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SPECTRAL PROPERTIES OF THE LAYER POTENTIALS ON
LIPSCHITZ DOMAINS

TONGKEUN CHANG AND KIJUNG LEE

ABSTRACT. We study the invertibility of the operator I — K*
in H-*(0Q), 0<a<1for B€ C\ (-1, 3] where K* is a adjoint
operator of the double layer potential K related to the Laplace
equation and € is a bounded Lipschitz domain in R". Conse-

quently, the spectrum on the real line lies in (f%, %]

1. Introduction

In this paper, we study the resolvent sets of K*, the adjoint operator of
the double layer potential K related to the Laplace equation on a bounded
Lipschitz domain Q C R™, n > 2.

If the boundary of €2 is smooth, then K* is a compact operator and 81 — K*
is one-to-one in L?(9N) for all € C\ (=3, 3] (see [4], [5]). Hence, by Fred-
holm Alternative, 31 — K* is invertible for all 3 € C\ (-3, 3]. On the contrary,
if the boundary of Q is not smooth, the operator K* may not be compact,
and hence we can not apply Fredholm theory. But, when 5 € R\ (—%, %],
authors in [4] showed that I — K* is invertible on L2 (09) (see [4]).

Careful consideration on geometric property of domain allows us to obtain
certain spectral property of layer potential operator for some limited cases.
For example, when 2 is a convex bounded Lipschitz domain, authors in [6]
showed that the spectral radius of K* over L?(99) is % and the spectral radius
of K* over LE(09) is strictly less than 3 (see [6]).

Several authors were interested in the resolvent sets of double layer poten-
tials related to other equations ([1], [2], [3], [7], [8])-
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In this paper, we will improve the result in [6] for more general domain than
convex Lipschitz domains. For example, we will consider a certain domain
which may not be a convex domain. Also, we will show that resolvent sets of
K* over H=*(09Q),0< a <1 are contained in{zeC:|z|> 2} In particular,
the resolvent set of K* over H~2(9%) is contained in C\ (— 1,3

In Section 2, we state main results and in Sections 3 and 4 we present the
proofs of the main theorems.

2. Statement of main results

For a given domain €2, the letters P, denote points on the boundary of
the domain. Also, we denote points in R™ by X.
We introduce the fundamental solution of the Laplace equation

1 1
I'(X)= if o>
(X) wn(n—2) [ X|"—2 itn=3,

1
F(X):%log|X| ifn=2,

where w,, is the measure of the unit sphere in R".
For 0 < a < 1, we introduce the Besov space

F(@Q)
He ( ) {f€L2 89 ‘//{;QX@Q |P Q‘n 12 deQ<OO}

with the norm

(@ :
||f||Ha(3Q _Hf”L2 OQ)‘F(//é)QXSQMWMdeQ .
We denote H?(99) := L?(02), H'(082) := L2(0€2). H*(0R),0 < a < 1 are real

interpolation spaces, i.e.,
(L3(09), L3 (09)) 0.2 = H*(0Q).

Let us denote the dual space of H*(9) by H~*(09).
We define the single layer potential of f € L?(9)) by

@1 wX) =S/ = [ T(X-QfQdQ. XeR\o0
Then we have
Au=0 inR"\0Q
and for P € 012, we have
SIP) = lm 8150 = [ T(P-Q(@ade.
Let

1 (P —Q,n(P))

K f(P)=pu - | S ait f(@)dQ.
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where n(P) is the outer normal vector at P € 9§2. Then

ou 1
—=—--I+tK"
On+ 2 ’
where 6‘21—71 is outer normal derivative from 2 and 6‘21—“_ is outer normal deriv-
ative from R™ \ Q.
Also, we define the double layer potential K. Let f € L?(99). Then the

double layer potential is defined by

_ 1 <Q_X7H(Q)> n
ICf(X)—E/MZWJ"(Q)CZQ7 X eR"™\ 00

It is known that for P € 09

lim  KCf(X)= (%I + K)f(P),

X—PXery

where K f(P) faQ Q|PP5(\TC?) f(Q)dQ.

K: L2(6Q) — L2(8Q) HY(09) — H'(09) are bounded operators (see
[9]). By interpolation theorem, it follows that K : H*(9Q) — H*(99), 0 <
a < 1 is a bounded operator, and hence the dual operator K* of K is also a
bounded operator from H~*(9Q) to H—*(0).

Next, we define single layer potential in H~2(9Q). Given f € H2(8%),
we define single layer potential as

u(X)=Sf(X)=(f,T(X ), XeR"\Q,
and

Sf(P)= lim Sf(X).

Then we have u € H'(Q),Vu € LQ(R” \ Q) and S : H™2(8Q) — H=(9Q) is

bounded operator. Define aéz:f“ T 2(8Q) as

<@,v>=/vu-vv+, <_8“ u> / Vu- VY-,
on Q on~— R"\Q

where v € H2(8Q) and V* € H(Q),V~ € HY(R" \ Q) with V*t|po =v =
V= loa and ||V|[mr () < cllvllgizgay: IV IIm @) < cllvllgiz o). Then
H on+t

<c [ v
H-1/2(8Q) Q
Han

— < c/ |Vul?.
H=1/2(6Q) R"™\Q

Moreover, (;2%,1) =0 and

Ou 1 . ou 1 N
(2.3) 8n—+_<_§I+K>‘f’ 6n—_——<§I+K>f.

(2.2)
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Hence, —£1+ K* is a bounded operator from H~ 2(8Q) to Ho_% (09):={f¢€
H-500) - (£,1)=0}.

The following proposition is available (see [9]).

PROPOSITION 2.1. Let Q2 is bounded Lipschitz domain in R™ n > 2. Then

(1) 31+ K is invertible in L*(0%),

(2) 31+ K is invertible in H'(0%),

(3) S is invertible from L2(0SY) to H'(OS) for n >3,

(4) S is invertible from H=*(0S) to L?(0Q) for n >3,

(5) when n=2, for any fo # 0 satisfying (—31 + K*)fo =0, if Sfo #0,
then S is invertible from L*(0S2) to HY(09) and if Sfo =0, then the range of
S is HJ (o) ={f € H'(9Q)| [ f=0}.

REMARK 2.2. By Proposition 2.1 and the interpolation theorem, the op-

erator 11+ K is invertible from H(0%) to H*(9€) and S is invertible from
(89) to H1=%(0Q) for 0 < a<1,n>3.
DEFINITION 2.3. We call Q C R™ a locally convex bounded Lipschitz do-
main if there are rqg >0 and P; € 02,1 <i < N, such that 092 C Uf\il B, (P)
and for each 4 there is a Lipschitz function 1; on R®~! which is either convex

or concave satisfying
QN By (B) ={(z,zn) € R" : zp, > i(x)} N By (P)).

For example, when n > 2 the domain (—2,2)" \ B1(0) is a locally convex
bounded Lipschitz domain. When n = 2, the domains with boundary consist-
ing of finite number of edges are also locally convex ones.

Now, we state our main results.

THEOREM 2.4. Let Q) be a locally convex bounded Lipschitz domain in R™.
Then for all complex numbers [ satisfying |5]| > %, GBI — K* is invertible in
“00),0<a<1.

THEOREM 2.5. Let Q be a bounded Lipschitz domain in R™. Then for any
BeC\ (- 2, 2] BI — K* is invertible in H™ (8(2)

3. Proof of Theorem 2.4

For a given 3 € C, we denote the operator 31 — K™ by Tj3. We prepare the
following lemmas for the proof of Theorem 2.4.

LEMMA 3.1. Let Q be a bounded Lipschitz domain, then Tg is one-to-one
in H=2(8Q) for 5e C\ (— 1,31
Proof. Suppose that T is not one-to-one for some §€ C\ (— 27 5] Then
there is f € H™ (8(2), such that T3 f =0 and f is not identically zero. Since
_1
Taf=(B-3)f+(31—K*)f and (31— K*)f € H, *(05), we have (f,1) =0.
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Set w=Sf. Then u satisfies |u(X)|=O(|X|'™") and |Vu(X)| = O(|X|™)
at infinity for n > 2. Since f is not identically zero, the following numbers A
and B cannot be zero:

A:/\vuPdX and B:/ |Vul|? dX.
Q R™\Q

By Green’s formula, we have

Since Tz f =0, we have that 8= %%. Note that [ is real and |3] < % since
A,B>0.

Now, we have a contradiction for § € C\ [75, %} If 6= 77, we have
B =0. By the decay of u at infinity, we have v =0 in R™ \ £2. Since u
is continuous up to the boundary of Q, v =0 in R™ by maximum principle.
Hence, 0= 9% 4 2v — _ f by (2. 3) We also have a contradiction for 5= —1.

Therefore, T is one-to-one in H~ (6(2) for Be C\ (-3, 1]. O

LEMMA 3.2. Let n>2 and D ={X = (z,x,) € R"|z, > ¢(x)} be a convex
Lipschitz graph domain. Then the spectral radius p(K*) of K* over L*(0D)
is strictly less than %

Proof. Let f € L?(OD) be a Lipschitz function, compact support, and
u(X)=8f(X) for X e R"\ 0D. By Rellich-identity, we have

ou
€n,N Vu2=2/ en, VU)—,
| emivup =2 [ (e, w05

where e, = (0,...,—1). Since (ep,n) > ¢ >0 on 9D and Vu = g—zn +
Zl nt 8“ -T; where T; are unit tangential vectors on 9D, we have

1=1
C / / E <Cg/
oD oD =1 oD

with the positive constants ¢y, co depending only on the Lipschitz constant of
the domain. Hence, we get

(3.1) Cl/@

ou|?

on

on

i=n—1

<L [

i=1

SCQ/
aD

For the domain R" \ D, we have similar inequalities:

(3.2) 01/6 ‘ a“ LD‘;f+K*f

ou |?

1 2
— S+ ES

i=n—1

< > 15

2
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Combining (3.1) and (3.2), we obtain

flzvam < | - 37~ K°F

Jprw

L2(dD) L2(8D)

<ol +5f K

L2(0D)

which holds not only for Lipschitz functions with compact support, but also
for functions in L?(0D) by approximation.
For real 8 satisfying |3| > 3, we already have (see [6])

Ifllz2op) < csllBf — K* fllL2(ap)-

In other words, T3 is one to one and has closed range for any real |G| > %
Let’s assume that the spectral radius p(K*) of K* is Gy > % Then we have

(3.3) I fll 220Dy < ¢80 1T, £l L2(0D)

for all f € L?(0D). Since K* is a positive preserving operator in L?(dD) by
the convexity of the domain, 8y belongs to the spectrum of Tj3,. This implies
that T, cannot be onto. Meanwhile, Tp is invertible for |3 > By. Hence,
we can take a sequence {f;} such that 3; — [y and T}, are invertible. Let
g € L?(0D). Then there is f; € L?>(0D) such that Tp, fi = g for all 4. If {f;}
is bounded in L?(9D), then we are complete since there are a subsequence
(we say {f;}) and f € L?(0D) such that f; weakly converges to f and we can
observe

/(Tﬁof_g)h‘ = ‘/(Tﬁof_Tﬂofi+Tﬁofi_T,@ifi)h

< ‘/(f - fi)TEUh‘ + 180 = Billl fill 2oy 1] L2 (o D)
for any h € L?(0D). Now, suppose that {f;} is unbounded in L?(9D). Setting
F;= m, we have Tjg, F; — 0 in L?(9D) and ||F;| 12(9p) = 1. By weak

compactness of Hilbert spaces, there is a subsequence (we again say {F;})
such that F; weakly converges to F for some F € L?(9D). Then by (3.3) we
get

1=|Fill2om) < ¢, 1T, Fill 200y < €8, (160 — Bil + | T3, Fill 2(o)) — 0
and we have a contradiction. Hence, 8y = p(K*) < 3. O
We can derive the following lemma from Lemma 2.3 in [6].

LEMMA 3.3 (Localization lemma). Let Q be a bounded Lipschitz domain
m R",n >2. Fix a complex number B and assume that there are a fi-
nite number of points P; € 00,1 <i < N, and a positive number ro > 0 with
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o0 C Uzjv B, (P;) and positive constants C;,1 <i < N, such that for each
boundary ball A; , := 002N B-(F;),0 <r <rg, we have

1fllz2a,) S CIBT = K*)(fxan )Lz a;,)

for all f € L?(A; ) where xg denotes the characteristic function of the set E.
If B is not an eigenvalue of K* on L?(0R)), then BI — K* has closed range on
L2(09).

Fix |3] > 5. We prove Theorem 2.4 with o =0 first.

We take rg, P;,1; from Definition 2.3, and for each ¢, we define ; :=
{(z,zn) € R"|x,, > ¢i(x)}. Let K be the double layer potential on 05;.
Since €; is a convex domain or R™ \ §); is a convex domain, the spectral ra-
dius p(K;) = p(—K;) over L*(0Y;) is strictly less than 1 by Lemma 3.2. Then
the spectral radius p(K;,) of K7, :=xa,,K*xa,, over L*(A;,) is strictly
less than % since

1
T [(F7, )FYE < T (S <

(see [6]). Hence, BI — K7, is invertible in L*(A,;,) and we have
£z, < NBT = K ) THINBT = Ki ) fllezcas,)

with an observation

—1
wwzmk”
1 1 /1\F
- ::Ci
wwzw” M+ 2 mk()

k=N+1
for some N. Note that C; only depends on K. Since 3 is not an eigenvalue
by Lemma 3.1, we can use Lemma 3.3 and I — K* as closed range.

Now, we will show that 81 — K* is onto for |3] > % Suppose that g1 — K*
is not onto for some |3| > % Since the resolvent set is open in C, we assume
that g is in boundary of the resolvent set. Hence, we can take a sequence
{6:},18:] > % such that 3; — 3 and ;1 — K* is invertible in L2(02). By
closed graph theorem, there is a positive constant C' such that

(3.4) 1l 2a0) < CI(BI — K*) fllL2(00)

for all f € L?(02). The rest follows as in the proof of Lemma 3.2 and the
invertibility follows.
Next, we consider the case 0 < o < 1. It is known that

(3.5) KS=SK*
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in H'(0R) (see [9]). When n >3, S: L?(992) — H(9Q) is invertible, and
hence we can have —K = —SK*S~!. Adding $I on both sides, we have

(3.6) Bl — K =831 — K*)S™*

in H1(0€2). Since BI — K* is invertible in L?(952), BI — K is invertible in
H'(99), and hence, by duality, 8] — K* is invertible in H~1(9Q) for |8] > 3.
Using the real interpolation theorem, we have that I — K* is invertible in
H=(09),0<a <1 for |B]> 1.

Now, let n = 2. By the above argument and duality, it suffices to show that
BI — K is invertible in H*(9€2). Since I — K is invertible in L?(92), B3I — K is
one-to-one in H'(9€). So, we only need to show that 31 — K is onto. We use
Proposition 2.1. If Sfy # 0, then S: L?(09Q) — H(9Q) is invertible. Then
BI — K is invertible in H(9Q) as in the case of n > 3. Let’s assume Sfy =0
and choose f € H}(9€). Then again by Proposition 2.1, there is a function ¢ €
L?(09) such that S¢ = f. Then we can get (31 — K)S(BI —K*)~'¢ = f, using
(3.5) and invertibility of ST — K* in L?(95)). Hence, Hg(99) is a subspace of
the range of 5 — K. On the other hand, we observe (I — K)1 = (5 — %)1
which implies that constants are also contained in the range of I — K. By
considering decomposition of functions in H'(9€), we conclude that 31 — K
is onto in H'(9Q). Theorem 2.4 is proved.

REMARK 3.4. The proof of Theorem 2.4 says more than the statement of
the theorem. In fact, the resolvent set p(K*) of K* over H~*(91) is contained
in C\ (B%_S(O) U[—3,3)) for some € > 0.

4. Proof of Theorem 2.5
We will use the following simple lemma.

LEMMA 4.1. Let Hy,Hy be Hilbert spaces and Hy = Hyy © Hio where
dim H15 = N is finite. LetT : Hy — Hy be a bounded operator and one-to-one.
If T(H11) is a closed subspace of Ha, then T' has closed range.

Proof. Assume that Tg, converges to f € Hy for some {gx} C Hy. If {gx}
is bounded sequence in Hjp, then it is trivial. Suppose that {gx} is un-
bounded in Hy. We let Gy = ”!]kg—‘lchl. Then TGy converges to zero in Hy
and ||Gk|l#, =1. Let {e;}1<i<n be an orthonormal basis of Hiz. We decom-
pose G to G, = Gy Jrzil\il ar;e; where G € Hqp and ag; € C. Since {Gy}
is bounded, by weakly compactness of Hilbert space there is subsequence (we
say {Gy}) such that G weakly converges to zero since T is one-to-one. Since
Hy, and Hys are orthonormal, Gy, Gy also weakly converge to zero. Hence,
{aki} converge to zero for 1 <i < N. Hence, ||Gr1|lg, — 1 and TGy con-
verges to zero. By the injectivity of 7" and closedness of T'(H11), we have G
converges to zero. It contradicts for |G| g, converges to 1. Hence, T has
closed range. O



SPECTRAL PROPERTIES 471

Take f € C\ (—3,3). By Lemma 3.1 and (3.6), T is one-to-one in

H~%(99). We will show that Tj has closed range in H~2(dQ). By the help
_1

of Lemma 4.1 it is enough to show that Tz(H,, *(09)) is closed in H~2(89).

Assume Tgy, converges to f € H~2(89) for some sequence {gi} C HO_% (09).

If {gr} is bounded, then we are done as in Lemma 3.2. Suppose that {gi} is

unbounded in H~2 (9€2). We let G, = W. Then ||Ggllg-1/2(50) =1
3 :

H—1/200

for all k and TG} converges to zero in H*%(8Q). Set up = SGy. Since

{Gr} C HO_%(E)Q), ur, € HY(Q) and Vuy, € L2(R™\ Q) (in particular, when
n=2). Let

Akz/ |Vup|?dX and Bk:/ |Vug|? dX.
Q R™\Q
By Green’s formula, we have

1
A= <T5Gk,SGk> + < (5 Jrﬂ) Gk,SGk>,

By, = (TG, SGk) — <<% — B)Gk,SGk>.

Hence, we have 3 = %W for all k with e, = (TG, SGk). Suppose
that Ay + By goes to zero as k — oo. Then by (2.2), we have

0 0

el < cAg, ‘ Lﬁ <cBj

On H-1/2(3Q) On H-1/2(3Q)
and gﬁi + g;fﬁ = —G}y goes to zero in H™2(dQ). But, it contradicts

|Grllg—1/2(90) = 1. Hence, Ay + By, has a lower bound which is bigger than
zero. Since, e go to zero, 8 has to be real and |§] < % We have a contradic-
tion. Hence, T has closed range in H~2(09).

The surjectivity of T in H -3 (09) follows as in the proof of Theorem 2.4
and we finish the proof.
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