (Cψλ

), λ > 0. This is more difficult
than the hyperbolic case because we have no suitable analog of Lemma 3:
the estimate we get has the form

‖CjN
ψλ

C−lN
ψλl

(f) − 1‖K ≤ M

|j − l|N for l �= j,

and the series on the right-hand side is not convergent when we sum over all
l �= j.

In other words, if K is any compact set, the sets ψ
[n]
λ (K) go towards the

point 1 at a rate of 1/n, which is too slow. This difficulty was tackled for
the study of common hypercyclicity on the Hardy space H2(D) by using ei-
ther a fine analysis of properties of disjointness in [4] or probabilistic ideas
in [5]. Here, we use in a crucial way the tangential convergence of the sequence
(ψ[n]

λ (0)) to the boundary. Indeed, the series
∑

n(1 − |ψn(0)|) is summable,
whereas the series

∑
n |1 − ψn(0)| is not. The following lemma will play the

same role as Lemma 3 in the hyperbolic case. We keep the notation of Sec-
tion 2 and use the same kind of decomposition a = λ1, . . . , λq = b of a compact
sub-interval [a, b] of ]0,+∞[.

Lemma 8. Let f be a finite Blaschke product such that f(1) = 1. For every
compact subset K of D, there exists a positive constant M depending on K,
f and a such that for every j = 1, . . . , q and every λ ∈ [λj , λj+1[ the following
assertions are true:

(1) for every l < j, ‖ |CjN
ψλ

C−lN
ψλl

(f)| − 1‖K ≤ M
(j−l)2N2 ;

(2) for every l > j, ‖ |CjN
ψλ

C−lN
ψλl

(f)| − 1‖K ≤ M
(l−j)2N2 ;

(3) ‖CjN
ψλ

C−jN
ψλj

(f) − f ‖K ≤ Mδ.

Proof. In order to prove Assertions 1 and 2, it suffices to work at the
point 0. Since the modulus of f is equal to 1 on T, and since the operators
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commute, we have
∣∣∣∣f(

ψ
−[lN ]
λl

◦ ψ
[jN ]
λ (0)

)∣∣ − 1
∣∣ =

∣∣∣∣
∣∣f(

ψ
[jN ]
λ ◦ ψ

−[lN ]
λl

(0)
)∣∣

−
∣∣∣∣f

(
ψ

[jN ]
λ ◦ ψ

−[lN ]
λl

(0)

|ψ[jN ]
λ ◦ ψ

−[lN ]
λl

(0)|

)∣∣∣∣
∣∣∣∣.

Since f is C-Lipschitz on D for some positive constant C, this quantity is
less than

(4) C

∣∣∣∣ψ[jN ]
λ ◦ ψ

−[lN ]
λl

(0) −
ψ

[jN ]
λ ◦ ψ

−[lN ]
λl

(0)

|ψ[jN ]
λ ◦ ψ

−[lN ]
λl

(0)|

∣∣∣∣ = C
(
1 −

∣∣ψ[jN ]
λ ◦ ψ

−[lN ]
λl

(0)
∣∣).

An easy computation shows that

ψ
[jN ]
λ ◦ ψ

[−lN ]
λl

(0) =
iN(jλ − lλl)

2 + iN(jλ − lλl)
·

Observe that |jλ − lλl| ≥ |j − l|a. This gives

1 −
∣∣ψ[jN ]

λ ◦ ψ
−[lN ]
λl

(0)
∣∣ ≤ 1 −

∣∣ψ[jN ]
λ ◦ ψ

−[lN ]
λl

(0)
∣∣2

≤ 1 − (jλ − lλl)2N2

4 + (jλ − lλl)2N2

≤ C1

N2(j − l)2

for some positive constant C1 which does not depend on λ. Now, equation (4)
implies that for l �= j,

∣∣∣∣f(
ψ

[jN ]
λ ◦ ψ

−[lN ]
λl

(0)
)∣∣ − 1

∣∣ ≤ C2

N2(j − l)2
·

This proves Assertions 1 and 2 of Lemma 8. Assertion 3 is proved in the same
way as in Lemma 3, writing for λ ∈ [λj , λj+1[ and z ∈ D

|CjN
ψλ

C−jN
ψλj

f(z) − f(z)| ≤ CjN |λj − λ| ≤ CjN
δ

(j + 1)N
≤ C ′δ. �

The following proposition is the main ingredient of the proof.

Proposition 9. Let f be a finite Blaschke product, [a, b] ⊂]0,+∞[, m0 a
positive integer, K a compact subset of D and ε > 0. There exist an integer
m, integers (n(λ))λ∈[a,b] with n(λ) ∈ [m0,m] and a finite Blaschke product B
such that

(1) B(1) = 1;
(2) ‖B − 1‖K < ε;
(3) C

n(λ)
ψλ

(B) = uλvλ where uλ and vλ belong to B, ‖uλ − f ‖K < ε and
|vλ(0)| > 1 − ε.
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Proof. We use again the decomposition λ1 = a,λ2 = a + δ
2N , . . . , λq = b,

where δ > 0 and N ≥ m0 will be fixed during the proof. Consider the Blaschke
product

B1 =
q∏

l=1

C−lN
ψλl

(f).

For λ ∈ [λj , λj+1[, we have

CjN
ψλ

(B1) = CjN
ψλ

C−jN
ψλj

(f)
(∏

l �=j

CjN
ψλ

C−lN
ψλl

(f)
)

:= u1,λv1,λ

with u1,λ = CjN
ψλ

C−jN
ψλj

(f) and v1,λ =
∏

l �=j CjN
ψλ

C−lN
ψλl

(f). Set n(λ) = jN for
λ ∈ [λj , λj+1[. By Assertion 3 of Lemma 8, ‖u1,λ − f ‖K ≤ Mδ < ε if δ is small
enough. Moreover, still by Lemma 8,

1 − |v1,λ(0)| = 1 −
∏
l �=j

∣∣f(
ψ

[jN ]
λ ◦ ψ

−[lN ]
λl

(0)
)∣∣

≤
∑
l �=j

(
1 −

∣∣f(
ψ

[jN ]
λ ◦ ψ

−[lN ]
λl

(0)
)∣∣)

≤ C ′

N2

for some positive constant C ′. Thus, if N is large enough, |v1,λ(0)| > 1 − ε.
To conclude, it remains to observe that the same proof leads to

|B1(0)| ≥ 1 − C ′ ′

N2

for some positive constant C ′ ′, so that using Lemma 4 and adjusting N large
enough, there exists a real number θ such that ‖eiθB1 − 1‖K < ε. If we
set B2 = eiθB1, then B2 satisfies the conclusions of the proposition (setting
u2,λ = u1,λ and v2,λ = eiθv1,λ), except that we are not sure that B2(1) = 1. To
conclude, let F be a finite Blaschke product such that F is very close to 1 on a
big compact set L ⊂ D and F (1) = B2(1). Then B = FB2 is the finite Blaschke
product we are looking for. Indeed, setting uλ = u2,λ and vλ = C

n(λ)
ψλ

(F )v2,λ,
Assertion 3 is satisfied, provided L is big enough to contain all the points
ψ

n(λ)
λ (0), λ ∈ [a, b]. �

We can now proceed with the construction.

Proposition 10. Let (fk)k≥1 be a dense sequence of finite Blaschke prod-
ucts with fk(1) = 1. Let (Kk) be an exhaustive sequence of compact subsets
of D, and ([ak, bk])k≥1 an increasing sequence of compact intervals such that⋃

k≥1

[ak, bk] =]1,+∞[.
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There exist finite Blaschke products (Bk), integers (mk), and other integers
(nk(λ))λ∈[ak,bk] with nk(λ) ≤ mk such that

(1) Bk(1) = 1;
(2) ‖Bk − 1‖Kk

< 2−k;
(3) for every j < k, every λ ∈ [ak, bk], |Bj ◦ ψ

[nk(λ)]
λ (0) − 1| < 2−k;

(4) for every j < k, every λ ∈ [aj , bj ], |Bk ◦ ψ
[nj(λ)]
λ (0) − 1| < 2−k;

(5) for every λ ∈ [ak, bk], C
nk(λ)
ψλ

(Bk) = uk,λvk,λ where

‖uk,λ − fk ‖Kk
< 2−k and |vk,λ(0)| > 1 − 2−k.

Proof. The first step of the construction follows directly from Proposition 9.
Now, we assume that the construction has been done until step k − 1 and
show how to complete step k. By continuity at the point 1 of the functions
(Bj)j<k, we choose an integer m such that for every λ ∈ [ak, bk], for any n ≥ m,
|Bj ◦ ψ

[n]
λ (0) − 1| < 2−k. We then set

K = Kk ∪
⋃

j<k,λ∈[aj ,bj ],n≤mj

{
ψ

[n]
λ (0)

}
.

The function Bk is then given immediately by Proposition 9. �

Corollary 11. There exists a Blaschke product B which is universal for
all the composition operators Cψλ

, λ > 0.

Proof. Set
B =

∏
l≥1

Bl,

which is a convergent Blaschke product by Assertion 2 of Proposition 10. We
claim that B is B-universal with respect to every composition operator Cψλ

.
Indeed, fix λ > 0 and k0 such that λ ∈ [ak0 , bk0 ]. Let g be a universal function
for this particular operator Cψλ

. Using the notation of Proposition 10, let
(pk) be an increasing sequence of integers such that fpk

converges uniformly
to g on compact subsets of D. Now, we decompose

C
npk

(λ)

ψλ
(B) = C

npk
(λ)

ψλ
(Bpk

)
( ∏

j �=pk

Bj ◦ ψ
[npk(λ)]

λ

)
:= upk,λvpk,λwpk,λ

where C
[npk

(λ)]

ψλ
(Bpk

) = upk,λvpk,λ is the decomposition of Proposition 9. From
Assertions 3 and 4 of Proposition 10, we get that wpk,λ(0) tends to 1 (see [2] for
details), so that (cf. Fact 4) wpk,λ converges uniformly on compacta to 1. Tak-
ing a subsequence if necessary, we can assume that vpk,λ(0) converges to some
unimodular number eiθ, and by Fact 4, again we have uniform convergence
on compacta. Thus, C

npk
(λ)

ψλ
(B) converges uniformly to the function eiθg on

compacta. Since the function eiθg is universal for Cψλ
, this implies that B is

universal for Cψλ
too, and this terminates the proof of Corollary 11. �
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The proof of Theorem 1 is now concluded by “intertwining” the two proofs
of the hyperbolic and parabolic cases: the common universal Blaschke product
has the form

B =
∏
l≥1

Bl

where the Bl’s are finite Blaschke products satisfying a number of properties:
B1 is constructed using Proposition 6, then B2 using Proposition 10, then B3

using Proposition 6 again, etc. . . taking care at each step not to destroy what
has been done previously. Details are left to the reader.

Acknowledgment. We wish to thank the referee for his/her careful reading
of the paper.
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