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DELTA EDGE-HOMOTOPY INVARIANTS OF SPATIAL
GRAPHS VIA DISK-SUMMING THE CONSTITUENT KNOTS

RYO NIKKUNI

Abstract. In this paper, we construct some invariants of spa-
tial graphs by disk-summing the constituent knots and show the

delta edge-homotopy invariance of them. As an application, we

show that there exist infinitely many slice spatial embeddings of

a planar graph up to delta edge-homotopy, and there exist infin-
itely many boundary spatial embeddings of a planar graph up to
delta edge-homotopy.

1. Introduction

Throughout this paper, we work in the piecewise linear category. Let G
be a finite graph. An embedding of G into the 3-sphere is called a spatial
embedding of G or simply a spatial graph. A graph G is said to be planar if
there exists an embedding of G into the 2-sphere, and a spatial embedding of
a planar graph G is said to be trivial if it is ambient isotopic to an embedding
of G into the 2-sphere in the 3-sphere. Note that a trivial spatial embedding
of a planar graph is unique up to ambient isotopy [7].

A delta move is a local deformation on a spatial graph as illustrated in
Figure 1.1 which is known as an unknotting operation [8], [12]. A delta move
is called a self delta move if all three strings in the move belong to the same
spatial edge. Two spatial embeddings of a graph are said to be delta edge-
homotopic if they are transformed into each other by self delta moves and
ambient isotopies [16]. If the graph is homeomorphic to the disjoint union of
1-spheres, then this equivalence relation coincides with self Δ-equivalence [22]
(or delta link homotopy [13]) on oriented links.

For self Δ-equivalence on oriented links, Shibuya proposed the following
conjectures in [22] and [23].
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Figure 1.1.

Conjecture 1.1 ([22]). Two cobordant oriented links are self Δ-equivalent.

Conjecture 1.2 ([23]). Any boundary link is self Δ-equivalent to the triv-
ial link.

He gave the partially affirmative answers to the conjectures above at the
same time. He showed that any ribbon link is self Δ-equivalent to the trivial
link [22], and any 2-component boundary link is self Δ-equivalent to the triv-
ial link [23, Theorem 4.6]. But Nakanishi–Shibuya showed that there exists
a 2-component link such that it is not self Δ-equivalent, but cobordant to
the Hopf link [14, Claim 4.5], namely they gave a negative answer to Conjec-
ture 1.1. Moreover, Nakanishi–Shibuya–Yasuhara showed that there exists a
3-component link such that it is not self Δ-equivalent, but cobordant to the
Borromean rings [15, Proposition 1]. Note that both the Hopf link and the
Borromean rings are not slice. On the other hand, Conjecture 1.2 was solved
affirmatively by Shibuya–Yasuhara [24].

On the outcome of the results above, we investigate a more general case.
A spatial embedding of a planar graph is said to be slice if it is cobordant1

to the trivial spatial embedding. A spatial embedding of a graph is called
a ∂-spatial embedding if all knots in the embedding bound Seifert surfaces
simultaneously such that the interiors of the surfaces are mutually disjoint
and disjoint from the image of the embedding [19]. If the graph is homeo-
morphic to the disjoint union of 1-spheres, then this definition coincides with
the definition of the boundary link. We note that any nonplanar graph does
not have a ∂-spatial embedding [19, Corollary 1.3]. Then we ask the following
questions.

Question 1.3. (1) Is any slice spatial embedding of a planar graph delta
edge-homotopic to the trivial spatial embedding?

(2) Is any ∂-spatial embedding of a graph delta edge-homotopic to the
trivial spatial embedding?

In fact, for spatial theta curves, the affirmative answers to Question 1.3(1)
and (2) have already given by the author [17, Corollary 1.3 and 1.5]. But our
purpose in this paper is to give the negative answers to the Questions 1.3(1)
and (2), as follows.

1 See [25] for the precise definition of spatial graph-cobordism.
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Figure 1.2.

Theorem 1.4. (1) There exist infinitely many slice spatial embeddings of
a graph up to delta edge-homotopy.

(2) There exist infinitely many ∂-spatial embeddings of a graph up to delta
edge-homotopy.

To accomplish this, we construct some invariants of spatial graphs by con-
sidering a disk-summing operation among the constituent knots in a spatial
graph in Section 2, and show the delta edge-homotopy invariance of them in
Section 3 (Theorems 2.1 and 2.2). In Section 4, we give some remarkable
examples which imply Theorem 1.4. Any of those examples is demonstrated
by a spatial handcuff graph (see the next section) all of whose constituent
links are trivial up to self Δ-equivalence. Therefore, our examples also imply
that delta edge-homotopy on spatial graphs behaves quite differently than self
Δ-equivalence on links.

Remark 1.5. (1) Recently, Question 1.3(1) for oriented links was solved
affirmatively by Yasuhara [26, Corollary 1.9].

(2) A sharp move is a local deformation on a spatial oriented graph as
illustrated in Figure 1.2 which is also known as an unknotting operation [11].
A sharp move is called a self sharp move if all four strings in the move belong
to the same spatial edge. Two spatial embeddings of a graph are said to be
sharp edge-homotopic (or self sharp-equivalent [19]) if they are transformed
into each other by self sharp moves and ambient isotopies [18].2 It is known
that two delta edge-homotopic spatial embeddings of a graph are sharp edge-
homotopic [18, Lemma 2.1(2)]. The author showed that two cobordant spatial
embeddings of a graph are sharp edge-homotopic [18, Lemma 2.2], and the
author and Shinjo showed that any ∂-spatial embedding of a graph is sharp
edge-homotopic to the trivial spatial embedding [19, Theorem 1.5(1)].

2. Invariants

In this section, we introduce the invariants of spatial graphs needed later.
Let Hn (n ≥ 2) be the graph as illustrated in Figure 2.1. We give the label to
each of the edges and give an orientation to each of the loops as presented in
Figure 2.1. A spatial embedding of Hn is called a spatial n-handcuff graph, or

2 This equivalence relation does not depend on the edge orientations.
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Figure 2.1.

simply a spatial handcuff graph if n = 2. On that occasion, we regard e1 ∪ e2

as an edge of H2 and denote by e.
Let L = J1 ∪ J2 ∪ · · · ∪ Jn be an ordered and oriented n-component link. Let

D be an oriented 2-disk and x1, x2, . . . , xn are mutually disjoint arcs in ∂D,
where ∂D has the orientation induced by the one of D, and these arcs appear
along the orientation of ∂D in order and each arc has an orientation induced
by the one of ∂D. We assume that D is embedded in the 3-sphere so that
D ∩ L = x1 ∪ x2 ∪ · · · ∪ xn and xi ⊂ Ji with opposite orientations for any i.
Then we call a knot K12···n

D = L ∪ ∂D −
⋃n

i=1 intxi a D-sum of L. For a spatial
n-handcuff graph f , we denote f(γ1 ∪ γ2 ∪ · · · ∪ γn) by Lf and consider a D-sum
of Lf so that f(e1 ∪ e2 ∪ · · · ∪ en) ⊂ D and f(ei) ∩ ∂D = f(ei ∩ γi) ⊂ intxi for
any i. We call such a D-sum of Lf a D-sum of Lf with respect to f and
denote it by K12···n

D (f).
For a spatial handcuff graph f , we define that

n12(f,D) = a2(K12
D (f)) − a2(f(γ1)) − a2(f(γ2))

and denote the modulo lk(Lf ) reduction of n12(f,D) by n̄12(f), where lk
denotes the linking number in the 3-sphere. Then we have the following.

Theorem 2.1. If two spatial handcuff graphs f and g are delta edge-
homotopic, then n̄12(f) = n̄12(g).

On the other hand, let f be a spatial 3-handcuff graph and K123
D (f) a

D-sum of Lf with respect to f . Then by using the same disk D, we can obtain
three knots K12

D (f), K23
D (f) and K13

D (f) by forgetting the components f(γ3),
f(γ1) and f(γ2), respectively, namely by the D-sums of sublinks f(γ1) ∪ f(γ2),
f(γ2) ∪ f(γ3) and f(γ1) ∪ f(γ3) of Lf . Then we define that

n123(f,D) = −v3(K123
D (f)) +

∑
1≤i<j≤3

v3(K
ij
D (f)) −

3∑
i=1

v3(f(γi)),
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where v3(J) = (1/36)V (3)
J (1) and V

(3)
J (1) denotes the third derivative at 1 of

the Jones polynomial3 of a knot J . Assume that Lf is algebraically split,
namely all of the pairwise linking numbers of Lf are zero. Then we de-
note the modulo μ123(Lf ) reduction of n123(f,D) by n̄123(f), where μ123

denotes the triple linking number, namely Milnor’s μ-invariant of length 3
of a 3-component algebraically split link [9], [10]. Then we have the follow-
ing.

Theorem 2.2. Let f and g be two spatial 3-handcuff graphs which are delta
edge-homotopic. Assume that both Lf and Lg are algebraically split. Then it
holds that n̄123(f) = n̄123(g).

For example, if a spatial handcuff (resp. 3-handcuff) graph f contains a
Hopf link (resp. Borromean rings), then our invariants are no use. But if Lf

is link-homotopic [9] to the trivial link, then our invariants take effect on our
purpose. Because any slice link is link-homotopic to the trivial link [3], [4],
and any boundary link is also link-homotopic to the trivial link [1], [2]. We
prove Theorems 2.1 and 2.2 in the next section.

3. Proofs of Theorems 2.1 and 2.2

To prove Theorems 2.1 and 2.2, we first recall some results and show a
lemma needed later.

Lemma 3.1. Let J+ and J− be two oriented knots and J0 = K1 ∪ K2 an ori-
ented 2-component link which are identical except inside the depicted regions
as illustrated in Figure 3.1. Then we have that:
(1) ([5, Lemma 5.6]) a2(J+) − a2(J−) = lk(J0).
(2) ([18, Proposition 4.2])

V
(3)
J+

(1) − V
(3)
J−

(1) = 36a2(J+) + 18{lk(J0)}2 − 36{a2(K1) + a2(K2)}.

Figure 3.1.

3 We calculate the Jones polynomial of a knot by the skein relation

tVJ+ (t) − t−1VJ− (t) = (t− 1
2 − t

1
2 )VJ0 (t),

where J+ and J− are two oriented knots and J0 an oriented 2-component link which are

identical except inside the depicted regions as illustrated in Figure 3.1.
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Figure 3.2.

Figure 3.3.

Lemma 3.2. Let K+ and K− be two oriented knots and K0 an oriented
3-component link which are identical except inside the depicted regions as il-
lustrated in Figure 3.2. Then we have that
(1) ([20, Theorem 1.1]) a2(K+) − a2(K−) = 1.
(2) ([16, Theorem 3.2]) V

(3)
K+

(1) − V
(3)
K−

(1) = 36Lk(K0) − 18, where Lk(L) de-
notes the total linking number of an oriented link L.

Lemma 3.3. (1) Let f be a spatial handcuff graph. Then any of the self
delta moves on f(e) is realized by self delta moves on f(γ1) and ambient
isotopies.

(2) Let f be a spatial 3-handcuff graph. Then any of the self delta moves
on f(ei) is realized by self delta moves on f(γi) and ambient isotopies (i =
1,2,3).

Proof. (1) We can see that a self delta move on f(e) is realized by a
“doubled-delta move” on f(γ1), see Figure 3.3. It is easy to see that a doubled-
delta move is realized by eight delta moves on the strings in the move and
ambient isotopies. Thus, we have the result.

(2) We can show in the same way as (1). �

Proof of Theorem 2.1. We first show that n̄12(f) is an ambient isotopy
invariant. Let K12

D (f) be a D-sum of Lf with respect to f and K12
D′ (f)
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Figure 3.4.

Figure 3.5.

another D′-sum of Lf with respect to f . We may assume that K12
D′ (f) is

obtained from K12
D (f) by a positive full twist of the band corresponding to

f(e). Then by Lemma 3.1(1), we have that

n12(f,D′) − n12(f,D) = a2(K12
D′ (f)) − a2(K12

D (f)) = lk(Lf ),

see Figure 3.4. This implies that n̄12(f) is an ambient isotopy invariant.
Next, we show that n̄12(f) is a delta edge-homotopy invariant. Let f and g

be delta edge-homotopic two spatial handcuff graphs. Then by Lemma 3.3(1),
g is obtained from f by self delta moves on f(γi) (i = 1,2) and ambient
isotopies. Moreover, it is known that each of the oriented delta moves can
be realized by the one as illustrated in Figure 3.5 [12, Figure 1.1]. Hence,
we may assume that g is obtained from f by a self delta move on f(γ1) as
illustrated in Figure 3.6 without loss of generality. Let K12

D (f) be the D-sum
of Lf with respect to f as illustrated in Figure 3.6 and K12

D (g) the D-sum of
Lg with respect to g by using the same D as illustrated in Figure 3.6. Namely,
K12

D (f) and K12
D (g) are identical except the depicted parts which represents

the delta move. Note that f(γ2) and g(γ2) are ambient isotopic. Then by
Lemma 3.2(1) we have that

n12(f,D) − n12(g,D)
= a2(K12

D (f)) − a2(K12
D (g)) − {a2(f(γ1)) − a2(g(γ1))}

= 1 − 1 = 0.

Since a delta move preserves the linking number, we have that n̄12(f) = n̄12(g).
This completes the proof. �
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Figure 3.6.

Remark 3.4. (1) By the first half of the proof of Theorem 2.1, we can also
see that the modulo lk(Lf ) reduction of a2(K12

D (f)) is an ambient isotopy
invariant of a spatial handcuff graph f .

(2) For a spatial n-handcuff graph f and a D-sum K12···n
D (f) of Lf with

respect to f , we can generalize Theorem 2.1 as follows. Let l be the greatest
common divisor of lk(f(γi),Lf − f(γi)) (i = 1,2, . . . , n). Then it can be shown
that the modulo l reduction of

a2(K12···n
D (f)) −

n∑
i=1

a2(f(γi))

is a delta edge-homotopy invariant of f in the same way as the proof of
Theorem 2.1. But this generalized version for n ≥ 3 is not so strong as we will
see in Examples 4.2 and 4.4.

To prove Theorem 2.2, we recall another result. By Polyak’s formula of the
triple linking number [21], we have the following.

Lemma 3.5 ([21]). Let L = J1 ∪ J2 ∪ J3 be an ordered and oriented al-
gebraically split 3-component link. Let KD be a D-sum of L and K23

D ,K13
D

and K12
D three knots obtained from K123

D by forgetting the components J1, J2

and J3, respectively. Then it holds that

μ123(L) = −a2(K123
D ) +

∑
1≤i<j≤3

a2(K
ij
D ) −

3∑
i=1

a2(Ji).

Proof of Theorem 2.2. We first show that n̄123(f) is an ambient isotopy
invariant. Let K123

D (f) be a D-sum of Lf with respect to f and K123
D′ (f)

another D′-sum of Lf with respect to f . We may assume that K123
D′ (f) is

obtained from K123
D (f) by a positive full twist of the band corresponding to

f(e1), see Figure 3.7. Then by the skein relation as illustrated in Figure 3.8,
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Figure 3.7.

Lemmas 3.1(2) and 3.5, we have that

n123(f,D′) − n123(f,D)
= −{v3(K123

D′ (f)) − v3(K123
D (f))} + {v3(K12

D′ (f)) − v3(K12
D (f))}

+ {v3(K13
D′ (f)) − v3(K13

D (f))}

= −a2(K123
D′ (f)) − 1

2
lk

(
f(γ1), f(γ2) ∪ f(γ3)

)2

+ {a2(f(γ1)) + a2(K23
D′ (f))}

+ a2(K12
D′ (f)) +

1
2

lk(f(γ1), f(γ2))2 − {a2(f(γ1)) + a2(f(γ2))}

+ a2(K13
D′ (f)) +

1
2

lk(f(γ1), f(γ3))2 − {a2(f(γ1)) + a2(f(γ3))}

= −a2(K123
D′ (f)) +

∑
1≤i<j≤3

a2(K
ij
D′ (f)) −

3∑
i=1

a2(f(γi))

= μ123(Lf ).

Hence, we have that n̄123(f) is an ambient isotopy invariant.
Next, we show that n̄123(f) is a delta edge-homotopy invariant. Let f

and g be delta edge-homotopic two spatial 3-handcuff graphs. Then by
Lemma 3.3(2), g is obtained from f by self delta moves on f(γi) (i = 1,2,3)
and ambient isotopies. Hence, we may assume that g is obtained from f by
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Figure 3.8.

a self delta move on f(γ1) as illustrated in Figure 3.9 without loss of gen-
erality. Let K123

D (f) be the D-sum of Lf with respect to f as illustrated
in Figure 3.9 and K123

D (g) the D-sum of Lg with respect to g by using the
same D as illustrated in Figure 3.9. Namely, K123

D (f) and K123
D (g) are iden-

tical except the depicted parts which represents the delta move. Let h be
the spatial 3-handcuff graph and k1 and k2 two oriented knots as illustrated
in Figure 3.9, where f(H3), g(H3) and h(H3) ∪ k1 ∪ k2 are identical except
the depicted parts. Let K123

D (h) be the D-sum of Lh with respect to h by
using the same D as illustrated in Figure 3.9. Then by Lemma 3.2(2) and the
homological invariance of the linking number, we have that

n123(f,D) − n123(g,D)

= − lk(k1,K
123
D (h)) − lk(k2,K

123
D (h)) − lk(k1, k2) +

1
2

+ lk(k1,K
12
D (h)) + lk(k2,K

12
D (h)) + lk(k1, k2) − 1

2

+ lk(k1,K
13
D (h)) + lk(k2,K

13
D (h)) + lk(k1, k2) − 1

2

− lk(k1, h(γ1)) − lk(k2, h(γ2)) − lk(k1, k2) +
1
2

= 0.

Note that Lf and Lg are self Δ-equivalent. Thus, they are also link-
homotopic, namely μ123(Lf ) = μ123(Lg). Thus, we have that n̄123(f) =
n̄123(g). This completes the proof. �
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Figure 3.9.

4. Examples

Example 4.1. Let fm be the spatial handcuff graph for m ∈ N as illustrated
in Figure 4.1. We can see that Lfm is the trivial 2-component link for any
m ∈ N, namely lk(Lfm) = 0. We can also see that fm is slice by the hyperbolic
transformation on fm(γ2) along the band B shown in Figure 4.1.

Now, we consider the D-sum of Lfm with respect to fm as illustrated
in Figure 4.1. Then by a calculation we have that a2(K12

D (fm)) = 2m and
therefore n̄12(fm) = 2m. Thus, by Theorem 2.1, we have that fm is not delta
edge-homotopic to the trivial spatial handcuff graph for any m ∈ N, and fi

and fj are not delta edge-homotopic for i �= j.

Example 4.2. Let fm be the spatial 3-handcuff graph for m ∈ N as illus-
trated in Figure 4.2. We can see that Lfm is the trivial 3-component link for
any m ∈ N, namely μ123(Lfm) = 0. We can also see that fm is slice by the
hyperbolic transformation on fm(γ3) along the band B shown in Figure 4.2.

Now, we consider the D-sum of Lfm with respect to fm as illustrated
in Figure 4.2 and a skein tree as illustrated in Figure 4.3. Then we have
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Figure 4.1.

Figure 4.2.

that

a2(K123
D (fm)) = a2(Jm) = a2(J) − m − 1(4.1)

= a2(Jm−1) + m + 1 − m − 1
= a2(Jm−1) = · · · = a2(J0) = 0.

Then by Lemma 3.1 and (4.1) we have that

v3(K123
D (f)) = v3(Jm) = v3(J) + a2(Jm) +

1
2
(m + 1)2 + 1

=
{

v3(Jm−1) − a2(Jm−1) − 1
2
(m + 1)2

}

+ a2(Jm) +
1
2
(m + 1)2 + 1

= v3(Jm−1) + 1 = · · · = v3(J0) + m

= m.

Since Kij
D (fm) is a trivial knot for any 1 ≤ i < j ≤ 3, we have that n̄123(fm) =

m. Thus, by Theorem 2.2, we have that fm is not delta edge-homotopic to
the trivial spatial handcuff graph for any m ∈ N, and fi and fj are not delta
edge-homotopic for i �= j. Note that the generalized version of n̄12 for n = 3
as mentioned in Remark 3.4(2) vanishes for fm by (4.1).
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Figure 4.3.

Example 4.3. Let fm be the spatial handcuff graph for m ∈ N as illustrated
in Figure 4.4. It is easy to see that fm is a ∂-spatial handcuff graph for any
m ∈ N. Since Lfm is a 2-component boundary link, we have that Lfm is self
Δ-equivalent to the 2-component trivial link for any m ∈ N.

Now, we consider the D-sum of Lfm with respect to fm as illustrated in
Figure 4.4. Then by a calculation, we have that a2(K12

D (fm)) = −2m. Since
fm(γ1) and fm(γ2) are trivial knots, we have that n̄12(fm) = −2m. Thus, by
Theorem 2.1, we have that fm is not delta edge-homotopic to the trivial spatial
handcuff graph for any m ∈ N, and fi and fj are not delta edge-homotopic
for i �= j.

Example 4.4. Let f be the spatial 3-handcuff graph as illustrated in Fig-
ure 4.5. Note that f |γi ∪γj ∪ei ∪ej is the trivial spatial handcuff graph for any
1 ≤ i < j ≤ 3. It is easy to see that f is a ∂-spatial 3-handcuff graph. Since
Lf is a 3-component boundary link, we have that μ123(Lfm) = 0 and Lf is



642 R. NIKKUNI

Figure 4.4.

Figure 4.5.

self Δ-equivalent to the 3-component trivial link. Note that Lf is Brunnian,
namely any 2-component sublink of Lf is trivial.

Now, we consider the D-sum of Lf with respect to f as illustrated in
Figure 4.5. By a calculation, we have that a2(K123

D (f)) = 0. Since f(γi) is
a trivial knot for i = 1,2,3, we have that the generalized version of n̄12 for
n = 3 as mentioned in Remark 3.4(2) vanishes for f . On the other hand, by
a calculation we have that

VK123
D (f)(t) = −t−12 + 6t−11 − 11t−10 + t−9 + 28t−8 − 52t−7

+ 36t−6 + 17t−5 − 61t−4 + 67t−3 − 43t−2 + 11t−1

+ 22 − 57t + 84t2 − 78t3 + 32t4 + 23t5 − 43t6

+ 24t7 − 4t9 − 4t10 + 5t11 + t12 − 3t13 + t14,

V
(3)

K123
D (f)

(1) = 36.
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Since Kij
D (f) is also a trivial knot for any 1 ≤ i < j ≤ 3, we have that n̄123(f) =

−1. Thus, by Theorem 2.2, we have that f is not delta edge-homotopic to
the trivial spatial 3-handcuff graph.
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