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EXACT ALGORITHMS FOR p-ADIC FIELDS AND EPSILON
CONSTANT CONJECTURES

WERNER BLEY AND MANUEL BREUNING

Abstract. We describe an algorithmic approach to prove or dis-
prove several recent conjectures for epsilon constants of Galois

extensions of p-adic fields and number fields. For this approach,

we must develop various algorithms for computations in Galois

extensions of p-adic fields which are of independent interest. Our

algorithms for p-adic fields are based on existing algorithms for

number fields and are exact in the sense that we do not need to
consider approximations to p-adic numbers.

1. Introduction

For computations in algebraic number fields, numerous algorithms have
been developed. These include not only algorithms for classical problems like
the computation of the ring of integers and its unit group and ideal class
group, but also algorithmic approaches to more complex topics in algebraic
number theory, for example class field theory. For a discussion of many of
these computational questions, we refer to the books [11] and [12]. Most of
these algorithms have been implemented and applied to numerically verify
(and in some cases prove) conjectures for number fields.

In contrast to the case of number fields, only few problems for p-adic fields
have been treated algorithmically. Before one can perform any p-adic com-
putations one has, of course, to deal with the important question how to
represent p-adic objects. The usual approach is to use suitable approxima-
tions together with a detailed analysis of the propagation of errors. However,
sometimes it is also possible to give precise representatives of p-adic objects,
and therefore to completely avoid any errors of approximation. It is this latter
approach which we further develop and apply in this paper.
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We describe algorithms for some computational problems in Galois exten-
sions of p-adic fields. Our strategy is to represent a local Galois extension as
the completion of a global Galois extension. This has two advantages. First,
we can use many of the existing algorithms for number fields to perform com-
putations in p-adic fields. Second, taking global objects as representatives of
local quantities allows us to do exact computations in p-adic fields without
the need to consider approximations. Of course, not every local quantity has
a global representative, however, many interesting p-adic objects can be rep-
resented in this way. For example, in Section 4, we will see that all p-adic
objects which appear in a recent conjecture about local epsilon constants have
such global representatives.

Our motivation for this manuscript is to show that several recent conjec-
tures for local and global epsilon constants can be proved or disproved algo-
rithmically for infinite families of Galois extensions. It is in this context that
we must apply our methods for Galois extensions of p-adic fields. Our main
algorithm is for the local epsilon constant conjecture of the second author [9].

Theorem 1.1. There exists an algorithm which for a given prime number p
and positive integer n proves or disproves the local epsilon constant conjecture
of [9] for every Galois extension L/Qp of degree n.

From Theorem 1.1, we then deduce that one can computationally prove
two well-known conjectures for global epsilon constants (Chinburg’s Ω(2)-
conjecture [10] and the global epsilon constant conjecture of the first author
and Burns [5]) for infinite families of Galois extensions of number fields.

Corollary 1.2. There exists an algorithm which for a given positive in-
teger n either proves the global epsilon constant conjecture of [5] for every
Galois extension L/Q of degree n or finds a counterexample to the local ep-
silon constant conjecture.

Corollary 1.3. There exists an algorithm which for a given positive inte-
ger n either proves Chinburg’s Ω(2)-conjecture of [10] for every Galois exten-
sion L/Q of degree n or finds a counterexample to the local epsilon constant
conjecture.

In general, our approach cannot be used to computationally disprove these
global conjectures. See Remark 4.1 for further details.

Remark 1.4. Let E/F be a Galois extension of p-adic fields. If the local
epsilon constant conjecture is valid for some Galois extension L/Qp which
contains E/F as a subextension, then functorial properties imply that it is
also valid for E/F . Hence, it is no loss of generality if we restrict ourselves to
consider only Galois extensions of Qp. A similar remark applies to the global
epsilon constant conjecture and to Chinburg’s Ω(2)-conjecture.
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Primarily, we consider Theorem 1.1 and its corollaries as theoretical results,
and therefore in this paper, we do not strive for efficiency in our algorithms.
However, increasing the efficiency and implementing these algorithms are in-
teresting challenges for future work. Many of the necessary intermediate steps
are of independent interest, for example the computation of local fundamen-
tal classes and the algorithms for relative algebraic K-groups, and developing
efficient versions of these subalgorithms will be important for a variety of ap-
plications. We expect that it will be possible to use efficient implementations
of our algorithms (possibly restricted to special classes of extensions, com-
pare Section 4.3) to prove special cases of the epsilon constant conjectures.
In recent work, Hooper and Wilson [18] proved Chinburg’s Ω(2)-conjecture
for all Galois extensions L/Q with Galois group isomorphic to the quaternion
group of order 12. For this class of extensions, the global epsilon constant
conjecture of [5] is still open, and we consider these extensions as a first test
case for future implementations of our algorithms.

This manuscript is organized as follows. In Section 2, we explain how
representing local Galois extensions as completions of global Galois exten-
sions works. We then develop algorithms for some problems related to Galois
extensions of p-adic fields, in particular for the computation of local funda-
mental classes and local epsilon constants. In the algorithm for local epsilon
constants, we must apply a version of Brauer’s induction theorem. This is
treated algorithmically in Section 3, where we also describe other represen-
tation theoretic algorithms. The main objective in Section 3 is to discuss
computational questions in certain relative algebraic K-groups with coeffi-
cients in a p-adic field. This is done in Section 3.3 where we combine ideas
from Section 2 with the representation theoretic algorithms. We develop our
algorithmic approach to the local and global epsilon constant conjectures in
Section 4. In Section 4.1, we recall the main ideas of these conjectures and
we prove Corollaries 1.2 and 1.3. In Section 4.2, we then apply our results of
Sections 2 and 3 to prove Theorem 1.1. We conclude with some computational
remarks in Section 4.3.

Notations. We write Gal(L/K) for the Galois group of a Galois extension
of fields L/K. For a number field K, we let OK denote its ring of algebraic
integers. If p ⊆ OK is a prime ideal, then we write Kp for the completion of K
with respect to p, and OKp

for the ring of integers of Kp. We write Hi(G,M),
i ∈ Z, for the Tate cohomology groups of a finite group G and G-module M .
For any ring R, we let R× denote its unit group and ζ(R) its center.

2. Exact computations in local Galois extensions

In this section, we describe various ideas and algorithms which allow us to
perform exact computations in Galois extensions of p-adic fields using well-
known algorithms for number fields.
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2.1. Global representation of local Galois extensions. Let M be a
p-adic field, i.e., a finite extension of the p-adic numbers Qp. To perform
exact computations in M , it is convenient to represent the field M as the
completion of a number field. A pair (K,p) where K is a number field and p

is a prime ideal of OK will be called a global representation of M if there
exists a continuous isomorphism from M to the completion Kp. Every p-adic
field M has a global representation (K,p). Note however, that (K,p) and the
isomorphism M ∼= Kp are not uniquely determined by M .

To be able to work in an extension N/M of p-adic fields, we need compatible
global representations of M and N . We call (L,P) an extension of (K,p), in
symbols (L,P)/(K,p), if L/K is an extension of number fields, P is a prime
ideal of OL which lies over the prime ideal p of OK , and [L : K] = [LP : Kp].
Clearly, in this case, P is the unique prime of L lying over p. We say that
an extension (L,P)/(K,p) is a global representation of the extension N/M , if
the extension LP/Kp is isomorphic to N/M , i.e., if there exists a continuous
isomorphism N ∼= LP which restricts to an isomorphism M ∼= Kp.

Lemma 2.1. Every extension N/M of p-adic fields has a global represen-
tation (L,P)/(K,p).

Proof. Let (K,p) be a global representation of M . It follows from Krasner’s
lemma that there exists a polynomial f(x) ∈ K[x] such that f(x) is irreducible
over Kp

∼= M and N = M(α) for some root α of f(x) in N (compare [19,
Ch. III, Section 4, Exercise 4]). The field L = K[x]/(f(x)) has the required
properties. �

If (L,P)/(K,p) is a global representation of a p-adic Galois extension N/M ,
then the extension L/K is not necessarily Galois. The computation of the
action of Gal(N/M) on N/M is considerably easier if L/K is itself Galois. The
following lemma shows that it is always possible to find a global representation
with this additional property.

Lemma 2.2. Let (L,P)/(K,p) be an extension such that LP/Kp is Galois.
Then one can compute a global representation (L′,P′)/(K ′,p′) of LP/Kp such
that L′/K ′ is Galois.

Proof. Let L′ be a Galois closure of L over K. Using the assumption that
LP/Kp is Galois, it is not difficult to show (for example by choosing the Galois
closure of L/K inside the completion LP) that P is completely split in the
extension L′/L. Hence, if we fix a prime P′ of L′ above P then L′

P′ = LP.
Let K ′ be the decomposition field of P′ in the extension L′/K and p′ the
prime of K ′ below P′. Then the extension (L′,P′)/(K ′,p′) has the required
properties. �



EXACT ALGORITHMS AND EPSILON CONSTANT CONJECTURES 777

We call an extension (L,P)/(K,p) Galois (resp. Abelian) if L/K is Galois
(resp. Abelian). Note that if (L,P)/(K,p) is Galois, then LP/Kp is also
Galois and Gal(L/K) ∼= Gal(LP/Kp).

Remark 2.3. The proof of Lemma 2.2 involves various operations for Ga-
lois extensions of number fields. It is well known that all these operations
can be done algorithmically, however, for completeness we sketch some naive
algorithms for these problems. To compute the Galois closure of the extension
L/K, we choose a primitive element α of L over K and let f(x) ∈ K[x] be
its minimal polynomial. We then factorize f(x) in L[x] by [11, Alg. 3.6.4].
If all factors of f(x) are linear, then L/K is Galois, otherwise we adjoin a
root β of a nonlinear factor to L, and repeat the process with the extension
L(β)/K. To find a primitive element for L(β)/K, one can for example use
[12, Alg. 2.1.11].

The Galois group of the extension L′/K can be computed as a permutation
group on the roots of the minimal polynomial of a primitive element. Indeed,
if L′ = K(η), then we only have to factorize the minimal polynomial of η in
L′[x] using [11, Alg. 3.6.4].

The decomposition group G of P′ in the extension L′/K can be computed
as G = {σ ∈ Gal(L′/K) : σ(ai) ∈ P′ for all i = 1, . . . , n}, where a1, . . . , an are
generators of the OK -module P′. The decomposition field K ′ is the subfield
of L′ fixed by G. If L′ = K(η), then K ′ is generated by the elementary
symmetric functions in {ησ : σ ∈ G} and is therefore computable.

These naive algorithms suffice to perform the necessary computational
tasks in Lemma 2.2 and in later sections. However, there are more efficient
algorithms for the computation of splitting fields and Galois groups (see for
example [2], [28], and [14]), and suitable versions of these methods should be
used for implementations of our algorithms.

Remark 2.4. We have shown that given a p-adic Galois extension N/M
there always exists a Galois extension (L,P)/(K,p) such that LP/Kp

∼= N/M .
For computational purposes, it would be desirable if the field K (and therefore
also L) had small degree over Q. If p is odd, then the results of Henniart [16]
imply that there exists a Galois extension (L,P)/(K,p) such that LP/Kp

∼=
N/M and [K : Q] = [M : Qp]. However, it is not clear to us how to make
Henniart’s arguments computationally explicit.

2.2. Ramification groups and Frobenius automorphism. Let (L,P)
be a global representation of a p-adic field and vLP

: L×
P

→ Z the normalized
valuation of the field LP. If x ∈ L× ⊂ L×

P
, then vLP

(x) is the exponent of P in
the prime ideal factorization of the principal ideal (x) of L, and can therefore
be computed by [11, Alg. 4.8.17]. An element π ∈ L× is a prime element in
LP if and only if vLP

(π) = 1, so in particular any π ∈ P \ P2 is a prime in
LP.
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Now, let (L,P)/(K,p) be a Galois extension and let G = Gal(L/K) ∼=
Gal(LP/Kp) be its Galois group. Recall that for a real number s ≥ −1 one
defines the ramification group Gs of the extension LP/Kp to be

Gs = {σ ∈ G : vLP
(σa − a) ≥ s + 1 for all a ∈ OLP

}.

In particular, G−1 = G. To compute the groups Gs we first compute OK -
generators a1, . . . , an of OL. Then a1, . . . , an also generate OLP

as OKp
-

module, and hence

Gs = {σ ∈ G : vLP
(σai − ai) ≥ s + 1 for all i = 1, . . . , n}.

Note that for an integer s ≥ −1 the condition vLP
(σai − ai) ≥ s + 1 is equiv-

alent to σai − ai ∈ Ps+1, and is therefore easy to verify computationally.
The group G0 is the inertia group of the extension LP/Kp. An element

σ ∈ G maps to the Frobenius automorphism in G/G0 if and only if σai −
a

|OK/p|
i ∈ P for all i = 1, . . . , n (where a1, . . . , an are OK -generators of OL as

above). Clearly, such a σ can be found computationally. If M = LG0 and pM

is the unique prime of M above p, then (M,pM )/(K,p) is a Galois extension
which represents the maximal unramified subextension of LP/Kp.

2.3. Local class field theory computed globally. Let (L,P)/(K,p) be
an Abelian Galois extension and G = Gal(L/K) ∼= Gal(LP/Kp). We want to
perform class field theoretic computations for the local extension LP/Kp by
using methods from computational global class field theory for the extension
L/K.

The conductor of the extension LP/Kp is the p-part of the conductor of
L/K. It can therefore be computed using [12, Alg. 4.4.4]. Similarly, if χ is
an Abelian character of G, then the conductor of χ considered as a character
of Gal(LP/Kp) is the p-part of the conductor of χ considered as a character
of Gal(L/K). The conductor of χ can therefore be computed as the p-part of
the conductor of Lker(χ)/K.

Finally, we can compute the local norm residue symbol (α,LP/Kp) ∈
Gal(LP/Kp) ∼= G for an element α ∈ K× ⊂ K×

p using [1, Alg. 3.1]. We re-
mark that this algorithm is again based on computational global class field
theory because it computes the local norm residue symbol (α,LP/Kp) as a
global Artin symbol (a,L/K) ∈ Gal(L/K) = G for a suitable ideal a of K.

2.4. Computing the local fundamental class. Let (L,P)/(K,p) be a
Galois extension with Galois group G = Gal(L/K) ∼= Gal(LP/Kp) (not neces-
sarily Abelian). Recall that the local invariant map is a canonical isomorphism
H2(G,L×

P
) ∼= 1

|G| Z/Z and that the preimage of 1
|G| + Z in H2(G,L×

P
) is called

the fundamental class of the extension LP/Kp. Let U
(n)
LP

denote the group

of n-units in LP (with U
(0)
LP

= O ×
LP

). In this subsection, we describe an al-

gorithm that for any given n ≥ 0 computes a 2-cocycle G × G → L×
P

/U
(n)
LP
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which represents the image of the fundamental class under H2(G,L×
P

) →
H2(G,L×

P
/U

(n)
LP

). Note that the finitely generated G-module L×
P

/U
(n)
LP

can
be computed globally. Indeed, if π ∈ L is a prime element in LP, then
it is not difficult to explicitly describe the action of G on πZ × (OL/Pn)×

for which the isomorphism of Abelian groups L×
P

/U
(n)
LP

∼= πZ × (O ×
LP

/U
(n)
LP

) ∼=
πZ × (OL/Pn)× becomes G-equivariant.

Locally we would like to take the compositum of the extension LP/Kp and
the unramified extension of Kp of degree |G|. To obtain a global representa-
tion of this situation, we proceed as follows. Let M = LG0 be the maximal
extension of K in L that is unramified at p, and write pM for the unique prime
of M above p. Let (N,pN )/(M,pM ) be an extension (not necessarily Galois)
such that NpN

/MpM
is the unramified extension of degree |G|/[M : K]. Then

the compositum LN has a unique prime pLN lying over p and (LN)pLN
is

the required compositum of LP and the unramified extension of Kp of degree
|G|. Thus, we have constructed the following diagram of extensions:

(LN,pLN )

(L,P) (N,pN )

(M,pM )

(K,p)

(1)

Now, we apply the method of the proof of Lemma 2.2 to the extension
(LN,pLN )/(K,p) and obtain a Galois extension ((LN)′,p(LN)′ )/(K ′,p′), such
that K ⊆ K ′, LN ⊆ (LN)′, and (LN)pLN

/Kp = (LN)′
p(LN)′ /K ′

p′ . A simple
ramification argument shows that LN and K ′ are linearly disjoint over K. If
we form the composita L′ = LK ′, N ′ = NK ′, and M ′ = MK ′ in (LN)′, then
(LN)′ = L′N ′ and diagram (1) lifts to the diagram

(L′N ′,pL′N ′ )

(L′,P′) (N ′,pN ′ )

(M ′,pM ′ )

(K ′,p′)

in which all extensions are Galois. The inclusion of the Galois extension L/K
into the Galois extension L′/K ′ induces an isomorphism of Galois groups
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G ∼= Gal(L′/K ′) and an isomorphism of G-modules L×
P

/U
(n)
LP

∼= L′ ×
P′ /U

(n)
L′

P′
,

and therefore also an isomorphism of cohomology groups

H2
(
G,L×

P
/U

(n)
LP

) ∼= H2
(
Gal(L′/K ′),L′ ×

P′ /U
(n)
L′

P′

)
.

It follows that if we can compute the required 2-cocycle for the extension
(L′,P′)/(K ′,p′), then we can also compute such a 2-cocycle for (L,P)/(K,p).
Hence, it suffices to consider the situation where all extensions in diagram (1)
are Galois. We will assume this from now on. To simplify the notation, we will
simply write p for all the prime ideals appearing in (1); it will always be clear
from the context which of the prime ideals is meant. Let Γ = Gal(LN/K), H =
Gal(LN/L) and C = Gal(N/K). Note that the extension Np/Kp is unramified
and that therefore C is a cyclic group which is generated by the Frobenius
automorphism.

Lemma 2.5. The inclusion L×
p ⊆ (LN)×

p induces an isomorphism of G-
modules L×

p /U
(n)
Lp

∼= ((LN)×
p /U

(n)
(LN)p

)H . The inflation map

inf : H2
(
G,L×

p /U
(n)
Lp

)
→ H2

(
Γ, (LN)×

p /U
(n)
(LN)p

)
is injective.

Proof. We first note that the extension (LN)p/Lp is unramified, and that
therefore

(2) Hi
(
H,U

(n)
(LN)p

)
= 0 for all i ∈ Z

by [22, V.1.2] and [23, I.1.7.5]. In addition, U
(n)
Lp

= (U (n)
(LN)p

)H . Now, consider
the short exact sequence of Γ-modules

0 → U
(n)
(LN)p

→ (LN)×
p → (LN)×

p /U
(n)
(LN)p

→ 0.

Taking H-invariants, we obtain the long exact cohomology sequence

0 → U
(n)
Lp

→ L×
p →

(
(LN)×

p /U
(n)
(LN)p

)H

→ H1
(
H,U

(n)
(LN)p

)
→ H1(H, (LN)×

p ) → H1
(
H, (LN)×

p /U
(n)
(LN)p

)
→ H2

(
H,U

(n)
(LN)p

)
→ · · · .

Hence, equation (2) for i = 1 implies that we can identify the G-modules
L×

p /U
(n)
Lp

and ((LN)×
p /U

(n)
(LN)p

)H , and Hilbert’s Theorem 90 and equation (2)

for i = 2 imply that H1(H, (LN)×
p /U

(n)
(LN)p

) = 0. Now, we deduce the second
statement of the lemma from [26, VII, Section 6, Prop. 5]. �
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We now consider the following commutative diagram:

H2(C,N ×
p )

inf

H2(G,L×
p ) inf

H2(Γ, (LN)×
p )

H2
(
G,L×

p /U
(n)
Lp

) inf
H2

(
Γ, (LN)×

p /U
(n)
(LN)p

)
In the group H2(Γ, (LN)×

p ), the image of the fundamental class of Lp/Kp un-
der inf : H2(G,L×

p ) → H2(Γ, (LN)×
p ) and the image of the fundamental class

of Np/Kp under inf : H2(C,N ×
p ) → H2(Γ, (LN)×

p ) coincide because
[LN : L] = [LN : N ], cf. [26, XI, Section 3 and XIII, Section 4]. Since by
Lemma 2.5 the bottom horizontal map is injective, we can compute the image
of the fundamental class of Lp/Kp under H2(G,L×

p ) → H2(G,L×
p /U

(n)
Lp

) in
the following three steps:

1. Find the fundamental class of Np/Kp in H2(C,N ×
p ).

2. Compute its image under the composite homomorphism

H2(C,N ×
p ) inf−−→ H2(Γ, (LN)×

p ) → H2
(
Γ, (LN)×

p /U
(n)
(LN)p

)
.

3. Find the preimage under the map

H2
(
G,L×

p /U
(n)
Lp

) inf−−→ H2
(
Γ, (LN)×

p /U
(n)
(LN)p

)
.

We have to explain how these steps can be accomplished computationally.
For that purpose, we will represent all cohomology classes by inhomogeneous
cochains.

Step 1. Let π ∈ K be a prime in Kp and ϕ ∈ C the Frobenius automor-
phism. For 0 ≤ i, j < [N : K], define a map γ : C × C → N × ⊂ N ×

p by

γ(ϕi, ϕj) =

{
1 if i + j < [N : K],
π if i + j ≥ [N : K].

Then a direct computation shows that γ is a 2-cocycle, and using the definition
of the local invariant map (see e.g., [23, Ch. VII, Section 1]) it is not difficult
to verify that it represents the fundamental class in H2(C,N ×

p ) (alternatively,
see [20, §30, Section 4 and §31, Section 4]).

Step 2. The image of the cohomology class of γ under

H2(C,N ×
p ) inf−−→ H2(Γ, (LN)×

p ) → H2
(
Γ, (LN)×

p /U
(n)
(LN)p

)
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is represented by the 2-cocycle γ′ which is the composite

Γ × Γ → C × C
γ−→ N ×

p → (LN)×
p → (LN)×

p /U
(n)
(LN)p

.

Since the values of γ lie in N ×, we can compute γ′ using the global represen-
tations of the p-adic fields.

Step 3. We now must find a cocycle γ′ ′ : G × G → L×
p /U

(n)
Lp

whose co-
homology class is mapped to the cohomology class of γ′ under the inflation
map H2(G,L×

p /U
(n)
Lp

) → H2(Γ, (LN)×
p /U

(n)
(LN)p

). This can be achieved by ex-
plicitly computing the (inhomogeneous) standard resolution of the G-module
L×

p /U
(n)
Lp

and of the Γ-module (LN)×
p /U

(n)
(LN)p

, and by describing the inflation
map in terms of these resolutions. All Abelian groups in the standard reso-
lution and all homomorphisms (i.e., the boundary homomorphisms and the
inflation map on cochains) can be computed effectively. Therefore, we can
apply the algorithms for finitely generated Abelian groups in [12, Section 4.1]
to compute the required cocycle γ′ ′.

Remark 2.6. For any implementation of our algorithms, the efficiency
of the computation of the local fundamental class will be of particular im-
portance. It would be interesting to see whether existing methods for the
computation of group cohomology (as described for example in [17]) can be
used in our context where the structure of the relevant cohomology groups is
known, so that the main issue is the computation of the invariant map.

2.5. Computation of local epsilon constants and Galois Gauss sums.
It was shown by Langlands and Deligne [13] that global epsilon constants (i.e.,
the factors which appear in the functional equations of Artin L-functions)
can be expressed as products of local epsilon constants. While the proof of
the existence of local epsilon constants is sophisticated, their computation
is comparatively easy. Below, we will quickly recall how the computation of
local epsilon constants can be reduced to the computation of Artin conductors
and local Galois Gauss sums. We will then give the explicit definition of local
Galois Gauss sums in the Abelian case and show how we can use their well-
known functorial properties to compute them in the general case by applying
Brauer induction (in degree zero). Our standard reference for the definition
and properties of Artin conductors and Galois Gauss sums is [21, Ch. II].

Let (L,P)/(K,p) be a Galois extension and G = Gal(L/K) ∼= Gal(LP/Kp).
The local Galois Gauss sum of a complex valued character χ of G will be
denoted by τ(χ) = τ(LP/Kp, χ) ∈ C× and the Artin conductor by f(χ) (this
is an ideal of Kp which we can identify with a power of the ideal p in K). From
τ(χ) and f(χ), we can obtain the local root number W (χ) = W (LP/Kp, χ) by
the equation

τ(χ) = W (χ̄)
√

N(f(χ)),
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cf. [21, Ch. II, Section 4]. In fact, from τ(χ) and f(χ) one can also compute
the epsilon constants ε(χ,ψ, dx) defined in [13] for any nontrivial additive
character ψ and Haar measure dx on Kp. Indeed, the formulas [13, (5.3),
(5.4)] allow us to reduce to the case where ψ is the standard additive character
and dx is the Haar measure which is self-dual with respect to ψ, and in this
case the local epsilon constants ε(χ,ψ, dx) can be expressed in terms of W (χ)
and f(χ) (using [13, (5.5)] and W (χ) = ε(χω1/2, ψ, dx)). In order to compute
local epsilon constants, it is therefore enough to compute Artin conductors
and local Galois Gauss sums.

By definition, f(χ) = pn(χ) where n(χ) =
∑∞

i=0
|Gi |

|G0| codim(V Gi
χ ). Here, Vχ

is a C[G]-module affording the character χ. Since dim(V Gi
χ ) = 〈1Gi , χ|Gi 〉Gi ,

where 〈·, · 〉Gi denotes the usual scalar product on characters, we can easily
compute f(χ) by applying the results of Section 2.2. Often the values of
the character χ will not be given as complex numbers but as elements of a
sufficiently large number field E which is not canonically embedded into C.
We remark that the definition of f(χ) also makes sense for these E-valued
characters.

In the remainder of this subsection, we explain the computation of local
Galois Gauss sums. We first observe that the values of all characters χ and
the local Galois Gauss sums τ(LP/Kp, χ) are complex numbers which are
algebraic over Q. This allows us to replace C by a sufficiently large number
field E. More precisely, let E be a number field which satisfies
(a) E is a splitting field for all subgroups of G (so, in particular, we can apply

the results from Section 3.1),
(b) E contains a fixed primitive pt-th root of unity ζpt , where t is sufficiently

large (see Remark 2.7 for a precise statement).
For an E-valued character χ of G, we define the E-valued local Galois Gauss
sum to be ι−1(τ(LP/Kp, ι ◦ χ)), where ι : E ↪→ C is any embedding which
sends ζpt to exp(2πi/pt) (here i =

√
−1 ∈ C is fixed once and for all). It

follows from [21, Ch. II, Theorem 5.1] that this definition depends only on
the fixed pt-th root of unity ζpt ∈ E. In the following, all characters and local
Galois Gauss sums are E-valued, and to simplify the notation we will always
write τ(LP/Kp, χ) instead of ι−1(τ(LP/Kp, ι ◦ χ)).

Next, we explain how we can compute the standard additive character of a
p-adic field which is given by a global representation (M,p). Recall that the
complex valued standard additive character Mp → C× is the composite of the
following maps

Mp

(1)−→ Qp
(2)−→ Qp/Zp

(3)−→ Q/Z
(4)−→ C×

where (1) is the trace TrMp/Qp
, (2) and (3) are canonical and (4) is the com-

plex exponential map x + Z 
→ exp(2πix). Let DMp
denote the different of

the extension Mp/Qp. We define the E-valued standard additive character
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ψMp
: p−tD −1

Mp
→ E× to be the composite of the inclusion p−tD −1

Mp
↪→ Mp, the

complex valued standard additive character Mp → C× and ι−1, where again
ι : E ↪→ C is any embedding which sends ζpt to exp(2πi/pt); note that we can
use ι−1 because TrMp/Qp

(p−tD −1
Mp

) ⊆ p−tZp.
For z ∈ M ∩ p−tD −1

Mp
, we can compute ψMp

(z) as follows. Let F be any
Galois extension of Q which contains M , and fix a prime q of F lying above
the prime p of M . Let G = Gal(F/Q), H = Gal(F/M), and write Gq and Hq

for the decomposition subgroups. Then any set {σ1, . . . , σl} of representatives
of Gq/Hq is a full set of embeddings {σ : Mp ↪→ Fq}. Hence, TrMp/Qp

(z) =∑l
i=1 σi(z) ∈ F ∩ Qp = F Gq can be computed globally. Next, we have to find

r ∈ Z[p−1] such that

TrMp/Qp
(z) − r ∈ Zp ∩ F = {x ∈ F Gq : vq(x) ≥ 0}.

This can be achieved by a finite search because there exists such r with r ∈
{ a

pt : a = 0, . . . , pt − 1}. In this way, if r = a
pt , we obtain

ψMp
(z) = ι−1(exp(2πir)) = ζa

pt .

Next, we describe how the computation of the local Galois Gauss sum
τ(LP/Kp, χ) ∈ E for an E-valued character χ of G can be reduced to the
computation of local Galois Gauss sums for certain Abelian subextensions.
To simplify the notation, we write Mp in place of MP∩M for any intermediate
field M of L/K. For each subgroup H of G, we let 1H denote the trivial
character. Using the algorithm in Section 3.1, we can write

(3) χ − χ(1)1G =
∑

(H,ϕ)

c(H,ϕ) indG
H(ϕ − 1H)

where each pair (H,ϕ) consists of a subgroup H of G and a linear character
ϕ of H . Since the local Galois Gauss sums are additive, inductive in degree 0,
and equal to 1 for the trivial character, we have

τ(Lp/Kp, χ) = τ
(
Lp/Kp, χ − χ(1)1G

)
=

∏
(H,ϕ)

τ
(
Lp/Kp, indG

H(ϕ − 1H)
)c(H,ϕ)

=
∏

(H,ϕ)

τ
(
Lp/(LH)p, ϕ

)c(H,ϕ) .

It therefore suffices to compute τ(Lp/Mp, ϕ) where M is an intermediate field
of L/K and ϕ is a character of Gal(L/M) of degree one. If N = Lker(ϕ), then
τ(Lp/Mp, ϕ) = τ(Np/Mp, ϕ). Thus, we are reduced to the Abelian case.

Suppose now that (N,p)/(M,p) is Abelian and that ϕ is a character of
Gal(N/M) of degree one. We set s = vp(f(ϕ)), and compute an element c ∈ M
which generates the ideal f(ϕ)DMp

of OMp
. Note that s and c can be computed
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globally. The local Galois Gauss sum τ(Np/Mp, ϕ) is given by the explicit
formula

(4) τ(Np/Mp, ϕ) =
∑

x

ϕ

((
x

c
,Np/Mp

))
ψMp

(
x

c

)
,

where x runs through a set of representatives of O ×
Mp

modulo U
(s)
Mp

. These rep-

resentatives can be computed globally because O ×
Mp

/U
(s)
Mp

∼= (OM/ps)×. The
local norm residue symbols (y,Np/Mp) for y ∈ M × ⊆ M ×

p can be computed
by Section 2.3, and the values of ψMp

can be computed as explained above.

Remark 2.7. The integer t must be sufficiently large to ensure that ψMp
(x

c )
in (4) is defined, i.e., we must have x/c ∈ p−tD −1

Mp
. An easy calculation shows

that this is satisfied if t ≥ s
e(Mp/Qp) where e(Mp/Qp) is the ramification index

of the extension Mp/Qp. Hence, t must be an integer which satisfies t ≥
vp(f(ϕ))

e((LH)p/Qp)
for all pairs (H,ϕ) with c(H,ϕ) �= 0. In particular, we can determine

a suitable t as soon as (3) is computed.

2.6. Computation of (integral) normal bases. Let (L,P)/(K,p) be a
Galois extension and G = Gal(L/K) ∼= Gal(LP/Kp). Our intention is to com-
pute an element a ∈ L that generates a normal basis of the extension LP/Kp,
i.e., such that {σ(a) : σ ∈ G} is a basis of LP as Kp-vector space. Applying
an algorithm of Girstmair [15], we compute a normal basis element a ∈ L for
the global extension L/K. Since LP = L ⊗K Kp = LKp, the element a also
generates a normal basis for LP/Kp.

Now, assume that LP/Kp is at most tamely ramified. Then by a theo-
rem of Noether the ring of integers OLP

is a free OKp
[G]-module of rank 1.

In this situation, we want to compute an integral normal basis, i.e., an el-
ement a ∈ OLP

such that {σ(a) : σ ∈ G} is a OKp
-basis of OLP

. Since
OLP

is a free OKp
[G]-module, it follows that OLP

/pOLP

∼= OL/pOL is a
free (OKp

/pOKp
)[G] ∼= (OK/p)[G]-module. If a ∈ OL is any element with the

property that the image of a in OL/pOL is a basis of OL/pOL as (OK/p)[G]-
module, then a generates an integral normal basis of OLP

by Nakayama’s
lemma. Since OL/pOL is finite, such an element a ∈ OL can be found com-
putationally.

3. Algorithms for representation theory

In this section, we develop algorithms which are representation theoretic
in nature. One of these algorithms was already used in Section 2.5, and the
other algorithms are needed for Section 4.

3.1. Computational Brauer induction. Let G be a finite group and E
a finite extension of Q which is a splitting field for every subgroup of G.
A sufficient condition for this to be satisfied is that E contains the mth roots
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of unity where m is the exponent of G, cf. [25, Section 12.3, Theorem 24]
or [20, Section 33, Satz 15]. In the following, all the (virtual) characters we
consider have values in the field E. We write R(G) for the group of all virtual
characters of G, and Irr(G) for the set of irreducible characters.

By Brauer’s induction theorem, every virtual character χ ∈ R(G) can be
written (in general nonuniquely) as

(5) χ =
∑

(H,ϕ)

c(H,ϕ) indG
H(ϕ),

where (H,ϕ) runs through all pairs consisting of a subgroup H of G and a
one-dimensional character ϕ of H , indG

H(ϕ) is the induction of the character ϕ,
and the coefficients c(H,ϕ) are rational integers. For a given χ ∈ R(G) we want
to compute such coefficients c(H,ϕ).

First, note that for any subgroup H of G we can represent a virtual char-
acter ϕ ∈ R(H) as a function from the conjugacy classes of H to E. This
representation also allows us to compute the induced character indG

H(ϕ). The
set Irr(G) of irreducible characters of G can be computed, for example using
the Dixon–Schneider algorithm. It is well known that Irr(G) is a Z-basis of
R(G), and that for any χ ∈ R(G) we can easily compute the coefficients with
respect to this basis using the scalar product of characters.

Now given χ ∈ R(G), we can compute coefficients c(H,ϕ) ∈ Z as in (5) as
follows. We let Irr(G) = {χ1, . . . , χr } and compute coefficients bi ∈ Z such
that χ =

∑r
i=1 biχi. For each pair (H,ϕ), we compute coefficients a(H,ϕ),i ∈ Z

such that indG
H(ϕ) =

∑r
i=1 a(H,ϕ),iχi. Then we obtain coefficients c(H,ϕ) as an

integer solution of the system of linear equations∑
(H,ϕ)

a(H,ϕ),ic(H,ϕ) = bi, i = 1, . . . , r.

To find such an integer solution we apply the Hermite normal form techniques
of [11, Section 2.4].

Remark 3.1. Alternatively, one can compute canonical coefficients c(H,ϕ)

by using Boltje’s Brauer induction formula, cf. [7].

In Section 2.5, we applied the following variant of Brauer’s induction the-
orem. Let χ ∈ R(G) be of degree 0. We denote the trivial character of a
subgroup H of G by 1H . There exist rational integers c′

(H,ϕ) such that

χ =
∑

(H,ϕ)

c′
(H,ϕ) indG

H(ϕ − 1H)

where again (H,ϕ) runs through all pairs as above (cf. [25, Exercise 10.6]).
Obviously, with a slight variation of the argument above, it is possible to
compute coefficients c′

(H,ϕ) in this situation.
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3.2. Computing reduced norms. As in Section 3.1, we consider a fi-
nite group G and a finite extension E of Q which is a splitting field for
every subgroup of G. For a ∈ E[G]×, we want to compute the reduced norm
nr(a) ∈

∏
χ∈Irr(G) E× which is defined as follows. Let E[G] =

∏
χ∈Irr(G) Aχ

be the Wedderburn decomposition of E[G] and a = (aχ)χ∈Irr(G) under this
decomposition. Then nr(a) = (nrAχ/E(aχ))χ∈Irr(G), where nrAχ/E(aχ) ∈ E×

is the reduced norm of the element aχ in the central simple E-algebra Aχ.
For every character χ of G, we define Detχ(a) ∈ E× by Detχ(a) =

det(Tχ(a)) where Tχ : G → GLχ(1)(E) is a representation with character χ (ex-
tended linearly to Tχ : E[G] → Matχ(1)(E)). Since Detχ1+χ2(a) = Detχ1(a) ·
Detχ2(a), we can define Detχ(a) for a virtual character χ. Now, if a =
(aχ)χ∈Irr(G) is as above, then for χ ∈ Irr(G) we have nrAχ/E(aχ) = Detχ(a).
However, for given χ ∈ Irr(G) it is in general a very difficult problem to com-
pute an explicit matrix representation Tχ : G → GLχ(1)(E) with character χ.
We use Brauer induction to reduce the computation of Detχ(a) to the com-
putation of Detψ(a) for characters ψ for which we can easily compute corre-
sponding matrix representations.

More precisely, let χ ∈ Irr(G) and use the algorithm from Section 3.1 to
compute integers c(H,ϕ) such that χ =

∑
(H,ϕ) c(H,ϕ) indG

H(ϕ), where (H,ϕ)
runs through pairs of subgroups H of G and one-dimensional characters ϕ
of H . Then

nrAχ/E(aχ) = Detχ(a) =
∏

(H,ϕ)

DetindG
H(ϕ)(a)c(H,ϕ) .

It is not difficult to compute DetindG
H(ϕ)(a) because ϕ is one-dimensional and

we can therefore easily construct an explicit matrix representation with char-
acter indG

H(ϕ) (for example by using [25, Exercise 3.5]).
We will also need the reduced norm map

K1(E[G]) nr−→
∏

χ∈Irr(G)

E×.

Explicitly, if A = (aij) ∈ GLn(E[G]) represents an element a ∈ K1(E[G]),
then we set Detχ(a) = det(Tχ(A)) for each character χ of G, where Tχ(A) =
(Tχ(aij)) ∈ GLnχ(1)(E). Then one has

nr(a) = (Detχ(a))χ∈Irr(G).

Since again Detχ1+χ2(a) = Detχ1(a) · Detχ2(a), we can proceed as above and
use Brauer induction to compute Detχ(a) for χ ∈ Irr(G).

3.3. Computations in relative algebraic K-groups. Let G be a finite
group and E a finite Galois extension of Q which is a splitting field for every
subgroup of G. Let p be a prime number and fix a prime ideal Q of E over p.
In this subsection, we discuss computational questions in the relative algebraic
K-group K0(Zp[G],EQ). We refer the reader to [27, p. 215] for the definition
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of this group in terms of generators and relations, and to [5, Section 2] or [9,
Section 2.2] for a summary of some of its properties.

First, we recall that there exists the following commutative diagram with
exact rows:

K1(Zp[G])

=

K1(Qp[G])

⊆

K0(Zp[G],Qp)

⊆

0

K1(Zp[G]) K1(EQ[G])

�nr

K0(Zp[G],EQ) 0

∏
Irr(G)

E×
Q

(6)

We also recall that for a semilocal ring R the canonical map R× −→ K1(R)
is surjective. In particular, we have epimorphisms

(7) Zp[G]× −→ K1(Zp[G]), Qp[G]× −→ K1(Qp[G]).

From diagram (6), it is clear that tuples (aχ)χ∈Irr(G) ∈
∏

Irr(G) E× ⊂∏
Irr(G) E×

Q
represent elements in K0(Zp[G],EQ). Note that in general not

every element in K0(Zp[G],EQ) is represented by a tuple (aχ)χ∈Irr(G) with all
aχ ∈ E×, but we shall see that all the elements we are interested in have this
property.

If P and Q are finitely generated projective Z[G]-modules and ϕ : P ⊗ E →
Q ⊗ E is an isomorphism of E[G]-modules, then we obtain an element [P ⊗Z

Zp, ϕ ⊗E EQ,Q ⊗Z Zp] in K0(Zp[G],EQ). This element has a representative
in

∏
Irr(G) E× which can be computed as follows. Since P is projective over

Z[G], we know that P ⊗ Zp is free over Zp[G] and we can therefore compute
elements e1, . . . , en ∈ P such that e1 ⊗ 1, . . . , en ⊗ 1 ∈ P ⊗ Zp is a Zp[G]-basis
(this is a finite problem because by Nakayama’s lemma any lift of a (Z/pZ)[G]-
basis of P/pP works). Similarly, we can compute f1, . . . , fn ∈ Q such that
f1 ⊗ 1, . . . , fn ⊗ 1 ∈ Q ⊗ Zp is a Zp[G]-basis of Q ⊗ Zp. With respect to these
bases, we then express the isomorphism ϕ as a matrix A in GLn(E[G]). The
triple [P ⊗ Zp, ϕ ⊗ EQ,Q ⊗ Zp] is represented by nr(A) ∈

∏
Irr(G) E×, which

can be computed as described at the end of Section 3.2.
From (6) and (7), we derive that the element represented by a tuple (aχ) ∈∏
Irr(G) E× ⊂

∏
Irr(G) E×

Q
lies in the subgroup K0(Zp[G],Qp) of K0(Zp[G],EQ)

if and only if (aχ) lies in the subgroup nr(Qp[G]×) of
∏

Irr(G) E×
Q

. This is
equivalent to ω(aχ) = aω◦χ for all χ ∈ Irr(G) and all ω ∈ Gal(EQ/Qp). It can
be tested computationally because since aχ ∈ E it is equivalent to ω(aχ) =
aω◦χ for all χ ∈ Irr(G) and all ω ∈ Gal(E/Q)Q (the decomposition group
of Q).
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Finally, we need an algorithm to decide whether a tuple (aχ) ∈
∏

Irr(G) E× ⊂∏
Irr(G) E×

Q
represents the zero element in K0(Zp[G],EQ). It follows from (6)

and (7) that (aχ) represents 0 in K0(Zp[G],EQ) if and only (aχ) ∈ nr(Zp[G]×).
Let M denote a maximal order in Qp[G] containing Zp[G]. Let m be a posi-
tive integer such that pmM is contained in the Jacobson radical rad(Zp[G]) of
Zp[G] (for example we can take m = vp(|G|)+1). Note that the maximal order
M is only needed to justify the correctness of the following algorithm; in the
algorithm itself we need only m and it is not necessary to compute M. Choose
a set of representatives r1, . . . , rl ∈ Z[G] for the finite group (Z[G]/pmZ[G])×.
The isomorphisms

(Z[G]/pmZ[G])× ∼= (Zp[G]/pmZp[G])× ∼= Zp[G]×/(1 + pmZp[G])

(where the second isomorphism follows from [4, Lemma 3.6]) imply that
r1, . . . , rl is also a set of representatives of Zp[G]×/(1 + pmZp[G]). From the
inclusions

nr(1 + pmZp[G]) ⊆ nr(1 + pmM) ⊆ nr(Zp[G]×),
it therefore follows that (aχ) ∈ nr(Zp[G]×) if and only if nr(ri) · (aχ) ∈ nr(1 +
pmM) for (at least) one of the ri. To test if a tuple lies in nr(1 + pmM), we
use the criterion stated in the following lemma.

Lemma 3.2. A tuple (bχ) ∈
∏

Irr(G) E×
Q

lies in nr(1 + pmM) if and only if
the following two conditions are satisfied:
(1) (bχ) ∈ nr(Qp[G]×).
(2) bχ ∈ 1 + pmOEQ

for all χ ∈ Irr(G).

Proof. Let Qp[G] ∼=
∏

i Matmi(Di) be the Wedderburn decomposition of
Qp[G]. We denote the center of the skew field Di by Ki. The maximal order
M ⊂ Qp[G] decomposes as M ∼=

∏
i Mi, where each Mi is a maximal order

in Matmi(Di). From [4, Corollary 2.3], we deduce that

nrMatmi
(Di)/Ki

(1 + pmMi) = 1 + pmOKi ⊂ K×
i .

The inclusion
∏

i K
×
i

∼= nr(Qp[G]×) ⊆
∏

Irr(G) E×
Q

identifies
∏

i K
×
i with{

(bχ) ∈
∏

χ∈Irr(G)

E×
Q

: ω(bχ) = bω◦χ for all χ and all ω ∈ Gal(EQ/Qp)
}

.

Under this identification,
∏

i(1 + pmOKi) corresponds to{
(bχ) ∈

∏
χ∈Irr(G)

E×
Q

: ω(bχ) = bω◦χ for all χ and all ω ∈ Gal(EQ/Qp),

and bχ ∈ 1 + pmOEQ
for all χ

}
.

From this, the result follows. �
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Hence, a tuple (aχ) ∈
∏

Irr(G) E× represents 0 in K0(Zp[G],EQ) if and only
if (aχ) ∈ nr(Qp[G]×), and for (at least) one of the representatives ri, the
tuple (bχ) = nr(ri) · (aχ) has the property that vQ((bχ − 1)/pm) ≥ 0 for all
χ ∈ Irr(G).

More algorithms for computations in relative algebraic K-groups can be
found in [6].

4. Algorithms to prove epsilon constant conjectures

In this section, we describe our algorithmic approach to various epsilon
constant conjectures. In Section 4.1, we quickly recall the relevant facts about
these conjectures and show that from an algorithm for the local conjecture
one can easily deduce algorithms for the global conjectures; this will prove
Corollaries 1.2 and 1.3. In Section 4.2, we then develop our main algorithm
for the local epsilon constant conjecture, which demonstrates Theorem 1.1.
We conclude with some computational remarks in Section 4.3.

4.1. The epsilon constant conjectures. Let L/K be a Galois extension
of p-adic fields and G = Gal(L/K). The local epsilon constant conjecture of
[9] is a conjecture relating the equivariant local Galois Gauss sum of L/K to a
natural cohomological invariant of this extension. More precisely, the equality

(8) TL/K + EL/K(exp(L))p − [L, ρL,HL] + UL/K − ML/K = 0

is conjectured to hold in the relative algebraic K-group K0(Zp[G],Qc
p), where

Qc
p is an algebraic closure of Qp. We only sketch the ideas behind the invari-

ants appearing in (8); for the precise definitions and a detailed discussion see
[9, Section 2]. The invariant TL/K comes from the local Galois Gauss sums
of all irreducible characters of L/K, and UL/K is an unramified counterpart
of TL/K . The term ML/K is an explicit correction term (it is essentially a
quotient of leading terms of local L-factors). Next, L is any full projective
Zp[G]-lattice contained in a sufficiently large power of the maximal ideal of

OL (the validity of the conjecture is independent of the choice of L), and
EL/K(exp(L))p is an Euler characteristic of a cochain complex constructed
from the local fundamental class in H2(G,L×). Finally, [L, ρL,HL] is given
explicitly in terms of all embeddings L ↪→ Qc

p.
Now, we consider a Galois extension L/K of number fields with Galois

group G = Gal(L/K). The global epsilon constant conjecture of [5] is a con-
jectural equality in the relative algebraic K-group K0(Z[G],R), which relates
the equivariant global epsilon constant of L/K to natural semi-local cohomo-
logical invariants. It can be shown that this conjecture splits into p-parts for
all rational prime numbers p, and that the validity of the p-part of the global
conjecture for L/K is closely related to the validity of the local conjectures
for all completions of L/K at primes above p. This is discussed in detail in [9,
Section 4]. Finally, we recall that the Ω(2)-conjecture for the global extension
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L/K (as formulated in [10]) is the conjectural equality of the Cassou–Noguès–
Fröhlich root number class of L/K and of Chinburg’s invariant Ω(L/K,2) in
the projective class group Cl(Z[G]). It is shown in [5, Remark 4.2(iv)] that the
Ω(2)-conjecture for L/K is the image of the global epsilon constant conjecture
under the canonical projection K0(Z[G],R) → Cl(Z[G]).

In Section 4.2, we will prove Theorem 1.1, i.e., we will describe an algo-
rithm to prove or disprove the local epsilon constant conjecture for all Galois
extensions L/Qp of degree n. Assuming this result for the moment, we now
deduce Corollaries 1.2 and 1.3.

Proof of Corollary 1.2. For every prime number p dividing n use the al-
gorithm in Theorem 1.1 to prove the local epsilon constant conjecture for all
extensions M/Qp of degree dividing n (or to find a counterexample to the lo-
cal conjecture). The validity of all these local conjectures implies the validity
of the global conjecture for all Galois extensions L/Q of degree n. Indeed, if
p | n, then the validity of the p-part of the global conjecture follows from the
local conjectures by [9, Corollary 4.2]. If p � n, then K0(Zp[Gal(L/Q)],Qp)
is torsion free. Hence, the p-part of the global conjecture follows from [5,
Corollary 6.3(i)]. �

Proof of Corollary 1.3. By [5, Remark 4.2(iv)], the global epsilon constant
conjecture for L/Q implies Chinburg’s Ω(2)-conjecture for L/Q. Hence, Corol-
lary 1.3 follows from Corollary 1.2. �

Remark 4.1. Suppose that the algorithm of Corollary 1.2 finds a coun-
terexample M/Qp (with [M : Qp] dividing n) to the local epsilon constant
conjecture. If p is an odd prime number, then by a result of Henniart [16], we
know that there exists a Galois extension L of Q such that L has only one
place w above p and the completion of L at w is isomorphic to M . Then by
[9, Theorem 4.1], L/Q is a counterexample to the global epsilon constant con-
jecture, though not necessarily of degree n. However, if the counterexample
to the local conjecture is a Galois extension of p-adic fields with p = 2, then
we cannot conclude that this disproves the global epsilon constant conjecture.

4.2. The algorithm for the local epsilon constant conjecture. In this
subsection, we describe the algorithm whose existence was stated in The-
orem 1.1. We first roughly explain the complete algorithm and then give
further details for the individual steps.

In the initial step, we compute a list of Galois extensions (L,P)/(K,p) with
Kp = Qp such that the extensions LP/Kp form a complete list of all Galois
extensions of Qp of degree n. Then for each Galois extension (L,P)/(K,p)
in this list we verify the local epsilon constant conjecture for LP/Kp. Let
(L,P)/(K,p) be one of these extensions and G = Gal(L/K) ∼= Gal(LP/Qp).
We construct a number field E and a prime Q of E above p such that all in-
variants appearing in (8) lie in the subgroup K0(Zp[G],EQ) of K0(Zp[G],Qc

p).
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Thus, these invariants can be represented by tuples in
∏

Irr(G) E×
Q

, and in fact,
as we shall see, by tuples in

∏
Irr(G) E×. We will compute a representing tuple

for each invariant, and finally verify that the product of these tuples repre-
sents 0 in K0(Zp[G],EQ). In Section 4.2.1, we describe the construction of the
list of extensions (L,P)/(K,p), and in Sections 4.2.2–4.2.9, we then explain
how for any extension in this list we can verify the corresponding local epsilon
constant conjecture.

4.2.1. Constructing the Galois extensions. Using the algorithm of Pauli and
Roblot [24], we can compute all extensions of Qp of degree n. In fact, we
can compute these extensions as global representations (L,P)/(Q, p). We are
only interested in extensions (L,P)/(Q, p) for which LP/Qp is Galois. To
check for which extensions this is the case, we can use Panayi’s root finding
algorithm (which is explained in [24, Section 8]) to test whether the minimal
polynomial of a primitive element of LP/Qp splits into linear factors over
LP. Alternatively, we could test whether P is completely split in the Galois
closure of L over Q (this is equivalent to LP/Qp being Galois).

For every extension (L,P)/(Q, p) for which LP/Qp is Galois, we then use
Lemma 2.2 to compute a Galois extension (L′,P′)/(K ′,p′) which represents
LP/Qp.

Thus, we have constructed a finite list of Galois extensions (L,P)/(K,p)
representing all Galois extensions of Qp of degree n. For each of these ex-
tensions, we now perform the steps in Sections 4.2.2–4.2.9. Let G denote the
Galois group Gal(L/K) ∼= Gal(LP/Qp).

4.2.2. Constructing the coefficient field. As in Section 2.4, we may and will
assume that we have a diagram of fields as in (1), where all field extensions are
Galois. Recall that NpN

/Kp is the unramified extension of degree n. We let
m denote a multiple of the exponent of G (e.g. m = n) and choose t ∈ N large
enough so that the local Galois Gauss sums τ(LP/Kp, χ) for all χ ∈ Irr(G)
can be computed in Q(ζm, ζpt) (see Remark 2.7). Finally, we let E be the
Galois closure of LNQ(ζm, ζpt) over Q and fix a prime Q of E over p. The
field EQ takes the place of Qc

p in our computations.

4.2.3. Computing the lattice L. Our procedure to compute L is motivated by
[3, Section 3.1]. Let θ ∈ L be a generator of a normal basis of the extension
L/K, and therefore also of the extension LP/Kp (compare Section 2.6). We
can assume that θ ∈ OL and that vP(θ) >

e(LP/Qp)
p−1 , where e(LP/Qp) denotes

the ramification index of the extension LP/Qp. This condition ensures that
the p-adic exponential function is defined for θ. We define L = OKp

[G] · θ ⊆
OLP

, so that L is a free Zp[G] = OKp
[G]-submodule of OLP

.
In order to be able to perform all our computations globally, we will

also need a positive integer m >
e(LP/Qp)

p−1 such that (POLP
)m ⊆ L, cf. [3,
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Lemma 3.5]. (Of course, this integer m is not the same m as in Section 4.2.2.)
The integer m can be computed globally by first finding an ideal a of OL

such that a ⊆ OK [G] · θ ⊆ OL and then considering the P-part of a. If
k ∈ N denotes the index of OK [G] · θ in OL, then a = kOL is a possible
choice. Since m >

e(LP/Qp)
p−1 , the p-adic exponential function gives a bijec-

tion (POLP
)m ∼= U

(m)
LP

.
The quotient L×

P
/ exp(L) is a finitely generated G-module which can be

computed globally. Indeed, L×
P

/U
(m)
LP

can be computed globally (cf. Sec-

tion 2.4), so the isomorphism L×
P

/ exp(L) ∼= (L×
P

/U
(m)
LP

)/(exp(L)/U
(m)
LP

) shows

that it suffices to compute the image of exp(L) in L×
P

/U
(m)
LP

. Since this image

is generated by exp(θ) · U
(m)
LP

as a Z[G]-module, it suffices to compute exp(θ)
with a certain precision, cf. [3, Remark 3.6].

4.2.4. Computing ELP/Kp
(exp(L))p. To compute ELP/Kp

(exp(L))p, we use
[5, Lemma 3.7] (with D = G and X = exp(L)).

Using the algorithm from Section 2.4, we can compute a 2-cocycle which
represents the image of the fundamental class in H2(G,L×

P
/U

(m)
LP

). Applying

the map L×
P

/U
(m)
LP

→ L×
P

/ exp(L) gives a cocycle with values in L×
P

/ exp(L).
Then we apply the construction in [23, p. 115] to this cocycle and obtain an
explicit 2-extension of Z[G]-modules

0 → L×
P

/ exp(L) → C(γ) → Z[G] → Z → 0

which represents the image of the fundamental class under

H2(G,L×
P

) → H2
(
G,L×

P
/ exp(L)

)
= Ext2Z[G]

(
Z,L×

P
/ exp(L)

)
.

Since exp(L) is cohomologically trivial, it follows from a well-known property
of the local fundamental class that C(γ) is also cohomologically trivial. Next,
we find a projective resolution

0 → K → F → C(γ) → 0

with F a free Z[G]-module. We remark that we may assume that each of the
modules here is given by a Z-basis, so that the computation of free resolutions
and kernels can be achieved using linear algebra over Z.

By [5, Lemma 3.7], we know that

ELP/Kp
(exp(L)) =

[
K ⊕ Z[G], θ̃, F

]
∈ K0(Z[G],Q),

where θ̃ : (K ⊕ Z[G]) ⊗ Q → F ⊗ Q is a certain isomorphism of Q[G]-modules.
From the explicit description of θ̃ in [5], it is clear how to find this map
algorithmically, provided that we know how to compute sections of surjec-
tive maps of Q[G]-modules. If ϕ : A → B is a surjection of finitely generated
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Q[G]-modules, then we can find a Q[G]-linear section s : B → A by first choos-
ing any Q-linear section t : B → A and then defining s = 1

|G|
∑

σ∈G tσ where
tσ(b) = σ(t(σ−1(b))) for b ∈ B, cf. the standard proof of Maschke’s Theorem.

The invariant ELP/Kp
(exp(L))p is the image of ELP/Kp

(exp(L)) under the
composite homomorphism K0(Z[G],Q) → K0(Zp[G],Qp) ↪→ K0(Zp[G],EQ).
A tuple in

∏
Irr(G) E× representing ELP/Kp

(exp(L))p can therefore be com-
puted as explained in Section 3.3.

4.2.5. Computing [L, ρLP
,HLP

]. Let Σ(LP) denote the set of continuous
embeddings LP ↪→ EQ and put HLP

=
⊕

σ∈Σ(LP) Zp. By construction L is
a subfield of E, and we may identify G = Gal(L/K) and Σ(LP). If σ0 ∈ G
denotes the identity element, then the element b = (bσ)σ∈Σ(LP) ∈ HLP

with
bσ0 = 1 and bσ = 0 for σ �= σ0 is a Zp[G]-basis of HLP

. Thus, HLP
is a free

Zp[G]-module of rank 1. Recall also that L is a free Zp[G]-module of rank 1
generated by θ.

The map

ρLP
: L ⊗Zp EQ → HLP

⊗Zp EQ, ρLP
(l ⊗ z) = (σ(l)z)σ∈Σ(LP)

is an isomorphism of EQ[G]-modules. The matrix of this isomorphism with
respect to the basis θ of L and the basis b of HLP

is the 1 × 1-matrix
A =

∑
σ∈G σ(θ) · σ−1 ∈ E[G]× ⊂ EQ[G]×. Therefore, a tuple in

∏
Irr(G) E× ⊂∏

Irr(G) E×
Q

which represents [L, ρLP
,HLP

] is given by nr(A). Clearly, we can
compute A and hence using the algorithm of Section 3.2 also nr(A).

4.2.6. Computing TLP/Kp
. By the definition of TLP/Kp

in [9, Section 2.3], this
invariant is represented by the tuple (τ(LP/Kp, χ))χ∈Irr(G) ∈

∏
Irr(G) E× ⊂∏

Irr(G) E×
Q

. The computation of local Galois Gauss sums was explained in
Section 2.5.

4.2.7. Computing ULP/Kp
. The invariant ULP/Kp

is discussed in [9, Sec-
tion 2.5]. The proof of [9, Proposition 2.12] shows that ULP/Kp

is represented
by the tuple nr(u) ∈

∏
Irr(G) E× where u ∈ E[G]× is given by an explicit for-

mula. More precisely, to find u we first note that Kp = Qp, so that we can
directly apply the recipe described in the proof of [9, Proposition 2.12]. We
must compute the maximal Abelian subextension (F,pF ) of (L,P)/(K,p), and
then the local norm residue symbol (p,FpF

/Kp) ∈ Gal(FpF
/Kp) ∼= Gal(F/K).

Let ϕ ∈ G be an element such that ϕ|F = (p,FpF
/Kp) and write s for the

order of ϕ. Let N1 ⊆ N be the subextension of N/K with [N1 : K] = s. Then
(N1)pN1

/Kp is the unramified extension of degree s. Let f ∈ Gal(N1/K) de-
note the Frobenius automorphism with respect to p and compute an integral
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normal basis element ξ ∈ ON1 for the extension (N1)pN1
/Kp. Then

u =
s−1∑
i=0

f i(ξ)ϕ−i ∈ N1[G] ⊆ E[G].

Thus, we can compute u and then nr(u).

4.2.8. Computing MLP/Kp
. We denote the center of a ring R by ζ(R) and

its multiplicative group by ζ(R)×. In [9, Section 2.6], an explicit invariant
mLP/Kp

in ζ(Q[G])× is defined. In order to compute mLP/Kp
, one has to

compute the inertia group and Frobenius automorphism, which can be done as
explained in Section 2.2. Under the natural inclusion ζ(Q[G])× ⊂ ζ(E[G])× ∼=∏

Irr(G) E×, the invariant MLP/Kp
is represented by mLP/Kp

. Thus, we can
compute a tuple representing MLP/Kp

.

4.2.9. Check if zero in K0(Zp[G],EQ). We have computed tuples in∏
Irr(G) E× representing each of the invariants in (8). Using the algorithm

from Section 3.3, we can verify whether the product of these tuples represents
0 in K0(Zp[G],EQ), and thus whether the local epsilon constant conjecture
for the extension LP/Kp is true or not.

4.3. Computational remarks. We would like to conclude with some re-
marks about possible implementations of this algorithm. Because of the length
of this algorithm, any implementation in full generality would be a major
project. However, at the moment such an implementation could probably
only be used to prove very small cases of the conjecture: several steps in
the algorithm (for example the computation of the fundamental class) require
the generation of very large number fields, and current algorithms to perform
the necessary computations in these fields are very slow. Furthermore, certain
steps work by enumerating finite sets (e.g., the step to test whether an element
in K0(Zp[G],EQ) is equal to 0) which again can be a very time consuming
task. We therefore feel that the expected results would not justify the effort
required for a full implementation of this algorithm.

A more useful approach is to restrict implementations to special classes
of Galois extensions. This has the advantage that the implementation can
be simplified, for example by restricting to Galois groups of a special struc-
ture, and that theoretical results for special types of extensions can reduce
the amount of necessary computations. This approach was taken in [3] and
[8], where algorithms for certain cyclic, respectively dihedral, extensions were
developed and implemented (for the global epsilon constant conjecture of [5],
but they could easily be modified to deal with the local conjecture instead).
We expect that for many classes of extensions similar arguments can be used
to improve the efficiency of the algorithm in Section 4.2, and we hope that this
will allow us to computationally prove further cases of the epsilon constant
conjectures.
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[1] V. Acciaro and J. Klüners, Computing local Artin maps, and solvability of norm equa-

tions, J. Symbolic Comp. 30 (2000), 239–251. MR 1775936
[2] H. Anai, M. Noro and K. Yokoyama, Computation of the splitting fields and the

Galois groups of polynomials, Algorithms in algebraic geometry and applications
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