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GROUP BUNDLE DUALITY

GEOFF GOEHLE

Abstract. This paper introduces a generalization of Pontryagin
duality for locally compact Hausdorff Abelian groups to locally
compact Hausdorff Abelian group bundles.

First, recall that a group bundle is just a groupoid where the range and
source maps coincide. An Abelian group bundle is a bundle where each fibre
is an Abelian group. When working with a group bundle G, we will use X to
denote the unit space of G and p : G → X to denote the combined range and
source maps. Furthermore, we will use Gx to denote the fibre over x. Group
bundles, like general groupoids, may not have a Haar system but when they do
the Haar system has a special form. If G is a locally compact Hausdorff group
bundle with Haar system, denoted by {βx} throughout the paper, then βx is
Haar measure on the fibre Gx for all x ∈ X . At this point, it is convenient to
make the standing assumption that all of the locally compact spaces in this
paper are Hausdorff.

Now suppose G is an Abelian, second countable, locally compact group
bundle with Haar system {βx}. Then C∗(G,β) is a separable Abelian C∗-
algebra and in particular Ĝ = C∗(G,β)∧ is a second countable locally compact
Hausdorff space [1, Theorem 1.1.1]. We cite [2, Section 3] to see that each
element of Ĝ is of the form (ω,x) with x ∈ X and ω a character in the Pon-
tryagin dual of Gx, denoted (Gx)∧. The action of (ω,x) on Cc(G) is given
by

(1) (ω,x)(f) =
∫

G

f(s)ω(s)dβx(s).

Since every element in Ĝ is a character on a fibre of G, we are justified in
thinking of Ĝ as a bundle over X with fibres Ĝx = (Gx)∧ and action on
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C∗(G,β) given by (1). We will use p̂ to denote the projection from Ĝ to X

and ω to denote the element (ω, p̂(ω)) in Ĝ.
At this point, it is clear that Ĝ is algebraically a group bundle. In order for

it to be a topological groupoid, we must show that the groupoid operations
are continuous with respect to the Gelfand topology on Ĝ. To this end, we
reference the following characterization of the topology on Ĝ.

Lemma 1 ([2, Proposition 3.3]). Let G be a second countable locally compact
abelian group bundle with Haar system. Then a sequence {ωn} in Ĝ converges
to ω0 in Ĝ if and only if:
(a) p̂(ωn) converges to p̂(ω0) in X, and
(b) if sn ∈ Gp̂(ωn) for all n ≥ 0 and sn → s0 in G, then ωn(sn) → ω0(s0).

The first thing we can conclude from this lemma is that the restriction of the
topology on Ĝ to Ĝx is the same as the topology on Ĝx as the dual group of Gx.
The second thing we conclude is that the topology on Ĝ is independent of the
Haar system β. Furthermore, recall that the groupoid operations on Ĝ are
those coming from the dual operations on Ĝx. In other words, the operations
are pointwise multiplication and conjugation of characters, and it follows from
Lemma 1 that these operations are continuous. Therefore, we have proven the
lemma.

Lemma 2 ([2, Corollary 3.4]). Let G be a second countable locally compact
Abelian group bundle with Haar system. Then Ĝ, equipped with the Gelfand
topology, is a second countable locally compact Abelian group bundle with fibres
Ĝx = (Gx)∧.

Now we can make our first definition.

Definition 3. If G is a second countable locally compact Abelian group
bundle with Haar system, then we define the dual bundle to be Ĝ = C∗(G)∧

equipped with the groupoid operations coming from the identification of Ĝx

as the dual of Gx. We will use p̂ to denote the projection on this bundle.

This definition gives rise to the notion of a duality theorem for group bun-
dles. The main result of this paper is to prove the following theorem, stated
without proof in [3, Proposition 1.3.7].

Theorem 4. If G is a second countable locally compact (Hausdorff) Abelian
group bundle with Haar system then the dual Ĝ has a dual group bundle, de-

noted ̂̂
G . Furthermore, the map Φ : G → ̂̂

G such that

Φ(s)(ω) = ŝ(ω) := ω(s)

is a (topological) group bundle isomorphism between G and ̂̂
G .
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Before we continue, it will be useful to see that the group bundle notion of
duality is a natural extension of the usual Pontryagin dual, as illustrated by
the following proposition.

Proposition 5. Let G be a second countable locally compact Abelian group
bundle with Haar system. Then C∗(G) ∼= C0(Ĝ) via the Gelfand transform.
Furthermore, if f ∈ Cc(G) then the Gelfand transform of f restricted to Ĝx

is the Fourier transform of f |Gx .

Proof. The first statement follows from the fact that we defined Ĝ to be
the spectrum of the Abelian C∗-algebra C∗(G). Next, let f̂ be the Gelfand
transform of f . Then for ω ∈ Ĝ we see from (1) that

f̂(ω) = ω(f) =
∫

Gp̂(ω)

f(s)ω(s)dβp̂(ω)(s).

This of course implies that f̂ is the usual Fourier transform on Ĝx. �

We can now begin the process of proving Theorem 4. The first step is
to show that Ĝ has a dual bundle. We have already verified that Ĝ is a
second countable locally compact Abelian group bundle. The only remaining
requirement is that Ĝ has a Haar system. Recall that given a locally compact
Abelian group H and Haar measure λ the Plancharel theorem guarantees
the existence of a dual Haar measure λ̂ such that L2(H,λ) ∼= L2(Ĥ, λ̂). The
existence of a dual Haar system is then taken care of by the following lemma.

Lemma 6 ([2, Proposition 3.6]). If G is an Abelian second countable locally
compact group bundle with Haar system {βx}, then the collection of dual Haar
measures {β̂x} is a Haar system for Ĝ.

Now that ̂̂
G is well defined, we must show that Φ is a group bundle iso-

morphism. In some sense, the following proposition gets us most of the way
there.

Proposition 7. The map Φ : G → ̂̂
G : s �→ ŝ is a continuous bijective

groupoid homomorphism.

Proof. It follows from Lemma 2 that ̂̂
G x is the double dual of Gx. Further-

more, classical Pontryagin duality says that s → ŝ is an isomorphism from Gx

onto ̂̂
G x [4, Theorem 1.7.2]. Since Φ is formed by gluing all of these fibre iso-

morphisms together it is clear that Φ is a bijective groupoid homomorphism.
Next, we need to see that it is continuous. Suppose si → s0 in G. We know
from Lemma 1 that it will suffice to show that
(a) ˆ̂p(Φ(si)) → ˆ̂p(Φ(s0)), and
(b) given ωi ∈ Ĝ ˆ̂p(Φ(si))

such that ωi → ω0 in Ĝ then Φ(si)(ωi) → Φ(s0)(ω0).
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First, let xi = p(si) = ˆ̂p(Φ(si)). Since p is continuous, it is clear that
xi → x0 and that the first condition is satisfied. Now suppose ωi ∈ Ĝxi for all
i ≥ 0 such that ωi → ω0. All we have to do is cite Lemma 1 again to see that

Φ(si)(ωi) = ωi(si) → ω0(s0) = Φ(s0)(ω0). �

If we were working with groups, we would be done since continuous bi-
jections between second countable locally compact groups are automatically
homeomorphisms [5, Theorem D.3], [1, Corollary 2, p. 72]. However, there
currently no automatic continuity results for the inverse of a continuous bi-
jective group bundle homomorphism. Regardless, we can still show that in
this case Φ is a homeomorphism.

Proof of Theorem 4. Given Proposition 7, all we need to do to prove that Φ

is a homeomorphism is show that if ŝi → ŝ0 in ̂̂
G then si → s0 in G. First, we

let xi = p(si) for all i. Recall that ̂̂
G has the Gelfand topology as the spectrum

of C∗(Ĝ, β̂). Therefore, for all φ ∈ Cc(Ĝ) we have ŝi(φ) → ŝ0(φ). When we

remember that characters in ̂̂
G act on functions in Cc(Ĝ) via equation (1) we

see that this says, for all φ ∈ Cc(Ĝ),

(2)
∫

Ĝ

φ(ω)ω(si)dβ̂xi(ω) →
∫

Ĝ

φ(ω)ω(s0)dβ̂x0(ω).

Now suppose we have a relatively compact open neighborhood V of x0 in G.
Then using the continuity of multiplication, there exists a relatively compact
open neighborhood U of x0 in G such that U2 ⊆ V . Choose h ∈ Cc(G) such
that h(x0) = 1 and supp(h) ⊆ U . Let f = h∗ ∗ h. Then f ∈ Cc(G) and a
simple calculation shows that supp(f) ⊆ V . From now on, let fx denote the
restriction of f to Gx. It is clear from the definition of f and [4, Section 1.4.2]
that it is a positive definite function on each fibre and therefore satisfies the
conditions of Bochner’s theorem and the inversion theorem on each fibre. In
particular, it can be shown using [4, Section 1.4.3] that for each x there exists
a finite positive measure μx on Ĝx (extended to Ĝ by giving everything else
measure zero) such that

f(s) =
∫

Ĝ

ω(s)μp(s)(ω).

Furthermore, it is easy to prove using [4, Section 1.4.1] that μx(Ĝ) = μx(Ĝx) =
‖fx‖ ∞ ≤ ‖f ‖ ∞ for all x ∈ X so that {μx} is a bounded collection of finite
measures. Additionally, it is shown in the proof of [4, Section 1.5.1] that, as
measures on Ĝx,

f̂x dβ̂x = dμx.

Proposition 5 states that given f ∈ Cc(G) the Gelfand transform of f restricts
to the usual Fourier transform fibrewise. Therefore, since everything outside
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Ĝx has measure zero, we may as well write

(3) f̂ dβ̂x = dμx.

Now, if φ ∈ Cc(Ĝ) then φf̂ is compactly supported. It follows from (2) that

(4)
∫

Ĝ

φ(ω)f̂(ω)ω(si)dβ̂xi(ω) →
∫

Ĝ

φ(ω)f̂(ω)ω(s0)dβ̂x0(ω).

Using (3), we can rewrite (4) as

(5)
∫

Ĝ

φ(ω)ω(si)dμxi(ω) →
∫

Ĝ

φ(ω)ω(s0)dμx0(ω).

We can extend (5) to functions φ ∈ C0(Ĝ) by noting that Cc(Ĝ) is uniformly
dense in C0(Ĝ) and doing a straightforward approximation argument using
the fact that the {μxi } are uniformly bounded.

Let g ∈ Cc(G). Observe that

ĝxi(ω)ω(si) =
∫

Gxi

gxi(s)ω(s)ω(si)dβxi(s)

=
∫

Gxi

gxi(s)ω(s−1si)dβxi(s)

=
∫

Gxi

gxi(sis)ω(s−1)dβxi(s)

= (lts−1
i

gxi)∧(ω).

Therefore, for all i, we have∫
Ĝ

ĝ(ω)ω(si)dμxi(ω) =
∫

Ĝ

ĝ(ω)f̂(ω)ω(si)dβ̂xi(ω)

=
∫

Ĝxi

ĝxi(ω)f̂xi(ω)ω(si)dβ̂xi(ω)

=
∫

Ĝxi

(lts−1
i

gxi)∧f̂xi dβ̂xi

=
∫

Gxi

lts−1
i

gxifxi dβxi ,

where the last equality follows from the Plancharel theorem [4, Theorem 1.6.1].
Since ¯̂g ∈ C0(Ĝ), it follows from (5) that

(6)
∫

Gxi

lts−1
i

gxifxi dβxi →
∫

Gx0

lts−1
0

gx0fx0 dβx0 .

We are now ready to attack the convergence of the si. Choose an open
neighborhood O of s0. Using the continuity of multiplication, we can find
relatively compact open neighborhoods V and W in G such that x0 ∈ V ,
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s0 ∈ W and V W ⊆ O. Furthermore, by intersecting V and V −1 we can assume
that V −1 = V . Construct f for V as in the beginning of the proof. Now choose
g ∈ C(G) so that 0 ≤ g ≤ 1, g(s0) = 1, and g is zero off W . Then g ∈ Cc(G)
and g = g so that by equation (6) we have

(7)
∫

Gxi

g(sit)f(t)dβxi(t) →
∫

Gx0

g(s0t)f(t)dβx0(t).

It turns out that
∫

g(sit)f(t)dβxi(t) = 0 unless si ∈ WV −1 = WV ⊆ O. Fur-
thermore, both g(s0x0) and f(x0) are nonzero by construction, and since both
functions are continuous, this implies∫

Gx0

g(s0t)f(t)dβx0(t) �= 0.

It follows from (7) that eventually si ∈ O. This of course implies that si → s0

and we are done. �
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