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UPPER POROUS MEASURES ON METRIC SPACES

VILLE SUOMALA

Abstract. We show how a standard method of geometric mea-
sure theory for providing density estimates may be used in gen-
eral metric spaces to obtain information on the upper porosity

of packing type measures. We also obtain a connection between

lower densities and the upper porosity of measures on Euclidean
spaces.

1. Introduction

In geometric measure theory several tools have been developed to study the
local geometry of measures on Euclidean spaces. Among the most important
are density estimates, in particular for conical densities. These were studied
first by Besicovitch [3], [4] and later by Marstrand [13], Federer [8], Mattila
[14], and many others. Another concept that is used for describing the local
distribution of a given fractal (a set or a measure) is that of porosity. It is well
known that these two concepts are related to each other. Indeed, upper conical
density results lead to dimension estimates for lower porous sets and measures,
see [14], [11], [12]. On the other hand, in this paper, we will show that lower
conical densities are closely related to upper porosities of measures. The
main purpose of this paper is, however, to show that a well-known technique
in geometric measure theory, sometimes called “touching point arguments”
or “space filling” used to provide lower conical density theorems in Euclidean
spaces may be used in general metric spaces to get information on upper
porosity of packing type measures.

Our main result implies that under rather general conditions on the met-
ric space X and the gauge h, the packing measures P h|A will be upper
porous for all Borel sets A ⊂ X for which 0 < P h(A) < ∞ (see Section 2
for the definitions). We will show by an example that an analogous state-
ment does not in general hold if packing measures are replaced by Hausdorff
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measures. In Euclidean spaces, we provide a characterization of upper porous
measures in terms of their lower conical density properties. This connection
between lower densities and upper porosities of measures suggests that up-
per porosity results for measures on general metric spaces may be viewed
as analogies of the well-known lower conical density results on Euclidean
spaces.

The paper is organized as follows: In Section 2, we will set up the necessary
notation and recall some known properties of upper porous measures. In
Section 3, we will work on general metric spaces by proving our main result
and discussing its corollaries. Section 4 contains results on Euclidean spaces:
a connection between conical densities and the upper porosity of measures is
discussed in Section 4.1, and an example of Hausdorff-type measure on the
real line which is not upper porous will be constructed in Section 4.2.

2. Basic concepts

In what follows, X = (X,d) will always be a separable metric space. By
a measure on X , we mean a finite Borel regular (outer) measure defined on
all subsets of X . If μ is a measure on X and A ⊂ X , we let μ|A denote the
restriction measure defined by setting μ|A(B) = μ(A ∩ B) for all B ⊂ X . For
x ∈ X and r > 0, we let B(x, r) denote the open ball centered at x ∈ X with
radius r. Closed balls will be denoted by B(x, r), respectively. If A ⊂ X , we
denote by A the closure of A. We also let sptμ denote the smallest closed set
with full μ-measure.

Porosity of a set is a notion that concerns the size of holes of a given set
on small scales. There are basically two kinds of porosity, the upper and the
lower porosity. If the holes or “pores” are to be found in all small scales, one
is concerned with the lower porosity. If, on the other hand, one is interested
in the maximal relative size of “pores” that appear in arbitrarily small but
not necessarily in all scales, then the upper porosity is the relevant notion.
The surveys [22], [23] of Zaj́ıček contain plenty of information about porosity
concepts of sets and their applications.

Also, porosities of measures have attracted increasing attention during the
past few years. As for sets, we have to distinguish between upper and lower
porosity. The lower porosity of measures on R

n was first introduced by Eck-
mann, Järvenpää, and Järvenpää in [6]. Its relation to dimensions has been
studied also in [10], [2], and [1]. Our interest will be focused on the upper
porosity of measures, which has been previously studied by several authors in
[16] and [17]. The definition is as follows: The upper porosity of a measure μ
at a point x ∈ X is

por(μ,x) = lim
ε↓0

limsup
r↓0

por(μ,x, r, ε),
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where

por(μ,x, r, ε) = sup{� ≥ 0 : there is y ∈ X such that
d(y,x) + �r ≤ r and μ(B(y, �r)) ≤ εμ(B(x, r))}

for ε, r > 0. We say that μ is upper porous provided por(μ,x) > 0 for μ-almost
all x ∈ X . The upper porosity of a set A ⊂ X at a point x ∈ A is given by

por(A,x) = limsup
r↓0

por(A,x, r),

where

por(A,x, r) = sup{� ≥ 0 : there is y ∈ X such that
d(y,x) + �r ≤ r and B(y, �r) ∩ A = ∅}.

We call A upper porous if there is a > 0 such that por(A,x) > a for all x ∈ A
and σ-upper porous if it is a countable union of upper porous sets.

Remarks 2.1. (a) It is clear that 0 ≤ por(A,x) ≤ 1
2 for any x ∈ A. For

measures, the question is trickier. A measure μ is said to satisfy the doubling
condition at x ∈ X if

(2.1) limsup
r↓0

μ(B(x,2r))/μ(B(x, r)) < ∞.

It follows easily (see [17]) that 0 ≤ por(μ,x) ≤ 1
2 if μ satisfies the doubling

condition at x and por(μ,x) = 1 otherwise. Moreover, it was shown in [16]
and [17], that also μ({x ∈ X : 0 < por(μ,x) < 1

2 }) = 0. So μ is upper porous
if and only if por(μ,x) ∈ { 1

2 ,1} almost everywhere.
(b) As shown in [17], upper porosity of measures may be defined in terms of

upper porous sets: μ is upper porous if for all ε > 0 there is an upper porous
set A ⊂ X with μ(X \ A) < ε. Moreover, this upper porous set A may be
chosen so that por(A,x) = 1/2 for all x ∈ A.

Throughout the paper, we denote by h : (0, ∞) → (0, ∞) a nondecreasing
gauge function that satisfies the doubling condition,

(2.2) h(2r) ≤ Cdh(r) for all 0 < r < ∞
with some constant Cd < ∞. The h-Hausdorff measure of A ⊂ X is given by
the definitions (0 < δ ≤ ∞)

Hh
δ (A) = inf

{∑
h(diam(Ai)) : A ⊂

∞⋃
i=1

Ai,and diam(Ai) < δ for all i

}
,

Hh(A) = lim
δ↓0

Hh
δ (A).

When h is a power, h(r) = rs for some 0 < s < ∞, we use the familiar notation
Hs to denote Hh. For δ > 0 and A ⊂ X , we call any collection of pairwise
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disjoint balls with centers in A and radii ≤ δ a δ-packing of A. We define the
radius-based packing premeasure Ph and packing measure P h by

Ph
δ (A) = sup

{∑
h(2ri) : {B(x, ri)}i is a δ-packing of A

}
,

Ph(A) = lim
δ↓0

Ph
δ (A),

P h(A) = inf
∑

Ph(Ai),

where the infimum is over all countable partitioning ∪Ai = A.
The following notation will be used on R

n. If x ∈ R
n and r > 0, we denote

by S(x, r) ⊂ R
n the sphere {y ∈ R

n : |x − y| = r}, where | · | refers to the
Euclidean distance. For θ ∈ Sn−1 = S(0,1) ⊂ R

n, η > 0, x ∈ R
n, and r > 0 we

put:
H(x, r, θ, η) = {y ∈ B(x, r) : (y − x) · θ > η|y − x| }.

3. Upper porosity of packing type measures

In this section, we prove our main result concerning the upper porosity of
packing type measures. As a technical tool, we first have to obtain a density
point theorem for measures that are not upper porous. For that we need the
following Vitali-type covering lemma. Related, more general results have been
obtained by Shevchenko in [18].

Lemma 3.1. Let A ⊂ X and B be a collection of closed balls in X with
inf{r : B(x, r) ∈ B } = 0 for all x ∈ A. Then there is a pairwise disjoint col-
lection B ′ ⊂ B such that A ⊂ ∪ B ′ ∪ P ∪ N , where P is σ-upper porous and
μ(N) = 0.

Proof. For any ε > 0, it is enough to find a finite and pairwise disjoint
sub-collection Bε such that

(3.1) A ⊂ ∪ Bε ∪ Pε ∪ Nε,

where Pε is upper porous and μ(Nε) ≤ εμ(A). For if this holds, we first define
B 1

2
, P 1

2
, and N 1

2
and then replace A by A \ ∪B 1

2
and B by {B ∈ B : B ∩

∪ B 1
2

= ∅} as well as define B 1
4
, P 1

4
, and N 1

4
, and so on. Then the collection

B ′ =
⋃

k∈N
B2−k is pairwise disjoint, P =

⋃
k∈N

P2−k is σ-upper porous and
μ(A \ (∪ B ′ ∪ P )) = 0.

To prove (3.1), we first take numbers εj > 0 such that
∑∞

j=1 εj < ε and use
the 5R-covering theorem, see [9, Theorem 1.2], to find a disjoint subcollection
B1

1 ,B2
1 , . . . of B with radii at most 1 such that A ⊂

⋃
i 5Bi

1. Now use the
Borel regularity of μ to find a large k1 ∈ N so that μ(A \

⋃k1
i=1 5Bi

1) < ε1μ(A).
Next, define A1 = A ∩

⋃k1
i=1 5Bi

1 \
⋃k1

i=1 Bi
1 and B1 = {B = B(x, r) ∈ B : r ≤

1
2 and B ∩

⋃k1
1 Bi

1 = ∅ }. Again, use the 5R-covering theorem to find a disjoint
subcollection B1

2 ,B2
2 , . . . of B1 such that A1 ⊂

⋃
i 5Bi

2. Let k2 be so large that
μ(A1 \

⋃k2
1 5Bi

2) < ε2μ(A) and define A2 = A1 ∩
⋃k2

1 5Bi
2 \

⋃k2
1 Bi

2. Proceeding
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in this way, we define Aj and B1
j ,B2

j , . . . ,B
kj

j for all j ∈ N. We require that
the radius of Bi

j be at most 2−j for all i and j.
We now define B̃ε = {Bi

j : 1 ≤ i ≤ kj , j ∈ N}, Pε =
⋂

k∈N
Ak, and Ñε = A \

(∪ B̃ε ∪ Pε). It is clear that the collection B̃ε is pairwise disjoint. Also,

μ(Ñε) = μ
(
A \ (∪ B̃ε ∪ Pε)

)
≤ μ

( ∞⋃
j=0

(
Aj

∖ kj+1⋃
i=1

5Bi
j+1

))

≤
∞∑

j=1

εjμ(A) < εμ(A),

denoting A0 = A. Since B̃ε is countable, we must have μ(Nε) < εμ(A) also for
some finite subcollection Bε of B̃ε, where Nε = A \ (∪ Bε ∪ Pε)) (recall that μ
is Borel regular). Finally, if x ∈ Pε, then x ∈ Aj for all j. Thus for all j there
is B = B(x, r) ∈ {B1

j , . . . ,B
kj

j } with x ∈ B(x,5r) \ B(x, r). Since B ∩ Pε = ∅,
this implies por(Pε, x,6r) ≥ 1

6 giving por(Pε, x) ≥ 1
6 as r ↓ 0. �

Below, we have a density point theorem suitable for our purposes.

Lemma 3.2. If por(μ,x) = 0 for μ-almost every x ∈ A for a Borel set A ⊂
X, then limr↓0 μ(B(x, r) \ A)/μ(B(x, r)) = 0 for μ-almost all x ∈ A.

Proof. By [17, Proposition 3.5], μ(A ∩ P ) = 0 for any σ-upper porous set
P ⊂ X . By the previous lemma, we are able to use Vitali’s covering theorem.
The claim then follows, since it is well known that Vitali’s covering theorem
implies the density point theorem. See [9, Remark 1.13], for example. �

We are now ready to prove our main result, Theorem 3.3 below.

Theorem 3.3. Let

(3.2) 0 < lim inf
r↓0

μ(B(x, r))/h(2r) < ∞

for μ-almost all x ∈ X and suppose that for all δ > 0 there is a Borel set D
with μ(X \ D) < δ such that

(3.3) lim inf
r↓0

Hh
∞

(
B(x, r) \ D

)
/h(2r) > 0

for μ-almost every x ∈ X. Then μ is upper porous.

Proof. It is enough to show that

(3.4) lim
ε↓0

limsup
r↓0

por(μ,x, r, ε) ≥ 1
3

for μ-almost all points x ∈ X . We argue by contradiction assuming that (3.4)
fails in a set of positive μ-measure. Then there is a Borel set B ⊂ X with
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μ(B) > 0, and ε > 0 with

(3.5) limsup
r↓0

por(μ,x, r, ε) <
1
3

for all x ∈ B. We refer to [17, Proposition 3.2] for measurability arguments.
Now (3.5) implies that for each x ∈ B there is r0 = r0(x) > 0, such that

(3.6) μ(B(y, r)) > εμ(B(x,3r))

for all y ∈ B(x,2r) \ B(x, r) and 0 < r < r0. By the Borel regularity of μ, we
may take a closed set F ⊂ B with μ(F ) > 0 such that (3.6) holds for all x ∈ F
with a fixed constant r0 > 0. Using the left-hand side estimate of (3.2) and
(3.3), we may assume, making F and r0 smaller if necessary, that also

h(2r) < c1μ(B(x, r)), and(3.7)

h(2r) < c2Hh
∞

(
B(x, r) \ F

)
(3.8)

for all x ∈ F and 0 < r < r0 with some constants 1 < c1, c2 < ∞. To obtain
(3.8), take D ⊂ X that satisfies (3.3) with δ < μ(F ) and replace F by a suitable
compact subset of D ∩ F . Furthermore, by combining (3.6) and (3.7) it follows
that

(3.9) μ(B(y, r)) > c3h(6r)

for all x ∈ F , y ∈ B(x,2r) \ B(x, r), and 0 < r < r0
2 where c3 = ε

c1
.

Now, we use Lemma 3.2 and the right-hand side estimate of (3.2) to find
0 < c4 < ∞ and x ∈ F , such that limr↓0 μ(B(x, r) \ F )/μ(B(x, r)) = 0 and
lim infr↓0 μ(B(x, r))/h(2r) < c4. The use of Lemma 3.2 is justified since by
(3.5) and Remarks 2.1(a), we have por(μ,x) = 0 for μ-almost all x ∈ F . Let
c5 = c3/(c2C

2
d), where Cd is the doubling constant of (2.2). We may then find

a radius 0 < r < r0 for which

(3.10) μ
(
B(x, r) \ F

)
<

c5

c4
μ(B(x, r)) < c5h(2r).

For each y ∈ B(x, r
2 ) \ F , there is a unique 0 < ry ≤ r

2 such that B(y, ry) ∩ F =
∅, while B(y, r) ∩ F �= ∅ for all r > ry . Applying the 5R-covering theorem
([9, Theorem 1.2]) to the collection {B(y, ry) : y ∈ B(x, r

2 ) \ F }, we get pair-
wise disjoint balls B(y1, r1),B(y2, r2), . . . ⊂ B(x, r) \ F such that B(x, r

2 ) \ F ⊂⋃
i B(yi,5ri). Choosing points xi ∈ B(yi,2ri) ∩ F ⊂ B(yi,2ri) \ B(yi, ri), we

get, using (3.9), the doubling condition (2.2), and (3.8)

μ
(
B(x, r) \ F

)
≥

∑
i

μ(B(yi, ri)) > c3

∑
i

h(6ri) >
c3

Cd

∑
i

h(12ri)

≥ c3

Cd
Hh

∞
(
B

(
x, r

2

)
\ F

)
>

c3

c2Cd
h(r) ≥ c3

c2C2
d

h(2r)

= c5h(2r)

contrary to (3.10). This completes the proof. �
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As an immediate corollary to Theorem 3.3 we get the following corollary.

Corollary 3.4. Suppose that (3.3) holds for all closed sets D ⊂ X such
that P h(D) < ∞. If A ⊂ X is a Borel set with 0 < P h(A) < ∞, then P h|A is
upper porous.

Proof. By [5, Theorem 3.11] P h|A is Borel regular, and thus for all δ > 0
there is a closed set D ⊂ A such that P h(A \ D) < δ. The claim now follows
directly from Theorem 3.3 together with Cutler [5, Theorem 3.16], which
implies (3.2) for μ = P h|A. �

As will be shown by an example in Section 4.2, Corollary 3.4 is not in
general true if one replaces packing measures by Hausdorff measures. On the
other hand, if Hh|A has positive lower density almost everywhere, then we
may use Theorem 3.3 to obtain the following result.

Corollary 3.5. Suppose that (3.3) holds for all closed sets D ⊂ X such
that Hh(D) < ∞. If A ⊂ X is a Borel set with 0 < Hh(A) < ∞ and if
lim infr↓0 Hh(A ∩ B(x, r))/h(2r) > 0 for Hh-almost all x ∈ A, then the mea-
sure Hh|A is upper porous.

Proof. This follows directly from Theorem 3.3. It is well known that Hh|A
is Borel regular, see [15, Theorem 4.2]. Moreover, it is a simple consequence
of the 5R-covering theorem that even limsupr↓0 Hh(A ∩ B(x, r))/h(2r) < ∞
for Hh-almost all x ∈ A. Recall that h is doubling and use the argument of
[15, Theorem 6.6], for example. �

Remark 3.6. In order for μ to be upper porous, it is necessary, by Re-
mark 2.1(b), to find upper porous sets with measure arbitrarily close to μ(X).
Thus, we need to impose conditions on μ that ensure the existence of such
sets. To obtain this, the condition (3.3) is used. It may look a bit awkward
but it is easily seen to hold in many natural cases. Below, we give one concrete
example.

Proposition 3.7. Suppose that h and g are gauge functions which satisfy
the doubling condition (2.2) and that r → h(r)/g(r) is decreasing on (0, ∞).
Suppose also that h(r)/g(r) → ∞ as r ↓ 0 and that there is a measure μ on
X and constants r0 > 0, 1 ≤ C < ∞ such that 1

C g(2r) ≤ μ(B(x, r)) ≤ Cg(2r)
for every x ∈ X and all 0 < r < r0. Then the assumption (3.3) is satisfied for
the measures ν = P h|A and λ = Hh|B provided A and B are Borel sets with
P h(A) < ∞ and Hh(B) < ∞.

Proof. Let D ⊂ X be either of the sets A or B. Since Hh(A) ≤ P h(A), see
[5, Theorem 3.11], we conclude that M = Hh(D) < ∞. We first check that

(3.11) μ(D) = 0.
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Let δ > 0. Choose 0 < r1 < r0 such that g(r) < δh(r) for all 0 < r < r1 and
cover D with sets A1,A2,A3, . . . such that di = diam(Ai) < r1/2 for all i and∑

i h(di) < 2M . Choosing xi ∈ Ai for each i, we get

μ(D) ≤
∑

i

μ(B(xi, di)) ≤ C
∑

i

g(2di) ≤ δC
∑

i

h(2di)

≤ δCCd

∑
i

h(di) < δCCd2M,

where Cd is the doubling constant of h, see (2.2). Letting δ ↓ 0 gives (3.11).
It remains to show that

(3.12) lim inf
r↓0

Hh
∞

(
B(x, r) \ D

)
/h(2r) > 0

for all x ∈ X . Let 0 < r < r0/2 and suppose B(x, r) \ D ⊂
⋃∞

i=1 Ai. We may
assume that di = diam(Ai) ≤ 2r for each i. Choosing xi ∈ Ai and using the
assumption that h(r)/g(r) is decreasing in r and (3.11), we get∑

i

h(di) =
∑

i

h(di)
g(di)

g(di) ≥ h(2r)
g(2r)

∑
i

g(di) ≥ h(2r)
C ′g(2r)

∑
i

g(2di)

≥ h(2r)
CC ′g(2r)

∑
i

μ(B(xi, di)) ≥ h(2r)
CC ′g(2r)

μ(B(x, r)) ≥ h(2r)
C2C ′ ,

where C ′ is the doubling constant of g, see (2.2). Hence it follows that
Hh

∞(B(x, r) \ D)/h(2r) ≥ 1/(C2C ′) giving (3.12). �
Remark 3.8. In Theorem 3.3, we have no assumptions on the space X

besides separability and (3.3). For example, X may be infinite dimensional.
This is not surprising given the nature of our statement: We only have to care
about the points where μ satisfies the doubling condition, so our measures are
essentially finite dimensional. I do not know whether all finite dimensional
measures on an infinite dimensional space are upper porous but, for instance,
in any infinite dimensional Banach space all Radon measures are even lower
porous [22, p. 518].

4. Results on R
n

Throughout this section, we shall work on R
n with the Euclidean metric

d(x, y) = |x − y|.
4.1. Upper porosity and conical densities. In this subsection, we show
that in Euclidean spaces, upper porosity is equivalent to a lower conical den-
sity property by proving the following theorem.

Theorem 4.1. A measure μ on R
n is upper porous if and only if for μ-

almost all x ∈ R
n there is θ = θ(x) ∈ Sn−1 such that

(4.1) lim inf
r↓0

μ(H(x, r, θ, η))/μ(B(x, r)) = 0
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for all η > 0.

Before the proof, let us consider the following example. Suppose that
A ⊂ R

n with 0 < Hs(A) < ∞ for some 0 < s < n. Then the basic lower density
results originating from the works of Besicovitch [3], [4], and Marstrand [13]
imply that for Hs-almost every x ∈ A, there is θ ∈ Sn−1 so that

(4.2) lim inf
r↓0

Hs
(
A ∩ H(x, r, θ, η)

)
/(2r)s = 0

for all η > 0. If lim infr↓0 Hs(A ∩ B(x, r))/(2r)s > 0 for Hs-almost all x ∈ A,
we see from Theorem 4.1 that (4.2) is equivalent to saying that the measure

Hs|A is upper porous. Of course, this follows also from Corollary 3.5, but the
connection given by Theorem 4.1 between upper porosity and lower conical
densities enables us to consider upper density results on metric spaces as
analogies of (4.2) and the other known lower conical density results for many
Hausdorff and packing type measures, see [19].

Proof of Theorem 4.1. If �(η) =
√

1 − η2/(1 +
√

1 − η2), it follows by ele-
mentary geometry that B(x + (1 − �(η))rθ, �(η)r) ⊂ H(x, r, θ, η), for all x ∈
R

n, 0 < η < 1
2 and θ ∈ Sn−1. Thus, (4.1) implies that por(μ,x) ≥ �(η). Ob-

serve that �(η) → 1
2 as η ↓ 0.

To prove that an upper porous measure μ satisfies (4.1), it is actually
enough to show that for all η > 0 and almost all x,

(4.3) lim inf
r↓0

inf
θ∈Sn−1

μ(H(x, r, θ, η))/μ(B(x, r)) = 0.

That (4.3) implies (4.1) follows by a simple compactness argument, see [20,
p. 504].

Let D ⊂ R
n be the set of points where μ satisfies the doubling condition

(2.1). We first prove that (4.3) is satisfied almost everywhere on D. If this is
not the case, we use the Borel regularity of μ and the Borel measurability of
the mapping x → μ(H(x, r, θ, η))/μ(B(x, r)) to find numbers 0 < a, r0, � < 1

2
and a compact set F ⊂ D with μ(F ) > 0 such that por(μ,x) > � and

(4.4) μ(H(x, r, θ, η)) > aμ(B(x, r))

for all x ∈ F , θ ∈ Sn−1, and 0 < r < r0. Since F ⊂ D, we may also assume by
making F and r0 smaller if necessary that

(4.5) μ(B(x,2r)) < c1μ(B(x, r)) for all 0 < r < r0

for some constant 1 < c1 < ∞. Now, we fix x ∈ F such that limr↓0 μ(B(x, r) \
F )/μ(B(x, r)) = 0 (use [15, 2.14], for example) and choose 0 < r1 < r0, for
which

(4.6) μ
(
B(x,2r) \ F

)
<

1
2
ac−k

1 μ(B(x,2r)) for all 0 < r < r1,
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where k is an integer to be defined later (depending only on η and �). Since
por(μ,x) > �, we may find 0 < r < r1/8 and y such that d(x, y) < (1 − �)r and

(4.7) μ(B(y, �r)) ≤ 1
2
ac−k

1 μ(B(x, r)).

Let t = min{t ≥ �r : S(y, t) ∩ F �= ∅ } and pick z ∈ F ∩ S(y, t). Putting θ =
(y − z)/|y − z|, we have H(z, c2r, θ, η) ⊂ B(y, t) for a constant c2 = c2(η, �) > 0.
We now let k be the smallest positive integer for which 2k > 4

c2
. Then k

depends only on η and �. It is easy to see that |z − x| < 2r, giving B(x,2r) ⊂
B(z,4r) ⊂ B(z,2kc2r) and H(z, c2r, θ, η) ⊂ B(y, t) ⊂ B(y, �r) ∪ (B(x,2r) \ F ).
We now get a contradiction, since

μ(H(z, c2r, θ, η)) ≥ aμ(B(z, c2r)) ≥ ac−k
1 μ(B(x,2r))

by (4.4) and the repeated use of (4.5), and, on the other hand,

μ(H(z, c2r, θ, η)) ≤ μ(B(y, �r)) + μ
(
B(x,2r) \ F

)
< ac−k

1 μ(B(x,2r)),

using (4.6) and (4.7).
To finish the proof, it is enough to show that (4.3) holds also for μ-almost

every x ∈ R
n \ D when η > 0. We argue by contradiction by assuming that

there is a compact set F ⊂ sptμ \ D with positive μ-measure and numbers
0 < a, r0 < 1 so that (4.4) holds true for all x ∈ F and 0 < r < r0.

We next define constants 0 < c, ε < 1 and k ∈ N. By simple geometric
inspections, it is easy to see that the choice of these constants only de-
pends on the dimension n and the fixed constant η > 0, although one might
find it tedious to calculate the exact values. First, we choose c > 0 so that
H(y,2c, −y, η) ⊂ B(0,1) for all y ∈ Sn−1. Given 0 < ε < c

2 , we denote

Cx,r,θ = H

(
x − (1 + 2ε)rθ,

c

2
r, θ, η

)
∩ B

(
x, (1 + ε)r

)
\ B(x, r)

and we fix ε so small that

(4.8) H(y, cr, θ, η) ⊂ B(x, r) ∪ Cx,r,θ

for all x ∈ R
n, θ ∈ Sn−1, r > 0, and y ∈ Cx,r,θ. Figure 1 might help visualize

the situation. We finally choose a large integer k so that any annulus B(x, (1+
ε)r) \ B(x, r) ⊂ R

n may be covered by at most k different sets of the form
Cx,r,θ.

Since F ⊂ sptμ \ D, we have limsupr↓0 μ(B(x, (1+ε)r))/μ(B(x, r)) = ∞ for
all x ∈ F . By [15, 2.14], also limr↓0 μ(B(x, r) \ F )/μ(B(x, r)) = 0 for μ-almost
all x ∈ F . Thus, we may fix x ∈ F and 0 < r < r0, for which

μ
(
B

(
x, (1 + ε)r

)
\ F

)
<

a

4k
μ
(
B

(
x, (1 + ε)r

))
,(4.9)

μ(B(x, r)) <
a

4k
μ
(
B

(
x, (1 + ε)r

)
∩ F

)
.(4.10)
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Figure 1. Illustration for the second part of the proof of
Theorem 4.1.

Now the annulus B(x, (1 + ε)r) \ B(x, r)) may be covered by at most k
cones Cx,r,θ. Hence, we may fix a θ ∈ Sn−1 so that for C = Cx,r,θ we have

(4.11) μ(C ∩ F ) ≥ 1
k

μ
(
B

(
x, (1 + ε)r

)
∩ F \ B(x, r)

)
>

1
2k

μ
(
B

(
x, (1 + ε)r

))
;

use (4.9)–(4.10) to obtain the last estimate. We now choose a point y ∈ C ∩ F
which maximizes the inner product y · θ in C ∩ F . From (4.8), it follows that
H(y, cr, θ, η) ⊂ B(x, r) ∪ (C \ F ) ⊂ B(x, r) ∪ (B(x, (1 + ε)r) \ F ), see Figure 1.
Also C ⊂ B(y, cr) since diam(C) < cr, and using (4.9)–(4.11), we get

μ(H(y, cr, θ, η)) ≤ μ(B(x, r)) + μ
(
B

(
x, (1 + ε)r

)
\ F

)
<

a

2k
μ
(
B

(
x, (1 + ε)r

))
< aμ(C) ≤ aμ(B(y, cr))

contrary to (4.4). This completes the proof. �

Remark 4.2. The above theorem gives also an alternative proof for the fact
that por(μ,x) ∈ { 1

2 ,1} for μ-almost every x ∈ R
n, if μ is an upper porous mea-

sure on R
n. The original proof given in [16] makes use of tangent measures,

and the one given in [17] that works in metric spaces is based on a general
fact, according to which any upper porous set A ⊂ X is a countable union of
sets with upper porosity arbitrarily close to 1

2 , see [17, Proposition 1.3] and
[21, Proposition 4.1].

4.2. Hausdorff measures need not be upper porous. It is natural to
ask if μ is upper porous in Theorem 3.3 also if lim inf is replaced by limsup
in (3.2). In particular, if Corollary 3.5 remains true if lim infr↓0 Hh(A ∩
B(x, r))/h(2r) = 0 in a set of a positive μ-measure. The following exam-
ple shows that this need not be the case even for μ = Hs|A, where A ⊂ R is a
Borel set and 0 < Hs(A) < ∞ for some 0 < s < 1.
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Example 4.3. Let 0 < s < 1. We construct a probability measure μ on
[0,1] such that with some constants 0 < c1 < c2 < ∞,

(4.12) c1 < limsup
r↓0

μ(x − r, x + r)/(2r)s < c2

for μ-almost every x ∈ [0,1], and, moreover,

(4.13) c−1μ(I) < μ(I ′) < cμ(I)

for some constant c < ∞ whenever I and I ′ are adjacent triadic sub-intervals
of [0,1] with equal length. Condition (4.12) implies that μ is comparable
with a Hausdorff measure μ̃ = Hs|A, where A ⊂ [0,1] is a Borel set with
0 < Hs(A) < ∞, see [15, Theorem 6.9]. On the other hand, (4.13) implies
that

(4.14) por(μ,x) = por(μ̃, x) = 0 for Hs-almost all x ∈ A.

Indeed, let α > 0, r > 0 and x, y ∈ (0,1) so that (y − αr, y+αr) ⊂ (x − r, x+r).
Then there is a triadic interval I1 ⊂ (y − αr, y +αr) with length at least αr/3
and also triadic intervals I2 and I3 with length at most 3r so that (x − r, x +
r) ⊂ I2 ∪ I3. Let i = i(α) be the smallest natural number for which α ≥ 32−i.
Then a repeated application of (4.13) gives μ(y − αr, y + αr) ≥ μ(I1) ≥ (1 +
c)−i min{μ(I2), μ(I3)} ≥ (1 + c)−i−1μ(I2 ∪ I3) ≥ c(α)μ(x − r, x + r). This im-
plies por(μ,x) ≤ α for all x ∈ (0,1) and letting α ↓ 0 gives por(μ,x) = 0 for
x ∈ (0,1). Moreover, the equality por(μ,x) = por(μ̃, x) holds almost every-
where when we compare (4.12) with [15, Theorem 6.9].

To construct μ, we fix 1
3 < p < 1 such that

(4.15) s > −p log3 p − 2p′ log3 p′,

where p′ = (1 − p)/2. We start by defining μ[0, 1
3 ] = μ[ 23 ,1] = p′ and μ[ 13 , 2

3 ] = p.
Suppose that μ(I) was already defined for a triadic interval I = [j3−k, (j +
1)3−k] (k ∈ N and j = 0, . . . ,3k − 1). Denote I1 = [j3−k, j3−k + 3−k−1], I2 =
[j3−k + 3−k−1, j3−k + 2 · 3−k−1], and I3 = [j3−k + 2 · 3−k−1, (j + 1)3−k]. If
μ(I) ≤ �(I)s = 3−ks, we let

(4.16) μ(I1) = μ(I3) = p′μ(I) and μ(I2) = pμ(I).

Otherwise, we put μ(Ii) = μ(I)/3 for each i = 1,2,3. Repeating this procedure
defines μ on all triadic sub-intervals of [0,1] and μ then easily extends to a
probability measure on [0,1].

It is clear from the construction that limsupr↓0 μ(x − r, x+ r)/(2r)s < c2 <
∞ for all x ∈ [0,1]. The estimate (4.13) is also easily obtained. Proving that
limsupr↓0 μ(x − r, x+ r)/(2r)s > c1 > 0 almost everywhere reduces to showing
that

(4.17) μ(B) = 0
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for the set

B = {x ∈ [0,1] : μ(I) ≥ �(I)s for only finitely many triadic intervals I � x}.

The claim (4.17) follows by the observation that on the set B the measure μ is
absolutely continuous with respect to the self-similar probability measure μp

that satisfies (4.16) for all triadic intervals I ⊂ [0,1]. Notice that μp(B) = 0,
since limsupj→∞ Bj

x/j ≤ log3 p′+s
log3 p′ −log3 p < p for all x ∈ B by (4.15), where Bj

x is
the number of indices 1 ≤ i ≤ j such that xi = 1 in the ternary decomposition
x =

∑∞
i=1 xi3−i, xi ∈ {0,1,2}. See [7, Proposition 10.4].

Remarks 4.4. By Theorem 4.1, it follows that the above constructed μ
(or equivalently μ̃ = Hs|A) satisfies

lim inf
r↓0

μ(x,x + r)
μ(x − r, x + r)

> 0 and lim inf
r↓0

μ(x − r, x)
μ(x − r, x + r)

> 0

for μ-almost all x ∈ R. This gives a negative answers to a question posed
in [19, p. 12]. The results of [16] on upper porous measures also imply that
μ(P ) = 0 for all σ-upper porous sets P ⊂ R and that for μ-almost all x ∈ R

all tangent measures ν of μ at x satisfy sptν = R. See [16] for details.
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n: Local structure and dimen-

sional properties, Proc. Amer. Math. Soc. 130 (2002), 419–426. MR 1862121
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[21] L. Zaj́ıček, Sets of σ-porosity and sets of σ-porosity (q), Časopis Pěst. Mat. 101 (1976),
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