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ON 2-KNOTS WITH TOTAL WIDTH EIGHT

OSAMU SAEKI AND YASUSHI TAKEDA

Abstract. A 2-knot is (the isotopy class of) a 2-sphere smoothly
embedded in 4-space. The apparent contour of a generic planar

projection of a 2-knot divides the plane into several regions, and

to each such region, we associate the number of sheets covering

it. The total width of a 2-knot is defined to be the minimum of
the sum of these numbers, where we take the minimum among

all generic planar projections of the given 2-knot. In this paper,

we show that a 2-knot has total width eight if and only if it is an
n-twist spun 2-bridge knot for some n �= ±1.

1. Introduction

By a surface knot, we mean (the isotopy class of) a closed connected (possi-
bly nonorientable) surface smoothly embedded in R4. A surface knot is called
a 2-knot if it is homeomorphic to the 2-dimensional sphere S2.

In this paper, we study 2-knots by using generic planar projections. Usu-
ally, for the study of surface knots in R4, generic projections into R3 are used.
For example, many important invariants have been constructed by using such
projections into R3 (for example, see [4, 5]). Generic planar projections of
surface knots have also been studied and certain interesting results have been
obtained (for example, see [2, 3, 11, 13, 15]).

For a surface knot, its generic planar projections have fold points and cusps
as their singularities. Cusps appear as discrete points and fold points appear
as a 1-dimensional submanifold of the surface. Let us call the set of cusps and
fold points in the surface the singular set and its image the apparent contour.
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Recently, in [12], the authors have developed a theory of generic planar
projections of surface knots. In classical knot theory, from a knot diagram
drawn on the plane, we can recover the original knot in 3-space. In a similar
fashion, to a surface knot, we associate a planar object, called a braided dia-
gram, which consists of the apparent contour of a generic projection into the
plane and some “banded braids” attached to the arcs of the apparent contour.
A banded braid is a braid together with a band spanned by two of the strings
and disjoint from the other strings. Note that the bands correspond to the
set of fold points. We have shown that a braided diagram can recover the
original surface knot (for details, see Section 3 of the present paper).

On the other hand, in [13], the second author defined a numerical invariant
of a surface knot using generic planar projections as follows. For a given
surface knot, the apparent contour of a generic planar projection divides the
plane into several regions, and to each such region, we associate the number
of sheets covering it. The total width of a surface knot F is defined to be the
minimum of the sum of these numbers, where we take the minimum among all
generic planar projections of surface knots isotopic to F . Note that the total
width is always a positive even integer. This was considered as an analogy of
the widths for classical knots defined by Gabai [7].

In [13], the second author showed that a surface knot is trivial if and only
if its total width is equal to two. Furthermore, if a 2-knot has total width less
than or equal to six, then it must be trivial.

In this paper, we completely determine those 2-knots which have total
width eight. More precisely, a 2-knot has total width eight if and only if it
is an n-twist spun 2-bridge knot for some n �= ±1. For the proof, we use the
theory of braided diagrams developed in [12] by the authors. As a corollary
of the proof, we also get a result concerning connected sums of twist spun
2-bridge knots.

The paper is organized as follows. In Section 2, we recall some materials
from singularity theory necessary for our purpose. We also give a precise
definition of the width of a surface knot and state our main theorem. In
Section 3, we recall the definition and basic properties of braided diagrams of
surface knots in order to make the paper self-contained. Most of the materials
are taken from [12]. In Section 4, we prove our main theorem using the notion
of a braided diagram. We also give a result which characterizes the connected
sum of twist spun 2-bridges knots.

Throughout the paper, we work in the smooth category.

2. Preliminaries

In this section, we prepare several notions from singularity theory and recall
the definition and some properties of the total width of a surface knot in R4.
For singularity theory, for example, the reader is referred to [8].
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Let F be a closed connected surface. Denote by C∞(F,R2) the space of
all smooth maps of F into R2, endowed with the Whitney C∞ topology.
Two maps g and h ∈ C∞(F,R2) are said to be equivalent if there exist dif-
feomorphisms ϕ : F → F and ψ : R2 → R2, such that ψ ◦ g = h ◦ ϕ. A map
g ∈ C∞(F,R2) is said to be C∞ stable if there exists a neighborhood Ng of g
in C∞(F,R2) such that each h in Ng is equivalent to g.

Let g : F → R2 be a smooth map. Then q ∈ F is called a fold point if we
can choose local coordinates (x, y) centered at q and (X,Y ) centered at g(q)
such that g, in a neighborhood of q, is of the form (X,Y ) = (x, y2). Moreover,
q ∈ F is called a cusp if we can choose local coordinates as above such that
g, in a neighborhood of q, is of the form (X,Y ) = (x,xy + y3). We denote by
S1(g) the set of fold points and cusps, and by S2

1(g) the set of cusps. Note
that S1(g) is a regular 1-dimensional submanifold of F while S2

1(g) is a finite
set of points.

For a smooth map g : F → R2, we denote by S(g) the set of its singular
points. It is known that a smooth map g : F → R2 is C∞ stable if and only
if S(g) = S1(g), the map f |S1(g)\S2

1(g) is an immersion with normal crossings,
and for each cusp q, we have:

g−1(g(q)) ∩ S1(g) = {q}.

The singular value set g(S(g)) is often called the apparent contour of g.
Let g : F → R2 be a C∞ stable map. For a point q ∈ S(g) \ S2

1(g), we give
a local orientation to S(g) at q as follows. First, we locally orient g(S(g))
near g(q) so that the points in the left hand side region of R2 \ g(S(g)) have
a larger number of inverse image points. Then we locally orient S(g) at q so
that g|S(g) preserves the orientations near q. It is easy to see that the local
orientations vary continuously and that they define a globally well-defined
orientation on S(g).

By considering the “line” dgq(TqS(g)) for each q ∈ S(g) \ S2
1(g), we obtain

a smooth map S(g) \ S2
1(g) → RP 1. It is not difficult to see that this map

extends to a smooth map τg : S(g) → RP 1. We orient RP 1 so that the rota-
tion in the counter-clockwise direction corresponds to the positive direction
of RP 1. Then we define rot(g) to be the mapping degree of τg : S(g) → RP 1.
Then the following is proved in [9].

Proposition 2.1. The Euler characteristic χ(F ) of F coincides with
rot(g).

Let us now recall the notion of a total width of a surface knot.

Definition 2.2. Let f : F → R4 be an embedding of a closed connected
surface F . Then an orthogonal projection π : R4 → R2 is said to be generic
with respect to f (or with respect to f(F )) if π ◦ f is C∞ stable.

By [10], almost every orthogonal projection is generic with respect to f .
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Definition 2.3. Let f : F → R4 be an embedding of a closed connected
surface F and π : R4 → R2 an orthogonal projection which is generic with
respect to f . Set g = π ◦ f . The apparent contour g(S(g)) divides the plane
R2 into several regions. For a point x in a given region, we call the number of
elements in the set g−1(x) the local width, which does not depend on a choice
of x and is always even. Let tw(f,π) (or tw(f(F ), π)) be the total of the
local widths over all the regions. The total width tw(f(F )) of a surface knot
f(F ) is the minimum of tw(f̃ , π̃), where f̃ runs over all embeddings isotopic
to f and π̃ runs over all orthogonal projections which are generic with respect
to f̃ .

It is easy to show that the total width of a trivial surface knot is equal
to two, where a surface knot is trivial if it is the boundary of a (possibly
nonorientable) 3-dimensional handlebody embedded in R4. In [13], the second
author proved that a 2-knot has total width ≤ 6 if and only if it is trivial and
that n-twist spun 2-bridge knots with n �= ±1 have total width eight. In this
paper, we prove the following.

Theorem 2.4. A 2-knot has total width eight if and only if it is an n-twist
spun 2-bridge knot for some n �= ±1.

3. Braided diagram

In order to prove Theorem 2.4, we need the notion of a braided diagram
introduced in [12]. As this is new and is not widely known, in this section we
review its definition and properties necessary for our purpose. Many of the
materials in this section are thus taken from [12].

Let us first recall the notion of a banded braid. A usual braid is a finite
disjoint union of arcs, called strings, embedded in [0,1] × R2 such that the
projection pr1 : [0,1] × R2 → [0,1] to the first factor restricted to each com-
ponent is a diffeomorphism. We adopt the convention that the end points of
the arcs lie on the lines {0,1} × (R × {0}).

A banded braid b is a braid bE together with a band, diffeomorphic to
[0,1] × [−1,1], spanned by a pair of two strings and disjoint from the other
strings, where the projection pr1 restricted to the band is equivalent to the
projection [0,1] × [−1,1] → [0,1] to the first factor. We assume that the ends
of the arcs and bands lie on the lines {0,1} × (R × {0}). The braid bE is
called the edge braid of b, and the hollow braid of b is the braid obtained
from bE by taking off the two strings spanning the band. The number of
strings of a banded braid b is, by convention, equal to that of its hollow braid.
Two banded braids are considered to be the same if there exists a smooth
1-parameter family of banded braids connecting them.

Let F be a closed connected surface embedded in R4 and π : R4 → R2 an
orthogonal projection which is generic with respect to F . We may assume
that π is given by π(x1, x2, x3, x4) = (x1, x2) for (x1, x2, x3, x4) ∈ R4. We set
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g = π|F , which is a C∞ stable map. For simplicity, we assume that g has no
cusps and g|S(g) is an embedding, which is enough for our purpose.

Let R be a region of g(F ) \ g(S(g)). If R is not an open disk, then we take
disjointly embedded arcs a1, a2, . . . , ak in R̃ = R ∪ g(S(g)) such that (a1 ∪ a2 ∪
· · · ∪ ak) ∩ g(S(g)) = ∂(a1 ∪ a2 ∪ · · · ∪ ak) and each component of R \ (a1 ∪ a2 ∪
· · · ∪ ak) is an open disk. We call the arcs a1, a2, . . . , ak additional arcs. For
each nondisk region of g(F ) \ g(S(g)) we take such additional arcs and orient
them arbitrarily. (In [12], for simplicity it is assumed that additional arcs in
distinct regions do not intersect with each other, while in this paper, they
may intersect. This will make essentially no difference.)

For each component of g(S(g)) that is disjoint from the additional arcs, we
take a point as a vertex. The end points of the additional arcs are also con-
sidered to be vertices. The edges in g(S(g)) are oriented as in Section 2. The
oriented planar graph thus obtained from g(S(g)) together with the additional
arcs is denoted by ΓF,π .

In order to construct a (banded) braid for each edge of ΓF,π , we need to
arrange F over the vertices of ΓF,π as follows. Let us begin by introducing
two notions.

Definition 3.1. An isotopy ht : R4 → R4, t ∈ [0,1], is said to be vertical
if for all t ∈ [0,1], ht({x} × R2) ⊂ {x} × R2 holds for all x ∈ R2, i.e. π ◦ ht = π.

Definition 3.2. For q ∈ S(g), the line

Ker
(
dgq : TqF → Tg(q)R2

)
⊂ TqF ⊂ R4

passing through q is called the kernel line at q ∈ F , where we identify the
tangent plane TqF to F at q as a plane in R4 passing through q ∈ R4 with
the origin being identified with q.

Let v be a vertex of ΓF,π . Note that π−1(v) contains a unique fold point.
Then we arrange F by a vertical isotopy whose support lies in a small neigh-
borhood of π−1(v) so that the points π−1(v) ∩ F and the kernel line at the
fold point all lie in {v} × (R × {0}) ⊂ {v} × R2 = π−1(v).

Remark 3.3. In the general case where g has cusps and/or g|S(g) has self-
intersection points, we need to arrange F over the corresponding points as
well.

Now, we are ready to construct a (banded) braid for each edge of ΓF,π .
Take an edge e ⊂ g(S(g)). Let N(∂e) be a small open neighborhood of the
end point(s) of e in R2 and set e′ = e \ N(∂e). If we identify e′ with [ε,1 − ε]
and π−1(e′) with [ε,1 − ε] × R2, where ε > 0 is a sufficiently small positive real
number, then π−1(e′) ∩ F can be regarded as a braid with an odd number
of strings. Note that exactly one of the strings consist of fold points of g.
Then we replace this string with a band which corresponds to the union of
small kernel line segments at the fold points. In this way, we get a “banded
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braid” in π−1(e′). Since F has been arranged over the end point(s) ∂e of e
appropriately, we can canonically extend this “banded braid” to a genuine
banded braid.

Similarly, to each additional edge of ΓF,π we associate a usual braid. The
oriented graph ΓF,π together with the (banded) braids associated with the
edges is called the braided diagram associated with F .

Proposition 3.4. Let F and F ′ be surface knots in R4 such that an or-
thogonal projection π : R4 → R2 is generic with respect to both F and F ′. If
they have the same braided diagram with respect to π, then the surface knots
F and F ′ are vertically isotopic.

Proof. Set Γ = ΓF,π = ΓF ′,π . By construction, for each edge e of Γ, the
associated (banded) braids for F and F ′ are vertically isotopic. So we may
assume that they are the same for each e. Then for each region R of π(F ) \
Γ = π(F ′) \ Γ, the disjoint union of 2-disks π−1(R) ∩ F and π−1(R) ∩ F ′

have common boundaries. Since the configuration space of a fixed number
of distinct points on the plane has vanishing second homotopy group (see,
for example, [6]), they are vertically isotopic relative to their boundaries.
Therefore, we have the desired conclusion. �

Note that a braided diagram is not unique for a surface knot. However, a
surface knot having a given braided diagram is unique up to vertical isotopy.

4. Proof

In this section, we prove Theorem 2.4.

Proof of Theorem 2.4. In [13], it has been shown that an n-twist spun 2-
bridge knot with n �= ±1 has total width equal to eight.

Conversely, suppose that F is a 2-knot whose total width is equal to eight.
Then there exists an orthogonal projection π : R4 → R2 which is generic with
respect to F such that tw(F,π) = 8. Set g = π|F : F → R2, which is a C∞

stable map.
Let us first list up all the possibilities for the apparent contour of g by

using Proposition 2.1. By an argument similar to that in [13, Section 5], we
can show that the apparent contour of a stable map of a surface of Euler
characteristic 2 whose total width is equal to 8 is equivalent to one of the
figures as depicted in Figure 1 up to a diffeomorphism of R2. In the figures,
the integers (without parentheses) indicate the local widths of the regions.

It is known that if a C∞ stable map has no cusp and the apparent con-
tour has an odd number of self-intersection points, then the source surface is
nonorientable [1]. Therefore, figures (2), (3), and (4) of Figure 1 do not occur,
since our source surface is the 2-sphere, which is orientable.

If the apparent contour of g is given by figure (5) or (6), then for an
orthogonal projection π2

1 : R2 → R1, the composition π2
1 ◦ g = π2

1 ◦ π|F is a
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Figure 1. List of possible apparent contours.

Morse function with exactly two critical points. Hence, the 2-knot F is trivial
(for example, see [3]).

In the case of figure (7), by [13, Lemma 3.1], the 2-knot F is a connected
sum of two surface knots one of which has zero Euler characteristic. This is a
contradiction and this case does not occur.

In the case of figure (8), by using an argument similar to that in [13,
Lemma 3.1], we can cut open the 2-knot along the inverse image of a line
segment, which is depicted by a dotted line in Figure 2, and we attach two
disks along the boundary circles. Then the resulting surface is the disjoint
union of two 2-spheres (for example, see [3]). Furthermore, we see that the
above surgery was performed only on one of the two components. This implies
that the original surface is not connected. This is a contradiction.

Therefore, we may assume that the apparent contour is of the form as
depicted in Figure 1(1). We may assume that it forms a disjoint union of
three concentric circles, whose common center we denote by c.
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Figure 2. A surgery in case (8).

Figure 3. Oriented arcs e1, e2, e3 and a half line 	.

Let 	 be a half line having c as the end point. We take two additional arcs
contained in 	 to get the graph ΓF,π from g(S(g)). Furthermore, let e1, e2,
and e3 be oriented arcs contained in the apparent contour g(S(g)) and disjoint
from 	 as depicted in Figure 3. (Note that the orientation of the arc e1 is not
consistent with that of the apparent contour introduced in Section 2). More
precisely, each of e1, e2, and e3 is obtained from a component of g(S(g)) by
removing a small open neighborhood of the intersection point with 	. In the
notation of Section 3, ei corresponds to e′ for an appropriate edge e of ΓF,π .
Furthermore, let ei+ (resp. ei−) be an arc parallel to ei which is very close to
ei and lies on its outer side (resp. on its inner side), i = 1,2,3.

The inverse image g−1(	) is in general a disjoint union of several arcs.
Since our source surface is the 2-sphere and is connected, g−1(	) must be
connected. Furthermore, the function g|g−1(�) : g−1(	) → 	 is a Morse function
with exactly three critical points. Therefore, we may assume that g−1(	) ⊂
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Figure 4. The arc g−1(	) embedded in π−1(	) = 	 × R2.

Figure 5. An example of the 4-string braid g−1(e1+).

π−1(	) = 	 × R2 is in a form as depicted in Figure 4, where β1 is a 4-string
pure braid and β2 is a 2-string pure braid.

Now, g−1(e1−) ⊂ π−1(e1−) = e1− × R2 can be regarded as a 2-string pure
braid. A pure braid can be identified with an element of the fundamental
group of a certain configuration space, and g−1(e1−) corresponds to the neu-
tral element in the fundamental group, since the inverse image of the disk
bounded by the circle containing e1− gives the null homotopy (see the proof
of Proposition 3.4). This means that g−1(e1−) is the trivial 2-string braid.

Let us now consider the 4-string braid g−1(e1+) ⊂ π−1(e1+) = e1+ × R2. As
has been explained in Section 3, to each fold point of g−1(e1) is associated a
small kernel line segment, and this gives rise to a band whose center coincides
with the set of fold points contained in g−1(e1). Hence, the 4-string braid
g−1(e1+) is the edge braid of a 2-string banded braid whose hollow braid is
trivial (see Figure 5 for an example).

Let a and a′ be oriented line segments parallel to 	 connecting end points
of e1+ and e2− as depicted in Figure 6. Note that e2− is homotopic to the
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Figure 6. e2− is homotopic to a ∗ e1+ ∗ a′ relative to end points.

Figure 7. 4-string braid g−1(e2−).

oriented arc a ∗ e1+ ∗ a′ relative to end points, where a denotes the arc a with
the reversed orientation and “∗” means the product of arcs. More precisely,
the simple closed curve e2− ∗ (a ∗ e1+ ∗ a′) bounds a disk in R2 which does not
intersect g(S(g)). Then again by using an argument of the fundamental group
of a certain configuration space, we see that g−1(e2−) is a 4-string braid as
depicted in Figure 7, where β1 is the 4-string pure braid appearing in Figure 4
and corresponds to g−1(a) ⊂ a × R2 (or g−1(a′) ⊂ a′ × R2).

Note that the 2-string braid γ in Figure 7 corresponds to the edges of the
band contained in the banded braid associated with g−1(e2), according to
Figure 4. Therefore, the two strings s2 and s3 must span a band disjoint from
the other two strings. Note that the band is not linked with the left-most
string s1, since s2 is not linked with s1.
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Figure 8. A conjugate of the 4-string braid g−1(e2−) and a
band spanned by s2 and s3.

Since s3 and s4 span a band which is disjoint from the other two strings,
we see that, up to a conjugate by a pure braid, the 4-string braid g−1(e2−) is
of the form (σε

2σ
ε
3)

3n for some integer n, where ε = ±1, and σ1, σ2, and σ3 are
the standard generators of the 4-string braid group. Therefore, the closure
of the 4-string braid g−1(e2−) is equivalent to the closure of a 4-string pure
braid as depicted in Figure 8, where the case n = 2 is shown.

Now, the 2-string braid g−1(e2+) is obtained from g−1(e2−) by removing
the strings s2 and s3. Therefore, g−1(e2+) is the trivial 2-string braid. Hence,
the 2-string braid g−1(e3−) is also trivial.

Summarizing, we see that the braided diagram associated with F is equiv-
alent to that associated with the 2-knot F ′ constructed by rotating a properly
embedded arc in π−1(	) as depicted in Figure 9 around π−1(c) ∼= R2 in such
a way that the box A rotates n times during the rotation.

Now, by Proposition 3.4 (see also [12]), F and F ′ are vertically isotopic.
On the other hand, the 2-knot F ′ is nothing but the n-twist spin of the
knot K as depicted in Figure 10. Since F has total width different from two,
it is nontrivial, and hence K is nontrivial. This implies that K is a 2-bridge
knot. If n = ±1, then the n-twist spin of K is trivial (for example, see [16]).
Therefore, we have n �= ±1. This completes the proof. �

Remark 4.1. In [14], it has been shown that a fibered 2-knot whose fiber
is a punctured lens space is actually a 2-twist spun 2-bridge knot. So, this
forms a subclass of 2-knots with total width equal to eight.

By an argument similar to that in the proof of Theorem 2.4, we can also
prove the following.

Theorem 4.2. Let F be a 2-knot in R4 which admits an orthogonal pro-
jection π : R4 → R2, such that
(1) π is generic with respect to F ,
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Figure 9. Construction of the 2-knot F ′.

Figure 10. The 2-bridge knot K.

(2) the apparent contour of g = π|F consists of 2k + 1 concentric circles for
some k ≥ 1, and

(3) the local width of the innermost region is equal to 2 and the widths of the
other bounded regions are equal to 2 or 4 (see Figure 11).

Then F is the connected sum of 2-knots F1, F2, . . . , Fk, where each Fi is an
ni-twist spin of a knot Ki for some ni ∈ Z, and Ki is a knot with bridge index
at most 2.

Proof. By an argument as in the proof of Theorem 2.4, we see that F is
isotopic to a 2-knot F ′ which is obtained by rotating an arc as in Figure 12
around R2 ⊂ R4, where each box Ai rotates ni times during the rotation for
some ni ∈ Z, i = 1,2, . . . , k, and each K̄i is an arc corresponding to a knot Ki

with bridge index being equal to 1 or 2.
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Figure 11. Apparent contour consisting of concentric circles.

Figure 12. The 2-knot F ′.

It is not difficult to see that this 2-knot F ′ is isotopic to the connected sum
F1
F2
 · · · 
Fk, where Fi is the ni-twist spin of the knot Ki, i = 1,2, . . . , k.
This completes the proof. �
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