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APPROXIMATION PROPERTIES DEFINED BY SPACES OF
OPERATORS AND APPROXIMABILITY IN OPERATOR

TOPOLOGIES

ALEKSEI LISSITSIN, KRISTEL MIKKOR, AND EVE OJA

Abstract. We develop a unified approach to characterize ap-
proximation properties defined by spaces of operators. Our main

result describes them in terms of the approximability of weak*-
weak continuous operators. In particular, we prove that if A
and B are operator ideals satisfying A ◦ B ∗ ⊂ K, then the A(X,X)-
approximation property of a Banach space X is equivalent to the

following “metric” condition: for every Banach space Y and for

every operator T ∈ B ∗(Y,X), there exists a net (Sα) ⊂ A(X,X)

such that supα ‖SαT ‖ ≤ ‖T ‖ and T ∗S∗
α → T ∗ in the strong op-

erator topology on L(X∗, Y ∗). As application, approximation

properties of dual spaces and weak metric approximation prop-
erties are studied.

1. Introduction

Let X and Y be Banach spaces. We denote by L(X,Y ) the Banach space
of all bounded linear operators from X to Y , and by F (X,Y ), K(X,Y ), and
W (X,Y ) its subspaces of finite-rank, compact, and weakly compact operators.
If X = Y , then we simply write L(X) for L(X,X), and similarly for other
spaces of operators.

A Banach space X is said to have the approximation property if for every
compact set K ⊂ X and every ε > 0, there exists a finite rank operator S ∈
F (X) such that ‖Sx − x‖ < ε, for all x ∈ K. If one allows compact operators
S ∈ K(X) in the preceding condition, then X is said to have the compact
approximation property. As it was shown by Willis [W], these properties are
not equivalent.
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The approximation property was deeply studied by Grothendieck in his
famous Memoir [G]. Among others, Grothendieck showed that the approxi-
mation property is closely related to the approximability of weakly compact
operators in the strong operator topology. Namely, he proved (see [G, Chap-
ter I, p. 141]) that if the dual space X∗ of X has the approximation property,
then for every Banach space Y , the closed unit ball BF (Y,X) of F (Y,X) is
dense in BW(Y,X) in the strong operator topology. Grothendieck also claimed
a stronger result (see [G, Chapter I, p. 184]) that the latter condition would
be implied by the approximation property of X . But, his proof only goes
through for the particular case when Y is complemented in Y ∗ ∗ by a norm
one projection. (This proof was thoroughly analysed by Reinov [R1]; for a
discussion of related questions see [R3].)

The Grothendieck’s result was strengthened by Lima, Nygaard, and Oja
[LNO] who proved that X has the approximation property if and only if
BF (Y,X) is dense in BW(Y,X) in the strong operator topology. This may be
considered as a “metric” characterization of the approximation property. Re-
cently, the compact approximation property was described in terms of the
approximability of weakly compact operators in the strong operator topology
by Lima, Lima, and Nygaard [LLN] using similar “metric” conditions.

Let A(X) be a linear subspace of L(X). A Banach space X is said to have
the A(X)-approximation property if for every compact set K ⊂ X and every
ε > 0, there exists an operator S ∈ A(X), such that ‖Sx − x‖ < ε for all x ∈ K.
This general approximation property was studied, for instance, by Reinov [R2]
and Grønbœk and Willis [GW]. Its bounded version has recently been studied
in [LO6] and [O1], and it has been proven useful in the studies on the duality of
the distance to closed operator ideals due to Tylli [T1], [T3]. In particular, the
non-self-duality was established for the essential norm of bounded linear op-
erators on Banach spaces (see [T1]). Occasionally, we shall also use the notion
of the A(X)-approximation property in a more general situation when A(X) is
an arbitrary convex subset of L(X), extending verbatim the above definition.

The purpose of this article is to describe the A(X)-approximation prop-
erty in terms of the approximability of weakly compact operators (or more
generally, of operators from an operator ideal B) with respect to the strong,
weak, and norm operator topologies. The main result is Theorem 1 of the
next Section 2. Section 3 contains various applications of Theorem 1, in par-
ticular, to characterize the A(X∗)-approximation property of the dual space
X∗ of X (see Section 3.3) and the weak metric A(X)-approximation property
(see Section 3.4).

The results of this article, among others, encompass and complete similar
results on the approximation and the compact approximation properties from
[LNO], [LLN], [LO4], [OPe], and [Pe], yielding them a unified approach. In
particular, the “metric” characterizations of the A(X)-approximation prop-
erty via the approximability of weakly compact operators are extended from
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the operator ideals A = F and A = K to any operator ideal A such that
A ◦ W ⊂ K.

Our method of proof, inspired by arguments from the recent paper [OPe]
by Oja and Pelander, is rather self-contained and direct. For comparison,
let us recall that in [LNO], [LLN], and [LO4], a roundabout way was used
relying on characterizations of ideals [GKS] of operators and criteria of the
approximation and the compact approximation properties in terms of ideals
(established in [LO1], [LNO], [LO3], and [LLN]), and also on results of [LO2]
describing the structure of Hahn–Banach extension operators.

Our notation is standard. A Banach space X will be regarded as a subspace
of its bidual X∗ ∗ under the canonical embedding jX : X → X∗ ∗. The identity
operator on X is denoted by IX . The closed unit ball of X is denoted by BX .
The closure of a set A ⊂ X is denoted by A. The linear span of A is denoted
by span A and the closed convex hull by convA.

If B is an operator ideal, in the sense of Pietsch [P], then Bw∗ (X∗, Y )
denotes the subspace of B(X∗, Y ) consisting of those operators which are
weak*-weak continuous. Let us recall that T ∈ L(X∗, Y ) is weak*-weak con-
tinuous if and only if ranT ∗ ⊂ X . Recall also that Lw∗ (X∗, Y ) = Ww∗ (X∗, Y )
(if T ∈ L(X∗, Y ) is weak*-weak continuous, then T (BX∗ ) is weakly compact
because BX∗ is compact in the weak* topology). The algebraic tensor prod-
uct X ⊗ Y is always canonically identified with a linear subspace of F (X∗, Y ).
Let us recall that X ⊗ Y = Fw∗ (X∗, Y ) and X∗ ⊗ Y = F (X,Y ).

If B is an operator ideal, then B(X,Y ) will be equipped with the norm
topology from L(X,Y ), unless stated otherwise. If x∗ ∗ ∈ X∗ ∗ and y∗ ∈ Y ∗,
then the functional y∗ ⊗ x∗ ∗ ∈ (B(X,Y ))∗ is defined by (y∗ ⊗ x∗ ∗)(T ) =
x∗ ∗(T ∗y∗), T ∈ B(X,Y ). Note that ‖y∗ ⊗ x∗ ∗ ‖ = ‖y∗ ‖‖x∗ ∗ ‖. We denote by B ∗

the dual operator ideal. Its components are B ∗(X,Y ) = {T ∈ L(X,Y ) : T ∗ ∈
B(Y ∗,X∗)}. (The notation B ∗ is reserved for another concept in [P] where
the dual operator ideal is denoted by Bdual.) For operator ideals A and B, we
write A ⊂ B if A(X,Y ) ⊂ B(X,Y ) for all Banach spaces X and Y .

We denote by L, W , K, and F the operator ideals of bounded, weakly com-
pact, compact, and finite-rank linear operators, respectively. Occasionally, we
will need the following operator ideals: A C—absolutely continuous operators,
B S —Banach–Saks operators, H—Hilbert operators, J —integral operators,
Lim—limited operators, Pp—absolutely p-summing operators (p-summing in
[DJT]), RN —Radon–Nikodým operators, V —completely continuous opera-
tors (see [P] or [DJT]; for A C, B S , and Lim , see [N], [DSe], and [BD]).

2. Description of the A(X)-approximation property in terms of
pointwise convergence of weak*-weak continuous operators

The following is the main result of this article.
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Theorem 1. Let X be a Banach space and let A(X) be a linear subspace of
L(X) containing F (X). Let B be an operator ideal containing K and satisfying
the condition

{ST ∗ : S ∈ A(X), T ∈ Bw∗ (X∗, Y )} ⊂ K(Y ∗,X)

for all Banach spaces Y . The following assertions are equivalent.
(a) X has the A(X)-approximation property.
(b) For every Banach space Y and for every operator T ∈ Bw∗ (X∗, Y ),

there exists a net (Sα) ⊂ A(X), such that supα ‖TS∗
α‖ ≤ ‖T ‖ and SαT ∗ → T ∗

in the strong operator topology on L(Y ∗,X).
(c) For every separable reflexive Banach space Z and for every operator

T ∈ Kw∗ (X∗,Z), there exists a sequence (Sn) ⊂ A(X), such that SnT ∗ → T ∗

in the strong operator topology on L(Z∗,X).
(d) For every separable reflexive Banach space Z and for every operator

T ∈ Kw∗ (X∗,Z), there exists a sequence (Sn) ⊂ A(X), such that TS∗
n → T in

the weak operator topology on L(X∗,Z).

Since Bw∗ (X∗, Y ) ⊂ W (X∗, Y ), Theorem 1 essentially concerns those op-
erator ideals B which are contained in W . (However, there are cases when
B(X∗, Y ) ⊂ W (X∗, Y ) for any Y without assuming that B ⊂ W . For in-
stance, this is the case when A = V and X∗ contains no copy of �1, because
then V (X∗, Y ) = K(X∗, Y ).) Keeping this in mind, let us observe that the
hypothesis of Theorem 1 could be reformulated as follows.

Proposition 2. Let X be a Banach space and let A(X) be a linear sub-
space of L(X). Let B be an operator ideal. If

{ST : S ∈ A(X), T ∈ B ∗(Y,X)} ⊂ K(Y,X)

for all Banach spaces Y , then

{ST ∗ : S ∈ A(X), T ∈ Bw∗ (X∗, Y )} ⊂ K(Y ∗,X)

for all Banach spaces Y . The converse holds whenever B ⊂ W .

Proof. Let S ∈ A(X) and T ∈ Bw∗ (X∗, Y ). Since ranT ∗ ⊂ X , we may write
T ∗ = jXt, where t : Y ∗ → X is the astriction of T ∗. But then t∗ = jY T ∈

B(X∗, Y ∗ ∗), meaning that t ∈ B ∗(Y ∗,X). Hence, ST ∗ = St ∈ K(Y ∗,X).
For the converse, assume that B ⊂ W . Let S ∈ A(X) and T ∈ B ∗(Y,X),

meaning that T ∗ ∈ B(X∗, Y ∗). Since T ∗ ∈ W (X∗, Y ∗), we have T ∈ W (Y,X),
implying that ranT ∗ ∗ ⊂ X . Hence, T ∗ ∈ Bw∗ (X∗, Y ∗) and by assumption,
ST ∗ ∗ ∈ K(Y ∗ ∗,X). But then ST = ST ∗ ∗ |Y ∈ K(Y,X) as needed. �

For the proof of Theorem 1, we shall need the following simple consequence
of the description (due to [G]) of the linear functionals on L(X) which are
continuous in the locally convex topology of uniform convergence on compact
sets in X (see, e.g., [LT, pp. 31–32]).
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lemma 3. Let X be a Banach space and let A(X) be a convex subset of
L(X). Then X has the A(X)-approximation property if and only if, for all
sequences (xn) ⊂ X and (x∗

n) ⊂ X∗ such that
∑∞

n=1 ‖x∗
n‖‖xn‖ < ∞, one has

inf
S∈A(X)

∣∣∣∣∣
∞∑

n=1

x∗
n(Sxn − xn)

∣∣∣∣∣ = 0.

Proof. Recall the above-mentioned description. Namely, the dual space
(L(X,Y ), τ)∗, where X and Y are Banach spaces and τ is the topology of
uniform convergence on compact sets in X (this is the locally convex topology
generated by the seminorms of the form ‖T ‖K = sup{‖Tx‖ : x ∈ K}, where
K ranges over the compact sets in X), consists of all functionals ϕ of the form

ϕ(T ) =
∞∑

n=1

y∗
n(Txn), T ∈ L(X,Y ),

where (xn) ⊂ X , (y∗
n) ⊂ Y ∗, and

∑∞
n=1 ‖y∗

n‖ ‖xn‖ < ∞.
Note that the A(X)-approximation property of the space X means that

the identity operator IX is in the closure of the convex set A(X) in the space
(L(X), τ). This happens if and only if, for every τ -continuous linear functional
ϕ on L(X), one has

Reϕ(IX) ≤ sup
S∈A(X)

Reϕ(S),

which is implied by
inf

S∈A(X)
|ϕ(IX − S)| = 0.

Since the latter condition clearly follows from the A(X)-approximation prop-
erty of X , applying the description of (L(X), τ)∗ completes the proof of the
lemma. �

The proof of Theorem 1 also relies on Lemma 4 which is an isometric version
of the famous Davis–Figiel–Johnson–Pe�lczyński factorization lemma [DFJP]
due to Lima, Nygaard, and Oja [LNO]. Let us recall the relevant construction.

Let a be the unique solution of the equation
∞∑

n=1

an

(an + 1)2
= 1, a > 1.

Let X be a Banach space and let K be a closed absolutely convex subset of
BX . For each n ∈ N, put Bn = an/2K + a−n/2BX . The gauge of Bn gives an
equivalent norm ‖ · ‖n on X . Set

‖x‖K =

( ∞∑
n=1

‖x‖2
n

)1/2

,

define XK = {x ∈ X : ‖x‖K < ∞}, and let JK : XK → X denote the identity
embedding.
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lemma 4 (See [DFJP] and [LNO]). With notation as above, the following
holds.

(i) XK = (XK , ‖ · ‖K) is a Banach space and ‖JK ‖ ≤ 1.
(ii) K ⊂ BXK

⊂ BX .
(iii) BXK

⊂ Bn for all n ∈ N.
(iv) J ∗

K(X∗) is norm dense in X∗
K .

(v) JK is compact if and only if K is compact; in this case XK is sepa-
rable.

(vi) XK is reflexive if and only if K is weakly compact.

Proof of Theorem 1. (a) ⇒ (b). The standard scheme (see, e.g., [LNO,
Theorem 1.2 and Corollary 1.5] or [OPe, Theorem 3]) would be to show first
the claim for reflexive Banach spaces Y and then deduce from this the general
case. However, this scheme does not work if A(X) is not contained in K(X).
Thus, let Y be an arbitrary Banach space and let T ∈ Bw∗ (X∗, Y ). We clearly
may assume that ‖T ‖ = 1.

Denote K = T ∗(BY ∗ ). Then K is a closed absolutely convex subset of BX .
Since K is also weakly compact, the space XK is reflexive (see Lemma 4).
Define t ∈ L(Y ∗,XK) by ty∗ = T ∗y∗, y∗ ∈ Y ∗. Then T ∗ factorizes through XK

as T ∗ = JKt. Moreover, it is known (see [LNO, Theorem 2.2]) and straight-
forward to verify that ‖t‖ = ‖T ∗ ‖ = 1 and ‖JK ‖ = 1.

Let S ∈ A(X). Then SJK ∈ L(XK ,X). We show that SJK ∈ K(XK ,X).
By assumption, ST ∗ ∈ K(Y ∗,X). We know (see Lemma 4) that

JK(BXK
) ⊂ Bn = an/2T ∗(BY ∗ ) + a−n/2BX

for all n ∈ N. Hence,

(SJK)(BXK
) ⊂ an/2(ST ∗)(BY ∗ ) + a−n/2‖S‖BX

for all n ∈ N. This implies that (SJK)(BXK
) has for all ε > 0, a compact

ε-net, and therefore it is relatively compact in X . Hence, SJK ∈ K(XK ,X)
as needed.

By (a), there is a net (Sβ) ⊂ A(X) such that Sβ → IX uniformly on compact
subsets of X .

Consider the linear subspace

Z := {SJK : S ∈ A(X)} ⊂ K(XK ,X).

We shall construct an operator

Φ : Z ∗ → (span{JK })∗

using the net (Sβ) and relying on the description of (K(Z,X))∗ due to Feder
and Saphar [FS, Theorem 1] which holds whenever Z is a reflexive Banach
space. According to this description, the trace mapping τ from the projective
tensor product X∗ ⊗̂XK to (K(XK ,X))∗, defined by

(τu)(S) = trace(Su), u ∈ X∗ ⊗̂XK , S ∈ K(XK ,X),
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is a quotient mapping and, moreover, for all g ∈ (K(XK ,X))∗, there exists
ug ∈ X∗ ⊗̂XK such that g = τug and ‖g‖ = ‖ug ‖π .

Let g ∈ Z ∗. By passing to a norm-preserving extension, we may assume
that g ∈ (K(XK ,X))∗. Then

ug =
∞∑

n=1

x∗
n ⊗ zn,

where x∗
n ∈ X∗ and zn ∈ XK satisfy

∑∞
n=1 ‖x∗

n‖ = 1 and zn → 0. Define

(Φg)(λJK) = λ(τug)(JK), λ ∈ K.

Similarly to [LNO, proof of Theorem 1.2], we can show that

(Φg)(JK) = lim
β

g(SβJK).

Indeed,

|(τug)(JK) − g(SβJK)| = |(τug)(JK − SβJK)| =

∣∣∣∣∣
∞∑

n=1

x∗
n

(
(IX − Sβ)JKzn

)∣∣∣∣∣
≤ sup

n
‖(IX − Sβ)(JKzn)‖ →n 0

because {0, JKz1, JKz2, . . .} is a compact subset of X . Hence, Φ is correctly
defined, linear, and ‖Φ‖ ≤ 1.

Since Φ∗(JK) ∈ BZ ∗ ∗ , by Goldstine’s theorem, there exists a net (Sα) ⊂
A(X) such that supα ‖SαJK ‖ ≤ 1 and SαJK →α Φ∗(JK) in the weak*-topolo-
gy of Z ∗ ∗. In particular, for all x∗ ∈ X∗ and z ∈ XK , consider the functional
x∗ ⊗ z ∈ (K(XK ,X))∗. Then ‖x∗ ⊗ z‖ = ‖x∗ ‖ ‖z‖. Let g = (x∗ ⊗ z)|Z ∈ Z ∗.
Since X∗ ⊗ X = F (X) ⊂ A(X), we clearly have J ∗

K(X∗) ⊗ X ⊂ Z . But X∗
K =

J ∗
K(X∗) (see Lemma 4). Hence X∗

K ⊗ X ⊂ Z in K(XK ,X). This implies that

‖g‖ =
∥∥(x∗ ⊗ z)| Z

∥∥ ≥
∥∥(x∗ ⊗ z)|X∗

K ⊗X

∥∥ = ‖x∗ ‖‖z‖.

Consequently, x∗ ⊗ z is a norm-preserving extension of g, and we may take
ug = x∗ ⊗ z ∈ X∗ ⊗̂XK . But then

x∗(SαJKz) = g(SαJK)
→α (Φ∗(JK))(g) = (Φg)(JK) = (τug)(JK) = x∗(JKz).

This means that (SαJK) converges to JK in the weak operator topology
on L(XK ,X). Since the weak and strong operator topologies yield the same
dual space [DS, Theorem VI.1.4], we may, by passing to convex combinations,
assume that (SαJK) converges to JK in the strong operator topology on
L(XK ,X). Recalling that T ∗ = JKt, this implies that (SαT ∗) converges to T ∗

in the strong operator topology on L(Y ∗,X). Moreover, since TS∗
α = (SαT ∗)∗,

we also have supα ‖TS∗
α‖ = supα ‖SαJKt‖ ≤ ‖t‖ = 1.

(b) ⇒ (c). Let Z be a separable reflexive Banach space and let T ∈
Kw∗ (X∗,Z). As K ⊂ B, there exists a net (Sα) ⊂ A(X) such that
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supα ‖TS∗
α‖ ≤ ‖T ‖ and SαT ∗ → T ∗ in the strong operator topology on L(Z∗,

X). Since ranT ∗ ⊂ X , we have T ∗ ∈ K(Z∗,X) and ST ∗ ∈ K(Z∗,X) for
every S ∈ A(X). Further, as Z is reflexive, we have (ST ∗)∗ = TS∗ for every
S ∈ A(X). Therefore, supα ‖SαT ∗ ‖ < ∞.

Since Z∗ is separable, the strong operator topology is metrizable on bound-
ed subsets of L(Z∗,X) (see, e.g., [SW, III.4.7]). Consequently, there exists a
sequence (Sn) ⊂ A(X) such that SnT ∗ → T ∗ in the strong operator topology.

(c) ⇒ (d). The convergence SnT ∗ → T ∗ in the strong operator topology
clearly implies the convergence TS∗

n → T in the weak operator topology.
(d) ⇒ (a). We shall apply Lemma 3 to show that X has the A(X)-

approximation property.
Let (xn) ⊂ X and (x∗

n) ⊂ X∗ satisfy
∑∞

n=1 ‖x∗
n‖‖xn‖ < ∞. One needs to

prove that

inf
S∈A(X)

∣∣∣∣∣
∞∑

n=1

x∗
n(Sxn − xn)

∣∣∣∣∣ = 0.

We shall make use of an idea from the proof of [OPe, Theorem 3, (c3) ⇒ (a)].
We may (and shall) assume that xn → 0, supn ‖xn‖ ≤ 1 and

∑∞
n=1 ‖x∗

n‖ <
∞. Denote by K the closed absolutely convex hull of (xn) in X . Since K ⊂ BX

and K is compact, by Lemma 4, the Banach space Z := XK is reflexive and
separable, the identity embedding J := JK : Z → X is compact and ‖J ‖ ≤ 1.
Moreover, since (xn) ⊂ K ⊂ BZ , denoting by zn the element xn considered as
an element of the Banach space Z, we have xn = Jzn for every n ∈ N, and
supn ‖zn‖ ≤ 1.

Since J ∗ ∈ K(X∗,Z∗) and Z is reflexive, we have ranJ ∗ ∗ ⊂ X , so that J ∗ ∈
Kw∗ (X∗,Z∗). Since Z∗ is separable and reflexive, there is a sequence (Sk) ⊂
A(X) such that J ∗S∗

k → J ∗ in the weak operator topology on L(X∗,Z∗). By
the uniform boundedness principle, the sequence (J ∗S∗

k) is bounded in the
norm operator topology. Put M := supk ‖J ∗S∗

k ‖.
Now, let us fix an arbitrary ε > 0. Choose N ∈ N so that∑

n>N

‖x∗
n‖ <

ε

2(M + 1)
.

Let us also fix Sk, so that

|(J ∗S∗
kx∗

n − J ∗x∗
n)(zn)| <

ε

2N
, n = 1, . . . ,N.

Then∣∣∣∣∣
∞∑

n=1

x∗
n(Skxn − xn)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

n=1

x∗
n(SkJzn − Jzn)

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

n=1

(J ∗S∗
kx∗

n − J ∗x∗
n)(zn)

∣∣∣∣∣
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≤
N∑

n=1

|(J ∗S∗
kx∗

n − J ∗x∗
n)(zn)|

+
∑
n>N

(‖J ∗S∗
k ‖ + ‖J ∗ ‖)‖zn‖‖x∗

n‖ <
ε

2
+

ε

2
= ε.

Hence,

inf
S∈A(X)

∣∣∣∣∣
∞∑

n=1

x∗
n(Sxn − xn)

∣∣∣∣∣ = 0,

and X has the A(X)-approximation property. �

Remark 1. Let W be a Banach space. If X is a subspace of W ∗, then
the hypothesis F (X) ⊂ A(X), that is X∗ ⊗ X ⊂ A(X) of Theorem 1 may be
relaxed to W ⊗ X ⊂ A(X), where the operator w ⊗ x with w ∈ W and x ∈ X
is defined by (w ⊗ x)(w∗) = w∗(w)x for all w∗ ∈ X ⊂ W ∗. In fact, let XK , jK ,
and Z be as in the proof of Theorem 1, (a) ⇒ (b). Moreover, let j : X → W ∗

denote the identity embedding, and consider J ∗
Kj∗ : W ∗ ∗ → X∗

K . Since j∗ is
surjective and X∗

K = J ∗
K(X∗) (see Lemma 4), we have

X∗
K = J ∗

K(j∗(W ∗ ∗)).

For any w∗ ∗ ∈ W ∗ ∗, there is a bounded net (wα) ⊂ W such that wα → w∗ ∗

weak* in W ∗ ∗. Hence, J ∗
Kj∗wα → J ∗

Kj∗w∗ ∗ weak* in X∗
K . The convergence

being weak because X∗
K is reflexive we have

J ∗
Kj∗w∗ ∗ ∈ (J ∗

Kj∗)(W )
w

= (J ∗
Kj∗)(W ).

Hence,
X∗

K = (J ∗
Kj∗)(W ).

Since W ⊗ X ⊂ A(X), we clearly have (J ∗
Kj∗)(W ) ⊗ X ⊂ Z , and therefore

X∗
K ⊗ X ⊂ Z as it is needed in the proof of Theorem 1, (a) ⇒ (b).

3. Applications of Theorem 1

3.1. The A(X)-approximation property for X. Let us recall that a
Banach space X has the approximation property if and only if BF (Y,X) is dense
in BW(Y,X) in the strong operator topology for every Banach space Y (see
[LNO, Corollary 1.5]). A version of this result for the A(X)-approximation
property is as follows.

Theorem 5. Let X be a Banach space and let A(X) be a linear subspace
of L(X) containing F (X). Let B be an operator ideal such that K ⊂ B ⊂ W
and

{ST : S ∈ A(X), T ∈ B ∗(Y,X)} ⊂ K(Y,X)
for all Banach spaces Y . The following assertions are equivalent.

(a) X has the A(X)-approximation property.
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(b) For every Banach space Y and for every operator T ∈ B ∗(Y,X), there
exists a net (Sα) ⊂ A(X), such that supα ‖SαT ‖ ≤ ‖T ‖ and T ∗S∗

α → T ∗ in
the strong operator topology on L(X∗, Y ∗).

(c) For every separable reflexive Banach space Z and for every operator
T ∈ K(Z,X), there exists a sequence (Sn) ⊂ A(X), such that SnT → T in the
strong operator topology on L(Z,X).

(d) For every compact subset K of X, there exists a sequence (Sn) ⊂ A(X),
such that Snx → x for all x ∈ K.

Proof. Notice that, by Proposition 2, the hypothesis of Theorem 1 is sat-
isfied.

(a) ⇒ (b). It suffices to show that (b) is implied by condition (b) of The-
orem 1. Let T ∈ B ∗(Y,X). Since T ∈ W (Y,X), we have T ∗ ∈ Ww∗ (X∗, Y ∗).
Therefore T ∗ ∈ Bw∗ (X∗, Y ∗). Hence, there is a net (Sα) ⊂ A(X) such that
supα ‖T ∗S∗

α‖ ≤ ‖T ∗ ‖ and SαT ∗ ∗ → T ∗ ∗ in the strong operator topology on
L(Y ∗ ∗,X). This implies supα ‖SαT ‖ ≤ ‖T ‖ and T ∗S∗

α → T ∗ in the weak op-
erator topology on L(X∗, Y ∗). By passing to convex combinations we can
acquire the needed net.

(b) ⇒ (c). Take T ∈ K(Z,X). Since K = K ∗ ⊂ B ∗, there is a net (Sα) ⊂
A(X) such that supα ‖SαT ‖ ≤ ‖T ‖ and T ∗S∗

α → T ∗ in the strong operator
topology on L(X∗,Z∗). This implies the convergence SαT → T in the weak
operator topology on L(Z,X). By passing to convex combinations, we may
assume that SαT → T in the strong operator topology on L(Z,X). Since Z
is separable, the strong operator topology is metrizable on bounded subsets
of L(Z,X). Hence, there is a needed sequence.

(c) ⇒ (a). It suffices to observe that (c) implies condition (c) of Theorem 1.
Let T ∈ Kw∗ (X∗,Z). Then T ∗ ∈ K(Z∗,X). Hence, there is a sequence (Sn) ⊂
A(X) such that SnT ∗ → T ∗ in the strong operator topology on L(Z∗,X), as
needed.

(a) ⇒ (d). This is obvious from the definition of the A(X)-approximation
property.

(d) ⇒ (c). This is immediate if one takes K = T (BZ). �

Remark 2. Observe that the proofs of the implications (b) ⇒ (c) ⇒
(d) ⇒ (a) of Theorem 1 and of the implications (b) ⇒ (c) ⇒ (a) ⇒ (d) ⇒ (c)
of Theorem 5 remain valid in the more general case when A(X) is an arbitrary
convex subset of L(X).

Remark 3. In the special case when A(X) = F (X), the equivalence (a) ⇔
(d) has been pointed out in [FJPP]. In the same special case when A(X) =
F (X), the net (SαT ) in condition (b) of Theorem 5 can be replaced by a net
(Tα) ⊂ F (Y,X) (see [LO4, Theorem 3.1]). Similarly, the sequence (SnT ) in
condition (c) of Theorem 5 can be replaced by a sequence (Tn) ⊂ F (Z,X)
(see [Pe, Corollary 2]). However, already in the case when A(X) = K(X),
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this is no longer possible. In fact, by [LO4, Corollary 2.4], the condition “for
every Banach space Y and for every operator T ∈ W (Y,X), there exists a net
(Tα) ⊂ K(Y,X) such that supα ‖Tα‖ ≤ ‖T ‖ and T ∗

α → T ∗ in the strong opera-
tor topology” is equivalent to the condition “K(Y,X) is an ideal in W (Y,X) for
all Banach spaces Y ”. But the latter condition may be satisfied even when X
does not have the compact approximation property (see [LNO, p. 340]).

Remark 4. In the special case when A(X) = K(X), equivalence (a) ⇔ (b)
of Theorem 5 has been established in [LLN, Theorem 2.3]. The proof in [LLN]
uses a roundabout way that relies on criteria of the compact approximation
property in terms of ideals (see [LLN, Theorem 2.2]). Concerning this special
case, let us notice that condition (c) of Theorem 5 improves condition (iv)
in [LLN, Theorem 2.3] removing the boundedness condition in the sequential
version of (iv).

Remark 5. In the case when A and B are operator ideals such that A = B ∗,
condition (b) of Theorem 5 represents a weakening of the outer A-approxima-
tion property. This notion was introduced in [T3] and studied in [T1], [T2],
and [T3] (cf. Remark 11 below).

To conclude this subsection, let us discuss some situations when Theorems 1
and 5 can be applied. A general case is when A and B are operator ideals
satisfying

(◦) A ◦ B ∗ ⊂ K.

Condition (◦) holds always if A ⊂ K; in particular, if A = F (the classical
approximation property) or A = K (cf. Remark 4 above).

If we take B = W (recall that W ∗ = W ), then condition (◦) is satisfied
for several important operator ideals A which are not contained in K, for
instance, if A equals A C, J , Lim∗, Pp with 1 ≤ p < ∞, or V . (Indeed, all of
them are contained in V and V ◦ W ⊂ K, which is well known and an easy-
to-see fact.) Notice that A C, Lim∗, and V are even larger than K. Let us
recall that before in the literature (as was discussed in the Introduction), the
only operator ideals A, for which one had been able to characterize the A(X)-
approximation property through a “metric” condition like (b) in Theorems 1
and 5 (with B larger than K), were F and K.

Moreover, there are some other interesting pairs of operator ideals A and B
that satisfy (◦), and Theorems 1 and 5 apply. For instance, take B = J . Then
J ∗ = J and (◦) is satisfied for any A ⊂ RN ∗ ∗ (in fact, if T ∈ RN ∗ ∗ ◦ J ,
then T ∗ is a nuclear operator). Here, important cases are RN ∗ ∗, W , and, of
course, any operator ideal contained in W , like A C, B S , H, J , Pp, etc.

3.2. On Grothendieck’s classics. Let us recall the following result from
Grothendieck’s classics [G, Chapter I, p. 165].
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Theorem 6 (Grothendieck). Let X be a Banach space. Then the following
assertions are equivalent.

(a) X has the approximation property.
(b) For every Banach space Y , one has K(Y,X) = F (Y,X).
(c) For every Banach space Y , one has Kw∗ (X∗, Y ) = Fw∗ (X∗, Y ).

It is more than obvious that in Theorem 6, one cannot replace F by K.
However, a version of Theorem 6 which holds for all A(X)-approximation
properties can easily be obtained using Theorem 1.

Theorem 7. Let X be a Banach space and let A(X) be a convex subset of
L(X). The following assertions are equivalent.

(a) X has the A(X)-approximation property.
(b) For every Banach space Y and for every operator T ∈ K(Y,X), one

has T ∈ {ST : S ∈ A(X)}.
(b′) For every separable reflexive Banach space Z and for every operator

T ∈ K(Z,X), one has T ∈ {ST : S ∈ A(X)}.
(c) For every Banach space Y and for every operator T ∈ Kw∗ (X∗, Y ),

one has T ∈ {TS∗ : S ∈ A(X)}.
(c′) For every separable reflexive Banach space Z and for every operator

T ∈ Kw∗ (X∗,Z), one has T ∈ {TS∗ : S ∈ A(X)}.

Proof. (a) ⇒ (b). Let T ∈ K(Y,X). Then K := T (BY ) is compact. There-
fore, for every ε > 0, there exists S ∈ A(X) such that ‖Sx − x‖ < ε for all
x ∈ K. Hence, ‖ST − T ‖ = supy∈BY

‖STy − Ty‖ ≤ ε. This means that
T ∈ {ST : S ∈ A(X)}.

(b) ⇒ (c). Let T ∈ Kw∗ (X∗, Y ). Then T ∗ ∈ K(Y ∗,X). Therefore, T ∗ ∈
{ST ∗ : S ∈ A(X)}. Since TS∗ − T = (ST ∗ − T ∗)∗ for any S ∈ A(X), this is
equivalent to T ∈ {TS∗ : S ∈ A(X)}.

Note that the above proof is also suitable for the implication (b′) ⇒ (c′),
while the implications (b) ⇒ (b′) and (c) ⇒ (c′) are obvious.

(c′) ⇒ (a). Condition (c′) clearly implies condition (d) of Theorem 1, which
is sufficient by Remark 2. �

Remark 6. In the special case when A(X) = K(X), equivalence (a) ⇔
(b) has been established in [LLN, Theorem 2.1]. The proof in [LLN] relies
on a special case of Lemma 3 and on the Davis–Figiel–Johnson–Pe�lczyński
factorization procedure [DFJP].

The following characterization of the A(X)-approximation property, that
holds for convex subsets A(X) of L(X), easily follows from Theorems 1, 5,
and 7.

Corollary 8. Let X be a Banach space and let A(X) be a convex subset
of L(X) containing 0. The following assertions are equivalent.
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(a) X has the A(X)-approximation property.
(b) For every Banach space Y and for every operator T ∈ K(Y,X), there

exists a sequence (Sn) ⊂ A(X), such that supn ‖SnT ‖ ≤ ‖T ‖ and SnT → T in
the norm operator topology.

(b′) For every separable reflexive Banach space Z and for every operator
T ∈ K(Z,X), there exists a sequence (Sn) ⊂ A(X), such that SnT → T in the
strong operator topology.

(c) For every Banach space Y and for every operator T ∈ Kw∗ (X∗, Y ),
there exists a sequence (Sn) ⊂ A(X), such that supn ‖TS∗

n‖ ≤ ‖T ‖ and TS∗
n →

T in the norm operator topology.
(c′) For every separable reflexive Banach space Z and for every operator

T ∈ Kw∗ (X∗,Z), there exists a sequence (Sn) ⊂ A(X), such that TS∗
n → T in

the weak operator topology.

Proof. It is an easy task to check that conditions (b) and (c) of Theo-
rem 7 imply conditions (b) and (c) of Corollary 8, respectively. Indeed, for
instance, let Tn ∈ A(X) be such that TnT → T in the norm topology (see
(b) of Theorem 7). Then ‖TnT ‖ → ‖T ‖. Let εn > 0, εn → 0, be such that
‖TnT ‖ ≤ ‖T ‖ + εn for all n. Then

Sn :=
‖T ‖

‖T ‖ + εn
Tn ∈ A(X),

‖SnT ‖ ≤ ‖T ‖, and SnT → T in the norm topology. By Remark 2, the rest of
the proof is immediate from Theorems 5 and 1. �

Corollary 8 applies, for instance, when X is a Banach lattice to charac-
terize positive approximation properties. This is the case when A(X) is the
subset of all positive operators contained in some fixed subspace of L(X). If
the positive finite-rank operators are considered, then one speaks about the
positive approximation property. It is not known whether the approximation
property implies the positive approximation property (see [C, Problem 2.18]).

3.3. The A(X∗)-approximation property for X∗. We begin with an
immediate application of Theorem 7 and Corollary 8.

Theorem 9. Let X be a Banach space and let A(X∗) be a convex subset
of L(X∗) containing 0. The following assertions are equivalent.

(a) X∗ has the A(X∗)-approximation property.
(b) For every Banach space Y and for every operator T ∈ K(X,Y ), one

has T ∗ ∈ {ST ∗ : S ∈ A(X∗)}.
(b′) For every separable reflexive Banach space Z and for every operator

T ∈ K(X,Z), one has T ∗ ∈ {ST ∗ : S ∈ A(X∗)}.
(c) For every Banach space Y and for every operator T ∈ K(X,Y ), there

exists a sequence (Sn) ⊂ A(X∗), such that supn ‖SnT ∗ ‖ ≤ ‖T ‖ and SnT ∗ →
T ∗ in the norm operator topology.
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(c′) For every separable reflexive Banach space Z and for every operator
T ∈ K(X,Z), there exists a sequence (Sn) ⊂ A(X∗), such that SnT ∗ → T ∗ in
the strong operator topology on L(Z∗,X∗).

Proof. (a) ⇒ (c). Condition (c) is immediate from condition (b) of Corol-
lary 8 applied to X∗.

(c) ⇒ (b) ⇒ (b′) and (c) ⇒ (c′) ⇒ (b′) are obvious.
(b′) ⇒ (a). It suffices to show that (b′) implies condition (b′) of Theorem 7

applied to X∗. Let T ∈ K(Z,X∗). Then T ∗ |X ∈ K(X,Z∗) and (T ∗ |X)∗ = T .
Hence, T ∈ {ST : S ∈ A(X∗)} as needed. �

Remark 7. In the special case when A(X∗) = K(X∗), in [LLN, Theo-
rem 3.1], (a) has been proven to be equivalent to the condition “for every Ba-
nach space Y and for every operator T ∈ K(X,Y ), one has T ∈
{T ∗ ∗S : S ∈ K(X,X∗ ∗)}” which can be easily seen to be equivalent to (b).
The proof in [LLN] relies on a special case of Lemma 3 and on the Davis–
Figiel–Johnson–Pe�lczyński factorization procedure [DFJP]. Concerning this
special case, let us notice that condition (c′) of Theorem 9 improves condition
(v) in [LLN, Theorem 3.2].

The following is an easy application of our main Theorem 1 (see also Propo-
sition 2 and Remark 1).

Theorem 10. Let X be a Banach space and let A(X∗) be a linear subspace
of L(X∗) containing Fw∗ (X∗) = X ⊗ X∗. Let B be an operator ideal such that
K ⊂ B ⊂ W and

{ST : S ∈ A(X∗), T ∈ B ∗(Y,X∗)} ⊂ K(Y,X∗)

for all Banach spaces Y . The following assertions are equivalent.
(a) X∗ has the A(X∗)-approximation property.
(b) For every Banach space Y and for every operator T ∈ B ∗ ∗(X,Y ), there

exists a net (Sα) ⊂ A(X∗), such that supα ‖SαT ∗ ‖ ≤ ‖T ‖ and SαT ∗ → T ∗ in
the strong operator topology on L(Y ∗,X∗).

Proof. (a) ⇔ (b). By Remark 1 and Proposition 2, it suffices to prove that
(b) is equivalent to condition (b) of Theorem 1 applied to X∗.

For the necessity part, let T ∈ Bw∗ (X∗ ∗, Y ). Observe that (T |X)∗ ∗ = jY T ∈
B(X∗ ∗, Y ∗ ∗), where jY : Y → Y ∗ ∗ is the canonical embedding. Hence, T |X ∈
B ∗ ∗(X,Y ). Also, note that (T |X)∗ = T ∗ ∈ L(Y ∗,X∗). Hence, there is a net
(Sα) ⊂ A(X∗) such that supα ‖SαT ∗ ‖ ≤ ‖T |X ‖ ≤ ‖T ‖ and SαT ∗ → T ∗ in the
strong operator topology on L(Y ∗,X∗), as needed.

For the sufficiency part, let T ∈ B ∗ ∗(X,Y ). Then T ∗ ∗ ∈ B(X∗ ∗, Y ∗ ∗). In
fact, T ∗ ∗ ∈ Bw∗ (X∗ ∗, Y ∗ ∗), because T ∈ W (X,Y ). So, there is a net (Sα) ⊂
A(X∗), such that supα ‖T ∗ ∗S∗

α‖ ≤ ‖T ∗ ∗ ‖ and SαT ∗ ∗ ∗ → T ∗ ∗ ∗ in the strong
operator topology on L(Y ∗ ∗ ∗,X∗). Hence, supα ‖SαT ∗ ‖ ≤ ‖T ‖ and SαT ∗ →
T ∗ in the strong operator topology on L(Y ∗,X∗), as needed. �
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Remark 8. In the special case when A(X∗) = K(X∗), equivalence (a) ⇔
(b) of Theorem 10 has been established in [LLN, Theorem 3.2] using a round-
about way involving ideals and relying on a factorization lemma from [LO3,
Lemma 4.1].

Let X be a Banach space and let A(X) be a convex subset of L(X). We
say that X∗ has the A(X)-approximation property with conjugate operators
if, for every compact set K ⊂ X∗ and every ε > 0, there exists an operator
S ∈ A(X), such that ‖S∗x∗ − x∗ ‖ < ε for all x∗ ∈ K. This approximation
property of X∗ is clearly equivalent to the A(X∗)-approximation property
where A(X∗) = {S∗ : S ∈ A(X)}. Therefore, the following characterizations
are immediate from Theorems 9 and 10, respectively.

Corollary 11. Let X be a Banach space and let A(X) be a convex subset
of L(X) containing 0. The following assertions are equivalent.

(a) X∗ has the A(X)-approximation property with conjugate operators.
(b) For every Banach space Y and for every operator T ∈ K(X,Y ), one

has T ∈ {TS : S ∈ A(X)}.
(b′) For every separable reflexive Banach space Z and for every operator

T ∈ K(X,Z), one has T ∈ {TS : S ∈ A(X)}.
(c) For every Banach space Y and for every operator T ∈ K(X,Y ), there

exists a sequence (Sn) ⊂ A(X), such that supn ‖TSn‖ ≤ ‖T ‖ and TSn → T in
the norm operator topology.

(c′) For every separable reflexive Banach space Z and for every operator
T ∈ K(X,Z), there exists a sequence (Sn) ⊂ A(X), such that S∗

nT ∗ → T ∗ in
the strong operator topology on L(Z∗,X∗).

Proof. Note that all conditions from (b) till (c′) are exactly conditions from
(b) till (c′) of Theorem 9 with A(X∗) = {S∗ : S ∈ A(X)}. Indeed, for instance,
the condition T ∗ ∈ {ST ∗ : S ∈ A(X∗)} = {S∗T ∗ : S ∈ A(X)} is equivalent to
T ∈ {TS : S ∈ A(X)}. �

Remark 9. In the special case when A(X) = K(X), equivalence (a) ⇔
(b) has been established in [LLN, Theorem 3.3] relying on a special case of
Lemma 3 and on the Davis–Figiel–Johnson–Pe�lczyński factorization proce-
dure [DFJP]. Again, concerning this special case, let us notice that condition
(c′) of Corollary 11 improves condition (v) in [LLN, Theorem 3.4].

Corollary 12. Let X be a Banach space and let A(X) be a linear subspace
of L(X) containing F (X). Let B be an operator ideal such that K ⊂ B ⊂ W
and

{TS : S ∈ A(X), T ∈ B(X,Y )} ⊂ K(X,Y )

for all Banach spaces Y . The following assertions are equivalent.
(a) X∗ has the A(X)-approximation property with conjugate operators.
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(b) For every Banach space Y and for every operator T ∈ B ∗ ∗(X,Y ), there
exists a net (Sα) ⊂ A(X), such that supα ‖TSα‖ ≤ ‖T ‖ and S∗

αT ∗ → T ∗ in the
strong operator topology on L(Y ∗,X∗).

Proof. It suffices to show that the hypotheses of Corollary 12 imply the
hypotheses of Theorem 10 with A(X∗) = {S∗ : S ∈ A(X)}. First, notice
that X ⊗ X∗ = {S∗ : S ∈ F (X)} ⊂ A(X∗). Secondly, let S ∈ A(X) and let
T ∈ B ∗(Y,X∗). Then T ∗ ∈ B(X∗ ∗, Y ∗) and we have T ∗ |X = T ∗jX ∈ B(X,Y ∗).
Hence, T ∗ |XS ∈ K(X,Y ∗). Note that (T ∗ |X)∗ |Y = T . Therefore, S∗T =
(T ∗ |XS)∗ |Y ∈ K(Y,X∗), as needed. �

Remark 10. In the special case when A(X) = K(X), equivalence (a) ⇔
(b) has been established in [LLN, Theorem 3.4] by the method described in
Remark 8.

Remark 11. In the case when A and B are operator ideals such that
A = B ∗ ∗, condition (b) of Corollary 12 represents a weakening of the inner
A-approximation property. This notion was introduced in [T3] and studied in
[T1], [T2], and [T3] (cf. Remark 5 above).

Theorem 10 can be applied in the situations discussed at the end of Sec-
tion 3.1. A general case when Corollary 12 can be applied is if A and B are
operator ideals satisfying

B ◦ A ⊂ K.

Before in the literature (see the Introduction for references), the only
operator ideals A, for which one had been able to characterize the A(X)-
approximation property with conjugate operators through a “metric” condi-
tion like (b) in Corollary 12 (with K ⊂ B ⊂ W ), were F and K. Here, already
the inclusion

J ◦ RN ∗ ⊂ K
(see, e.g., [P, 24.6.1]) enables us to take A to be any operator ideal contained
in RN ∗, for instance, RN ∗, W , A C, B S , H, J , Pp, etc. (recall that J ∗ ∗ = J ).
Other important cases are given by W ◦ J ⊂ K (recall that W ∗ ∗ = W ) and
V ◦ W ⊂ K.

3.4. The weak metric A(X)-approximation property. Recently, the
weak metric approximation property was introduced and studied by Lima
and Oja [LO5]. Several similar results for its compact version have already
been obtained by Lima and Lima [LL]. In the context of the present paper, it
is natural to extend this notion as follows.

Let X be a Banach space and let A(X) be a linear subspace of L(X). We
say that X has the weak metric A(X)-approximation property if for every
separable reflexive Banach space Z and for every operator T ∈ K(X,Z) there
exists a net (Sα) ⊂ A(X), such that supα ‖TSα‖ ≤ ‖T ‖ and Sα → IX uni-
formly on compact subsets of X . In the special case when A(X) = F (X),
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we have the weak metric approximation property (see [LO5, Theorem 2.4]),
and when A(X) = K(X), we have the weak metric compact approximation
property studied in [LL].

The weak metric A(X)-approximation property clearly implies the A(X)-
approximation property (take T = 0 in the definition). The converse is not
true in general (see [LO5] or [O2] for examples in the case when A(X) = F (X);
it can be easily seen that in all these examples X , which has the approximation
property and does not have the weak metric approximation property, actually
does not have the weak metric compact approximation property).

Corollary 11 enables us to extend [LO5, Theorem 4.2, (a)⇔(c)] from the
case when A(X) = F (X) to the general case.

Theorem 13. Let X be a Banach space and let A(X) be a linear subspace
of L(X). The following assertions are equivalent.

(a) X∗ has the A(X)-approximation property with conjugate operators.
(b) X has the weak metric A(X)-approximation property in every equiva-

lent norm.

Proof. (a) ⇒ (b). Since the A(X)-approximation property with conju-
gate operators is preserved under changes to equivalent norms, it suffices to
prove that X has the weak metric A(X)-approximation property. By Corol-
lary 11, for every separable reflexive Banach space Z and for every operator
T ∈ K(X,Z), there exists a sequence (Sn) ⊂ A(X) such that supn ‖TSn‖ ≤

‖T ‖ and TSn → T in the norm operator topology. Repeating verbatim the
proof of (c)⇒(d′)⇒(a′) in [LO5, Theorem 2.4] yields the desired property
for X .

(b) ⇒ (a). Here, one verifies the condition of Lemma 3. This can be done
repeating verbatim the proof of (a) ⇒ (c) in [LO5, Theorem 4.2]. �

Remark 12. In the special case when A(X) = K(X), Theorem 13 has been
proven in [LL, Theorem 4.9]. The proof in [LL] uses [LLN, Theorem 3.4])
(see Remark 10 above) and a characterization of the weak metric compact
approximation property that involves Hahn–Banach extension operators (see
[LL, Theorem 4.3]).

In [O2, Theorem 2 and Corollary 1], it is proven that the weak metric
and the metric approximation properties are equivalent for a Banach space X
whenever X∗ or X∗ ∗ has the Radon–Nikodým property. By the same proof,
the following extension holds.

Theorem 14. Let X be a Banach space and let A(X) be a linear subspace
of K(X). If X∗ or X∗ ∗ has the Radon–Nikodým property, then the weak
metric and the metric A(X)-approximation properties are equivalent for X.

We do not know whether Theorem 14 holds for A(X) = W (X), for instance.
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Corollary 15 below is well known when A(X) = F (X) or A(X) = K(X).
The case of A(X) = F (X) goes back to Grothendieck’s classics [G]. There
have been many different proofs of it (see [LO6, Remark 3.4] for comments and
references). The most recent one from [O2] can be repeated nearly verbatim
to obtain the following conclusion.

Corollary 15. Let X be a Banach space and let A(X) be a linear sub-
space of K(X). If X∗ or X∗ ∗ has the Radon–Nikodým property, then the

A(X)-approximation property with conjugate operators and the metric A(X)-
approximation property with conjugate operators are equivalent for X∗.

Proof. Assume that X∗ has the A(X)-approximation property with conju-
gate operators. By Theorem 13, X has the weak metric A(X)-approximation
property in every equivalent norm. Since the Radon–Nikodým property is
preserved under changes to equivalent norms, by Theorem 14, X has the
metric A(X)-approximation property in every equivalent norm. Using the
characterization of bounded A(X∗)-approximation properties of Reinov [R2,
Lemma 1.2] and repeating verbatim the proof of Johnson’s theorem on lift-
ing of the metric approximation property from Banach spaces to their dual
spaces [J, Theorem 4], one obtains the metric A(X)-approximation property
with conjugate operators for X∗. �

Concerning the hypothesis of Theorem 14 and Corollary 15 that A(X) is
a linear subspace of K(X), let us notice that besides the obvious examples
like F (X), nuclear operators, and K(X), one can take A(X) = K(X) ∩ B(X),
where B is an operator ideal which is not comparable with K (e.g., Pp,1 ≤
p < ∞).
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