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WEIGHTED HLS INEQUALITIES FOR RADIAL FUNCTIONS
AND STRICHARTZ ESTIMATES FOR WAVE AND
SCHRODINGER EQUATIONS

KUNIO HIDANO AND YUKI KUROKAWA

ABSTRACT. This paper is concerned with derivation of the global
or local in time Strichartz estimates for radially symmetric so-
lutions of the free wave equation from some Morawetz-type es-
timates via weighted Hardy-Littlewood—Sobolev (HLS) inequal-
ities. In the same way, we also derive the weighted end-point
Strichartz estimates with gain of derivatives for radially symmet-
ric solutions of the free Schrodinger equation.

The proof of the weighted HLS inequality for radially symmet-
ric functions involves an application of the weighted inequality
due to Stein and Weiss and the Hardy-Littlewood maximal in-
equality in the weighted Lebesgue space due to Muckenhoupt.
Under radial symmetry, we get significant gains over the usual
HLS inequality and Strichartz estimate.

1. Introduction

In this paper, we discuss the roles of the weighted Hardy—Littlewood—
Sobolev (HLS, for short) inequalities for radially symmetric functions in the
derivation of the Strichartz estimates for the free wave equation and the free
Schrédinger equation.

In the first half of this paper, we prove the weighted HLS inequality for
radially symmetric functions on R™ (n > 2) (see (2.2) below). The proof pro-
ceeds by writing out the Riesz potentials in polar coordinates, integrating out
the angular coordinates, and reducing the argument to the one-dimensional
setting. We then make use of the weighted inequality due to Stein and
Weiss [33] and the Hardy-Littlewood maximal inequality in the weighted
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Lebesgue space due to Muckenhoupt [26]. Naturally, the weighted HLS in-
equality thereby obtained has some similarity with the one-dimensional part
of the weighted inequalities due to Stein and Weiss, except that the norm on
the right-hand side of (2.2) involves such a homogeneous weight function as
|x|’(”*1)((1/”)*(1/‘1)). At the cost of the presence of such a singular weight
function on the right-hand side, the weighted radial HLS inequality (2.2)
holds even for the Riesz potential whose kernel has a rather singular form
|| " with u=a+ B+ (1/p) — (1/q). (Compare it with the kernel |z|~"+#,
ip=a+ 8+ (n/p) — (n/q), of the Riesz potential in the usual weighted HLS
inequality (2.15) below.)

In the second half of this paper, we discuss how the weighted radial HLS
inequality is used to prove the global (in space and time) or local (in time)
Strichartz estimate for radially symmetric solutions. It is well known that
the range of admissible exponents in the global Strichartz estimate for the
free wave equation can be significantly improved in the radial setting. (See
Theorem 6.6.2 of Sogge [31], Proposition 4 of Klainerman and Machedon
[19], Theorem 1.3 of Sterbenz [34], and Theorem 4 of Fang and Wang [5].)
Adapting an argument of Vilela [39], we explain how to derive the global radial
Strichartz estimate in space dimension n > 3 from the generalized Morawetz
estimate (see (3.7) below) via the weighted radial HLS inequality. Our analysis
therefore yields another proof of Theorem 1.3 of Sterbenz [34]. As for the local-
in-time radial Strichartz estimate of the free wave equation, we extend the
space—time L? estimate due to Sogge in space dimension n = 3 into the space—
time mixed-norm estimate in space dimension n > 2 (see (5.3) below). For
that purpose, we exploit the local-in-time space-time L2-estimate (5.7) below
by combining it with the weighted radial HLS inequality. Such a method does
not end with applications to the free wave equation. Combined with the global
(in space and time) estimate of the local smoothing property (6.4) below, the
weighted radial HLS inequality is useful in proving the weighted end-point
Strichartz estimate for radially symmetric solutions to the free Schodinger
equation (see (6.3) below). In the radial setting, we observe a significant gain
of regularity over the end-point estimate due to Keel and Tao [18].

The authors have received a couple of very instructive suggestions from the
referee. One is concerned with the flexibility in our approach. The approach
to proving the Strichartz estimates used here does not rely upon explicit
representations or parametrices for the solution. Therefore, it can provide
Strichartz-type estimates for the large family of equations with defocusing
radial potentials. Another is concerned with the weighted versions of the in-
homogeneous Strichartz estimates. As was first observed by Kato [16] and
has been explored by Oberlin [27], Harmse [8], Foschi [6], and Vilela [40],
the (unweighted) inhomogeneous Strichartz estimates are known to hold for
the larger range of exponent pairs. We now enjoy the approach based upon
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the celebrated lemma of Christ and Kiselev [4], and the referee has kindly sug-
gested that radial weighted analogs thereby obtained may turn out to be very
useful for certain nonlinear problems. Indeed, by virtue of the Christ—Kiselev
lemma one of the present authors has obtained some radial weighted analogs
in order to study global existence of small solutions to nonlinear wave equa-
tions [12] and nonlinear Schrédinger equations [11] with radially symmetric
data of scale-critical regularity.

We conclude this section by explaining the notation. By LP(R",w(x) dz),
we mean the Lebesgue space of all p-measurable functions (du(z) =
w(z)dx) on R™. We simply denote LP(R"™,dx) by LP(R™). The mixed norm
llu|l La(r; e (ry) for functions u on R x R™ is defined as

a/p 1/q
lullLo®;Lr@ny) = (/ (/ |u(t, z)|P dac) dt)
R n

with an obvious modification for ¢ = co or p=oco. By p’, we denote the
exponent conjugate to p, that is, (1/p) 4+ (1/p’) = 1. The operator |D,|*
(s € R) is defined by using the Fourier transform F and the inverse Fourier
transform F~!, as usual. We denote by HQS(R") the homogeneous Sobolev
space |D,|~*L?(R"). The free evolution operators for the wave equation and
the Schrodinger equation are defined as

(1.1) (Wo)(t,z) = W(t)p(z) = Fel€l Fp,
(1.2) (Sp)(t,z) = S(t)p(x) = F Ll Fo,
respectively.

This paper is organized as follows. In the next section, we prove the
weighted HLS inequality for radial functions. Section 3 is devoted to the
proof of the global-in-time Strichartz estimate for radial solutions to the free
wave equation. In Section 4, we draw our attention to the limiting case of
the estimates obtained in Section 3. An adaptation of observations due to
Agemi [1], Rammaha [29], and Takamura [37] shows the failure of such criti-
cal estimates. In Section 5, we are concerned with the local-in-time Strichartz
estimate for radial solutions to the free wave equation. In the final section,
we revisit the problem of deriving the end-point Strichartz estimate for radial
solutions to the free Schrodinger equation from the global (in space) estimate
of local smoothing property. Using the weighted radial HLS inequality, we
show the weighted end-point Strichartz estimate with gain of derivatives for
radial free solutions.

2. Weighted HLS inequality

(2.1) (Tyv)(x) = / xv—(y;rf dy, 0<y<n.
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The purpose of this section is to prove the weighted Hardy—Littlewood—
Sobolev (HLS) inequalities for radially symmetric functions. We show the
following:

THEOREM 2.1. Suppose n>2. Let p, q, a and 3 satisfy 1 <p < g < o0,
a<l/p, B<1l/q and a+ 3 >0. Set u=a+ B+ (1/p) —(1/q). There
exists a constant C depending only on n, p, q, « and 3, and the inequal-
ity

(2.2) 2]~ Tl Laeny < Ol >~ DAP=H Dy 1y )
holds for radially symmetric v € LP(R™, |z[Ple—(=D0/p=1/a)) gz).

REMARK. Obviously, the number g in Theorem 2.1 is strictly positive.
Moreover, we should note that p is strictly smaller than one. Indeed, by the
assumption o < 1/p’, B<1/q, wesee u<1/p'+1/qg+1/p—1/g=1.

Proof of Theorem 2.1. We start with the well-known formula:

Wn,

(2.3) (Tp_s0)(z) = £ /O T 2(0) A

r

r+A
></ p " R (p, ) D2 dp
Ir=Al

(0 < s <n) for radially symmetric function v(x) = w(r). Here, and in what

follows, we use the notation r = |z| = /2% + - + 22,

r2 42— pz 2
(2.4 h(p Air) =1 ( u. ) |
w; =2, and w, (n=2,3,...) is the area of S"~! = {x € R"||z| =1}. For
the proof of (2.3) consult, e.g., John [15] on page 8. Since the function
h(p)\;?ﬂ)(”*g)/2 causes another singularity in the case of n =2, let us first
study the case n > 3. By virtue of the following proposition, our argument
will be reduced to the special case of the weighted estimate of Stein and Weiss.
(See Lemma 2.3 below.)

PROPOSITION 2.2. Suppose n>3, 1 <qg<oo and 0 <s<1. The inequal-

ity

o y(n—1)/q
@5 VAT, _w) (@) < C / AT 0y (e R
0

|r — A|L—s

holds for radially symmetric, nonnegative function v(x) = w(r).
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Proof. Set I; =I;(r) (i=1,2) as

1 r/2 r4+A )
(2.6) —/ A”*%(A)dx/ p R (p, Ny ) (/2 dp
™ Jo r—XA

1 [e%) 4+
+= [ APw(N)dA p~" T h(p, \ir) T 2 dp
r/2 [r—X|

=:I,(r) + Ix(r).
For the estimate of I1, we note that —1 < (r2 4+ X2 — p?)/(2Ar) < 1 for |[r — \| <
p < r+ A, which implies h(p, A\;7)("=3)/2 < 1 by virtue of the assumption n > 3.
We therefore obtain
1 ’l‘
(2.7) Ii(r) < —/ A2 d)\/ p "t dp
0

r

r/2
< MC/ A= Lip(\) dA

0

The last inequality is due to the fact that for 0<s<1 and 0 <A <r/2

r+A
(2.8) / p s dp <2 (r — N) TR < ONp L
r—X

For the estimate of I, let us first observe h(p, \;7) = (p?/A2)h(\, p;7). Indeed,

we see that

20) hipar)= W@ EN T {p? = (= NIH( N %)

4\272 4\2r2
(oA =Np—=r+ N+ X+p)(r+X—p)
N 4N272
Al =N - (p—1)%}
4AN2r2

()

A2 2pr

p (A i),

>\2

as desired. Since —1 < (r2 4+ p% —A?)/(2pr) <1 for [r = A <p<r+ A\ we
have h(p, \;7) < p?/A? and, therefore,

1 [ A P2 (n—3)/2
(2.10)  Ix(r) < - / A" 2ap(\) dA / p”+5+1<2> dp
/2 =] A

1 (%) r+A

=- Aw(A) d)\/ p~ 2 dp.
r/2 [r—X|
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Keeping the assumption 0 < s < 1 in mind, we proceed as

r+A 1—s
_ 1 7')\> }
2.11 s dp=— — 11—
- »AAW ’ u—@v—ﬂhﬂ{ <r+A

< 1 1 |r — Al
T (1=9)|r— At r+ A
2min{\,r}

T (=8 r= A A
Combining (2.10) with (2.11), we get

(2.12) IZ(T) < %//2 |T'— )\|1fs(r+)\)

Therefore, we have obtained by (2.3), (2.6), (2.7), and (2.12)

Aw(A d)\SC’/ i dA.
W o =

(213)  (Tua)e) < — /OT/QA"—lw(A)dMO/OOiw(A) d.

rnTe r/2 |,’1_>‘|17S

We are in a position to complete the proof of (2.5). It follows from (2.13)
that

(2.14) r(=V/T, _w)(x)

r/2
gcr“"—l)/q)—”“/ A"l (X) dA
0

Jrcr(n*l)/q/ L)\z_d)‘
r/2 |T—>\| ®

r/2 1 A (n—1)(1—-(1/q))
< C/ e (—> A= aq(X) dA
0

A=/ A=D/agp(0)
C A< C d\
* [p V*Mls / oA

as desired. The proof of Proposition 2.2 has been finished. O

Once we have obtained the pointwise (in x) estimate (2.5), the three or
higher dimensional part of Theorem 2.1 is an immediate consequence of the
following lemma due to Stein and Weiss [33].

LEMMA 2.3. Assume n>1, 0<y<mn, 1<p<oo, a<n/p, f<n/q,
a+5>0,and 1/g=(1/p) + (v +a+ 8)/n) —1. If p<q<oo, then the
inequality

(2.15) 1z =P Tyl Loy < Clll2|*0| Loz
holds for any v € LP(R", |z|P* dz).
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It is easily seen that the three or higher dimensional part of Theorem 2.1
is a consequence of (2.5) with s =y and (2.15) with n=1. The proof of
Theorem 2.1 has been finished for n > 3.

To show Theorem 2.1 in the case of n =2, we set J; = J;(r) (i =1,2,3) for
radially symmetric function v(x) = w(r):

1 r/2 r+A
(2.16) ;/ w(N) d)\/ p o h(p, \r) T2 dp
0 r—X

1 2r r+A
- —/ w()\)d)\/ p S h(p, )T 2 dp
T Jr/2 [r—XJ

1 %) A7
+—/ w()\)d/\/ pEh(p, )T 2 dp
™ J2 A

= Jl(T) + JQ(’I’) + Jg(;)

It is possible to show the counterpart of Proposition 2.2 for J; and J3. It
is Jo that we must handle quite differently from before. Let us begin with the
proof of the following proposition.

PROPOSITION 2.4. Suppose 1 < g < oo and 0 < s <1. The inequality

0 A (A

(2.17) r9.7,(r) gc/ wld)
0

———d\ (1=1,3
holds for nonnegative w.

Proof. We use the property of the beta function B(-,-):

2 11

2.18 dp=B|=,= | =m.
(218) | e (3:3) -~
Observing

1 r+A
@) [ hGen) dp

T Jir=x|

_)\/T+Ap2+5 2/) dp

7=l VE = (r = X2/ (r+ )2 — p?

A 11
<— 2 _p(z,=
=r=ap-s (272>’

we are led to

rl/a)1-(1/q) Al/qw()\)
2.2 r /9y (r) <
(2:20 sose [U (TS g e
and
Vaxi=(/a\ A\Vay()\)
a4 g, (r) < r
(2.21) r/4Js(r) < C . ( pp—- )()\_T)l_s dA.
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Since 7 /I (19 /(r — X) < C for 0 < A <7r/2 and rY/IN -/ /(A —r) < C
for 2r < A, the inequality (2.17) is a consequence of (2.20) and (2.21). We
have finished the proof of Proposition 2.4. O

It remains to show the bound for Js.

PROPOSITION 2.5. Let p, q, «, B, and p be the same as in Theorem 2.1.
The inequality

27 r+A
(2.22) T(I/Q)_l/ w()\)d)\/ p ER(p, Ny )Y 2 dp
r/2 [r—=Al L4((0,00),r—498dr)
< Ol 9w]| Lo ((0,00) 0w ar)
holds.

Proof. Without loss of generality, we may assume that w is nonnegative.
Identifying the dual space of L9((0,00), =% dr) with L7 ((0,00),7¢? dr) and
reversing the order integration twice, we have

2r 4+
A0 [ woan [ e
=Xl

(2.23)

La((0,00),r—98dr)

2r r+A
:sup/ r/a-1g dr/ w(\) d/\/ o R(p, N 2 dp
0 /2 [r—A|

[eS) 2\ r+A
sup/ w( / r(H/D=1g(y) dr/ pER(p, N2 dp
0 /2 |

r—A|
0o A/2
sup(/ w( d/\/ p~HHdp
0

Ap
></ rM D=1 (o, Xy )V 2g(r) drr
A—=p

[e%) Ap
+/ w( W dp/ r O h(p A )™ g (r) dr
0 A2 A/2

oo 3X/2 2)
+/ w( / pttH dp/ r(l/q)flh(p,)\;r)fl/zg(r) dr
0 2/2
3X 2)
+/ w(N) dA p dp/ rMD= (o, X )" 2g(r) dr)
0 3)\/2 p—A
= sup(L1 —+ L2 —+ L3 —+ L4)
Here, the supremum is taken over all nonnegative g € Lq'((O, 00), rq/ﬁd'r) with

||g||L‘1/((0,oo),7"1/3d7') =1
In what follows, we shall often use the identity

2
Vip=r+Np+r =N +A=p)(r+A+p)

(2.24) L h(p, Ar) V2=
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as well as the inequality 2A <r + XA+ p <6 for A\/2 <r <2\, |r — A <
p<r+ A To begin with, we first estimate L;. Observing r + X — p <
A+p)+r—p=2X,r+A=—p>A—p)+A—p>Afor A\—p<r<A+p
and 0 < p < \/2, we obtain for 0 < p < \/2

Atp

(2.25) /)\ rM D=, X~V 2g(r) dr
—p

A+p 1

A—p \/(p—r+)\)(p+7"—)\)g

A 1
—g(r)dr
/A—p \/p(r—Aﬂ))g( )

A+p 1
' )

L Ve

< O\

(r)dr

< C)\l/q<

el 1 (A=p)+p P 1z
<O (2_;)/@_@_,) o ¢ (n)dn
(A+p)+ 1/2
% (/\+p)ppp A+Z—n A dn)
S N P e I
(A+p)+o 1/2
+§1§3% (A-&-p:—a /\"'2_77 g*(n) d77>

= CAY9( M, 29" ) (A = p) + CAV9( M 129") (A + p).

Here, we have set ¢g*(n) = g(n) for n >0, g*(n) = g(—n) for n <0, and for
teR

1/2

|£ ()| dn.

1 t+o

(2.26) (M2 f)(t) = sup —

g

n—t

t—o

It follows from the observation of Lindblad and Sogge that the maximal func-
tion My 5 f, which is a singular variant of the Hardy-Littlewood maximal
function

1 t+o
(2.27) (M[)(t) =sup o~ |f () dn,

o>0 20 t—o

has the pointwise estimate

(2.28) (M2 f)(t) < C(MF)(T)
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(see page 1,062 of [23]). Combining (2.25) with (2.28), we see that L; has the
bound such as

o) A/2
(2:29) L=C [ Awpyar [ My - ) dp
0 0

0o A/2
e / AV9p(0) dA / P (M)A p) dp
0 0

< C||)‘1/qw||LP((0700),AW a1 T1— (Mgl o ((0,00),A=P @ d))
< C”/\l/qw”LP((OpO)«\W dX) ”Mg*”L'I'(R,\t\q//’ dt)*

At the last inequality, we have used the one-dimensional part of Lemma 2.3.
To finish the estimate of L; we need the following lemma.

LEMMA 2.6. Suppose that 1 <p < oo and —1 <a <p—1. The operator M
enjoys the boundedness

(2.30) [IMFlle®, e dar) < Clflloe®, e de -

The original proof of (2.30) is due to Muckenhoupt [26]. See also Chap-
ter 5 of Stein [32] for further references. Before we use Lemma 2.6 to bound
[Mg* (| " (m,j¢ja’ 5 ar)» let us see that the condition —1 < ¢’ < ¢' — 1 is satis-
fied. The condition ¢’3 < ¢’ — 1 is equivalent to 5 < 1/q which is supposed
in Theorem 2.1. Moreover, to see that the condition —1 < ¢’ is also satis-
fied, we note that the assumption (1/q) — (1/p) — B+ p=a <1/p’ implies
w<(1/q")+ B. Since p is positive, we finally find that —1/¢’ < 3, as desired.
We may therefore use Lemma 2.6 to proceed as

(2.31) Ly < CI|AY 90| 1o (0,00) 20 any 197 | Lo (R, |¢|7' B dt)

< CIINY M|l Lo ((0,00), 37 ax) 191] Lo ((0,00) a7 dr)-

The estimate of L; has been completed.

We next consider the estimate of La. Observing r+A—p < (p+A)+A—p=
2N 1+ A—p>(N/2)+ A= A=)/2for \/2<r<A+4+pand \/2<p< )\, we
obtain for \/2<p <A

Atp
(2.32) /)\/ r(l/q)_lh(p, A: r)—1/29<r) dr
2

Atp 1
< O\

(r) dr

rve V(p—r+Np+r—2A

<o Va1 /
A2 >\ !
Ap
/ )\+p 9
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1q( 1 (A=p)+p 0 1/2 .
<O\ "(—/ ——| 9" (n)dn
2/) (A=p)—p n_(A_P)

1 OFe)+e P 1/2
L e )
20 Jorap)—p |(A+p)—m

< O (Mapag ) (A= p) + CNVH(Majog ) (A + p)
as in (2.25). Note that, at the second inequality, we have used
A A 3
=<p- <p-— <A—— =—
5 <P AFA<p—r+A<A 5 +A 2)\
for A/2<r<Xand \/2<p <), and
A
5§p+)\—/\§p—|—r—)\§)\+()\+p)—)\§2)\

for A\<r<A+pand A\/2 <p<\ By virtue of the estimate (2.32), we can
obtain

(2.33) Ly < CIN 9| Lo 0,000,370 an |91l Lo’ ((0.00).ra'5 ar)

as in (2.29) and (2.31). The estimate of Ly has been completed.

Next, let us consider the estimate of Lz. Note that p+r — XA <5\/2,
pHTr—=AZA+r—A>A/2for \/2<r <2X and A < p <3\/2. Using (2.24),
we hence have for A < p <3\/2

2\
(2.34) / rMD n(p, X;r) M2 g(r) dr
/2
2X 1
< CONVa / g(r)dr
a2 A (p—=r+A)(r+A—p)

A
<CA1/‘1>1</ | ——g(r
az [ r=(p—=2X)
2\
/ p+>\ e )

1 (p=A)+A 1/2
<C\ q( / —— 1 g*(n)dn
2X =X 1T~ (P =) )
1 (p+A)+(3X/2) 3X/2 1/2
B I
3N Jiprn—@aj2) [(p+A)—n

<oAYIUM 17297)(p—A) + C/\l/q(Muzg*)(P +A).
This leads us to the estimate

(2.35) Ly < CIN 9| Lo 0,000,370 an |91l Lo’ ((0.00).ra'5 ar)
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as before. The estimate of L3 has been completed.

It remains to bound Ls. Note that for p — A <r <2\ and 3)\/2 < p <3,
we have p—1r+A<p—(p—A)+A=2\, p—7+A>(3N/2) —2A + A= )/2
and p+7r—A<3A+2X—A=4\ p+r—A>p+(p—A)— A > \. We therefore
obtain for 3\/2 < p <3\

(2.36) / 1 A ) 2 (1) dr

22
< oA/~ 1/
r—(p— )\

y (p=N)+2X
SONT—~ / — g “(n)dn
AN Jpnyax In— (P A)

< C)\l/q(Ml/QQ*)(P -7),
which yields
(2.37) Ly < CIN 9| Lo 0,000,370 an |91l Lo’ ((0.00) ra'5 ar)
as before. Combining (2.31), (2.33), (2.35), (2.37) with (2.23), we have shown
(2.22). The proof of Proposition 2.5 has been completed. O

We are in a position to complete the proof of Theorem 2.1 for n =2. This
is a direct consequence of (2.3), (2.17), (2.15) with n =1, and (2.22). The
proof of Theorem 2.1 has been completed for all n > 2. O

REMARK. The inequality (2.2) with o= 8 =0 is just the one Vilela has
used in [39]. Vilela has shown the inequality by employing some ideas in Stein
and Weiss [33]. (See [39] on page 369.) Now that we have completed the proof
of Theorem 2.1, it is obvious that we can show (2.2) for & = § = 0 by employing
the classical Hardy—Littlewood inequality and the Hardy—Littlewood maximal
inequality in the standard LP(R"™) space. Hence, it is also possible to show
(2.2) without results in [33], as far as the case a = =0 is concerned. It is
in the case a #0 or 8 # 0 that our proof of (2.2) essentially relies upon the
result of Stein and Weiss [33].

3. Strichartz estimates for radial solutions

Adapting an argument of Vilela [39], we explain how the weighted Hardy—
Littlewood—Sobolev inequality (2.2) is used to prove the Strichartz estimate
for the free wave equation with radially symmetric data. Let us start our
consideration with global-in-time estimates. Recalling the definition of the
operator W (see (1.1)), we shall show the following theorem.
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THEOREM 3.1. Supposen >3 and1/2<(n—1)((1/2)—(1/p)) < (n—1)/2.
There exists a constant C' depending on n and p, and the estimate

(3.1) IWoll2@;zr@n)) < CllIDz|*@llL2@nys
Lon_n_
2 p 2

holds for radially symmetric ¢ € H29 (R™).

It should be mentioned that Sterbenz has proved (3.1) in a completely
different way (see Proposition 1.2 of [34]). As has been done in [34], we can
actually obtain the following result by the interpolation between (3.1) and the
energy identity. For any integer n > 3, we define

1 1
(3.2) Dn::{(m,y)eR2‘0<x§§,O<y§§,
n—1(1 1
—_ _1 _
5 <2 y><x<(n )(2 )}
and
1
(3.3) AnZZDnU{(m,y)ERQ‘xzoandy:§},

COROLLARY 3.2. Suppose n>3 and (1/q,1/p) € A,,. There exists a con-
stant C' depending on n, p, q, and the estimate

(3.4) IWellLa@w;e@n)y < ClllDel*@ll L2 ®n),
Lon_n_
qg p 2

holds for radially symmetric ¢ € Hy(R™).

REMARK. Without the assumption of radial symmetry, the Strichartz es-
timate (3.4) holds, provided that

(3.5) n>2, ogé
11 2 1 1
(3) 7000 Zsw-n(z-3)

(Do) s (4)2(20) woes

See [7], [20], [22], [28], [35], and [18] for the proof. We note that the condition
2/qg<(n—1)(1/2 —1/p) of (3.5) is necessary. Otherwise, it is well known
that using the method of Knapp, one can indeed choose a sequence {p;} C
S(R™) of nonradial data for which the existence of such a uniform constant
C=C(n,p,q) as in (3.4) is forbidden. Keeping in mind that some nonradial
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solutions yield this counterexample, we mention that radial symmetry vastly
improves on the range of the admissible pairs (1/¢,1/p). Indeed, it has turned
out by the works of Klainerman and Machedon [19], Sterbenz [34], and Fang
and Wang [5] (see also Sogge [31] on page 125) that one actually has the

Strichartz estimate (3.4) under the assumption of radial symmetry in the case
of

(3.6) n>2, 0<

in addition to the obvious case (1/¢,1/p)=(0,1/2).

In Section 4, we shall show the condition 1/¢ < (n —1)((1/2) — (1/p)) of
(3.6) is necessary for the global-in-time estimate (3.4) to hold for radially
symmetric data. The prime purpose of this section is to explain how we can
prove Proposition 1.2 of Sterbenz [34] using the weighted Hardy—Littlewood—
Sobolev inequality (2.2).

Proof of Theorem 3.1. We use the following result which is a generalization
of the classical estimate of Morawetz [25].

LEMMA 3.3. Suppose n>2 and 1/2 < a<n/2. There exists a constant C
depending on n and «, and the estimate

(3.7) e~ Wl anin) < C[1Del*= D] g

holds for ¢ € H§7(1/2)(R”).

The proof of (3.7) uses the trace inequality in the Fourier space

(38) sup A/ / o OW) 2 do < ClIDel* il 2y = Cll 2wl p2geny

which holds for 1/2 < s <n/2. See Ben-Artzi [2], Ben-Artzi and Klainer-
man [3], Hoshiro [13] for the proof of (3.7) via the trace inequality such as
(3.8) and the duality argument. For the proof of (3.8), see, e.g., (2.45) of Li
and Zhou [21] and the Appendix of Hidano [9].

We are in a position to complete the proof of Theorem 3.1. We follow the
argument of Vilela [39]. Fix any p satisfying 1/2 < (n —1)((1/2) — (1/p)) <
(n—1)/2. Tt follows from Theorem 2.1 with o = 8 =0 that the Sobolev-type
inequality

—(n—1)((1/2)—(1 1/2)—(1
(3.9) 0]l e () SCHW (n=1)((/2)=/P)| D, |1/~ /p)“Hm(Rn)
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holds for radially symmetric v. The estimate (3.1) is an immediate conse-
quence of (3.7) and (3.9). Indeed, we see that
(3.10) IWellL2®;ze mn))
—(n=1)((1/2)—(1 1/2)-(1
< Cle|= DW= D (DO
:CH|x|*(nfl)((1/2)*(1/P))W(‘DI|(1/2)*(1/17)@)

)

||L2(]R><]R")

< C|D| D=

as desired. The proof of Theorem 3.1 has been finished. O

4. Failure of the critical estimate

The problem to be discussed in this section is whether the Strichartz esti-
mate (3.4) holds under the assumption of radial symmetry of data even for the
limiting pair (1/¢,1/p) € (0,1/2] x [0,1/2) with 1/g= (n —1)((1/2) — (1/p)).
If it were true, we would enjoy

(4.1) Wl oo ny) < CllIDe 2= Ly gy

for radially symmetric data ¢, and the estimate (4.1) would imply the estimate

(42)  lullpe@;ze@ny)
< OIPO=0 gy 1D )

for the solution u to the wave equation Ou =0 in R x R™ with radially sym-
metric data (f, g). We shall show that the estimate (4.2) is false in the limiting
case (1/¢,1/p) € (0,1/2] x [0,1/2) with 1/g= (n—1)((1/2) — (1/p)), though
S(R™) C H;(l/m*(l/p) (R™) (n>2). The key to such a result is the following
lemma.

LEMMA 4.1. Let n>2 and r = |z|. Suppose g(x) is a smooth, nonnegative
function with suppg C {x € R™||z| < R} for some R > 0. Suppose also that g
is a radially symmetric function written as g(x) =(r) for an even function
P € C§°(R). Let u be the solution to Du=0 in R x R™ with data (0,g) at
t=0. There exists a positive constant § depending only on n such that the
estimate

1 min{R,r+t} B

r—t

holds for any (t,z) with R/(1+ ) <r—t<R, t>0.

Let us postpone the proof of Lemma 4.1 for the moment and see how it
can be used to prove the following theorem.

THEOREM 4.2. Let n > 2 and fix the constant § > 0 given by Lemma 4.1.
Suppose that g(x) >0 is a smooth, radially symmetric function with supp g C
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{z € R"||z| < 1} which is written as g(x) =¥ (r) for an even function ¥ €
C§°(R) satisfying the condition that the function U defined as

(4.4) W(p) = / A2

does not vanish identically for p € (1/(1+6),1).
Let (1/q,1/p) € (0,1/2] x [0,1/2) satisfy 1/q= (n—1)(1/2 —1/p). Then
for the solution to Du =0 with data (0,9) at t=0,

(45) P llullpago e ) = +oo.
Proof. We separate two cases: (1/¢,1/p) € (0,1/2] x (0,1/2) satistying
1/¢=(n—-1)(1/2 —1/p) for n>2 and (1/¢,1/p) = (1/2,0) for n =2. We

start with the former. Employing (4.3) and writing u(t,z) = v(t,r), we have
for t € (6/(2(1+6)),T) by the change of variables p=1r —t

t+1
(4.6) / oP(t,r)r" L dr
¢

+(1/(1496))
Lot 1 Ny ot
> [ - w()\)d/\) 7 gy
4 Jiv(1/(1+6)) (7'("1)/2 /T—t
I 1

KZ UP(p)dp
W [ 4s) (4 p) D20 (D) )

1 1 1
=T WP (p) dp.
T 4P (t + 1)((n=1)/2)p—(n—-1) /1/(1+5) (p)dp

Setting a strictly positive constant A as

1 1/p
a= ([ wea)
1/(149)

el Zo o,m);n gy

T t+1 a/p
Z/ (/ oP(t,r)r" dr) dt
§/(2(1496)) t+(1/(146))

A1 T 1 q
= */ ( /2 1) ) dt
49 Jsyeavsn \(E+1) P

Ag (T 1 A4 T+1
= — —dt:—log5—

we then find

(4.7)

for all T > 6/(2(1+9)).
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It remains to deal with (1/¢,1/p) = (1/2,0) for n = 2. We naturally modify
the argument in (4.6) and (4.7) as follows. Fix a constant cq satisfying 1/(1 +
) <co < 1sothat U(cg) > 0. We see, noting |[v(t,-)|| Lo (t+(1/(146)) <r<tteo) =
v(t,t+co),

T
(48) /5 ooy I 11 cr e

T 1 1 / 2
> e — A24(N) d)\) dt
/5/(2(1+5)) 42(t + co) </co

1 T+ co
= 4_2'1’2(00) log ————

3t+0) T 0
for all T>6/(2(1+6)). We have completed the proof. O

Using the solution u described in Theorem (4.2), we easily obtain the fol-
lowing result by scaling argument.

COROLLARY 4.3. Letn>2 and (1/¢,1/p) € (0,1/2] x [0,1/2) satisfy 1/q=
(n—1)(1/2—1/p). Then for the solution uy to Ju =0 with radially symmetric
data (0,h) att=0

su { lunllLa0,1);L0®n))
|| Dy |~ (/2= (/P h| 2y

he S(R™)\ {0} and h is radially symmetric} = +o0.

This shows that the estimate (4.2) is false even if the global-in-time norm
is replaced by the local-in-time norm on the left-hand side. The proof of
Corollary (4.3) is straightforward and, therefore, we leave it to the reader.

Proof of Lemma 4.1. We must establish Lemma 4.1. The proof is essen-
tially based on Rammaha’s way for Lemma 2 of [29] together with the treat-
ment of fundamental solutions in even space dimensions in Agemi [1], which
is summarized in Takamura [38]. Following [1], [29], and [37]-[38], we show
Lemma 4.1.

By the representations (6a) and (6b) of radial solutions in [29], u is ex-
pressed as

1 Tt m A2 42 — 2
(4.9) u(t,r) = opm /7-—t| A"(N) Pr—1 (T) a,
if n=2m+1, and
(4.10) wu(t,x)
t r+p m 2 2 _ 2
_ 2 1/ pdp A™ah(N) T <)\ +r p>d>\
Tr™m=+ Jo

2= p2 Jir—p| A/GN T, p) mt 2r\
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r+t
—L/ ' A4h(A) dA

Cogpm=t
t 2 2 2
" / P Tml(u) dp,
[r=Al \/G(,D, T, )‘) \/t2 - PQ 2rA
if n=2m and r > t, where
G()‘,ra p) = ()‘2 - (r - p)2) ((T + p>2 - )\2) = G<p7 T, )‘)a

and Py, T) are the Legendre and Tschebyscheff polynomials, respectively,
defined by

1 dk

— 2kEl dzk
(=1)* av1/2 d° 2\k—1/2

Ti(z) = ——2—(1— = 1- .

k(2) (2k — 1)!!( F)gEd =)

See also [37] for details.

As is well known, Py and T} have the properties: |Py(z)|, |Tk(2)| <1
(Jz2| £1) and P,(1) =Ty (1) =1 forall k =1,2,... (see Magnus, Oberhettinger,
and Soni [24], pages 227, 237, 256-267). By these properties together with the
continuity of the two functions, one can choose a small constant § depending
on n so that

Pr(2) (2% — 1)k,

(4.11) P_1(2), Tm-1(2) > % for T i 5
in the same manner as Takamura did in Lemma 2.5 of [37].

In what follows, we assume that R/(1+40) <r —¢ < R with ¢ > 0. Note
that the upper limit of the M-integrals in (4.9) and (4.10) can be replaced with
min{ R, + t} by virtue of the support property of data. We then have

o A2 42— p2 - R

<z<1l,meN,

4.12 1
(4.12) - 2r - 2r
N2 22 _
>(7’ e 4+re—t _r t> 1
- 2rR R —1+6

for r —t <A <min{R,r + ¢} and 0 < p <t. It therefore follows from (4.9)-
(4.11) that

1 min{R,r+t}

— A" (N) dA ifn=2m+1,
arm [, (Rt}

1 min{R,r

(4.13) u(t,x) > — / ATP(A) dA

r ; r—t

X / pdp if n=2m,

1=l /G p,m, A) /12 — p?

provided 1 > 0 on the support. Therefore, the odd dimensional case has been
proved. For the even dimensional case, the p-integral in (4.13) is estimated
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as follows:
. 1 t pdp
(intes) 2 375 o V=G
B2 t2Yh)y o«
Ay A
Here, by B(-,-), we have meant the beta function as in Section 2. This com-
pletes the proof for the even dimensional case. 0

REMARK. During the preparation of this article, the authors found that
arguing in a way similar to Takamura [37], Jiao and Zhou had already obtained
an estimate which is a bit less precise than (4.3) (see Lemma 2 of [14]).

5. Local-in-time Strichartz estimates

For any integer n > 2, we define

5.1 Q, ::{(m,y)€R2’0<w<%,O<y<%,m>(n—1)<%—y>}

and
1
(5.2) A, ::Qnu{(a:,y)eRQ‘sz and y:i}

The main result of this section is the following.

THEOREM 5.1. Suppose n >2 and (1/q,1/p) € A,,. Let T be an arbitrary
positive number. There exists a constant C' depending only on n, p, and q,
and the estimate

(5.3) W@l ago.1).Lo@ny) < CT? ||| D| V2 =P

1+n_9+n (1 1)
q p 2 2 p

holds for radially symmetric data ¢ € Hél/Q)_(l/p) (R™).

(R™)?

Theorem 5.1 is an extension of the intriguing result of Sogge (Proposition
6.3 on the page 125 of [31]) who proved the estimate (5.3) for n =3 and

(5.4) (2,%)6{(x,y)€R2‘0<x<y<%,m>2(%—y)}

1
U{(x,y) €R2’x:0 and y—i}.

Actually, Sogge himself proved the estimate (5.3) for n =3, 1/3 < 1/q =
1/p <1/2. By the interpolation between his estimate and the energy esti-
mate, we easily get (5.3) for n =3 and (1/¢,1/p) satisfying (5.4).
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We should explain the significance of the local-in-time estimate (5.3). If
the radially symmetric estimate (4.1) were true even for the limiting pair
(1/¢,1/p) € (0,1/2] x [0,1/2) with 1/qg=(n—1)((1/2) — (1/p)), our estimate
(5.3) would be a trivial consequence of (4.1) and the Holder inequality in time.
The fact is that the estimate (4.1), even if localized in time, is false for any

limiting pair (1/q,1/p) € (0,1/2] x [0,1/2) with 1/g = (n — 1)((1/2) — (1/p))
as we have seen in Section 4, and one can get nothing but a coarse estimate

(5.5) IWeollLaco,1),r@r)) < CTQH|Dw|(1/2)_(1/p)+5@“L2(Rn)v

1+n P <1 1+)
. rh_ o oZ4e),
q p 2 2 p

€ > 0 (sufficiently small)

for any (1/q,1/p) € Q,, with (1/¢,1/p) € (0,1/2] x (0,1/2) by using both the
Strichartz estimate (3.4) for (1/¢,1/p) permitted in (3.6) and the Hélder in-
equality in time. As we have just mentioned, Sogge proved the sharper es-
timate (5.3) in the case of n =3, 1/3<1/¢=1/p <1/2, and the key to his
proof was a clever use of the identity

sin|¢|

- — —iw-& — A7
(5.6) do(I€]) /526 do=4 €]
(we S? ={z eR¥|z|=1},do = do(w)).

Though the formula of cj(;(|§ |) in terms of the Bessel function is well known
for n =2 or n > 4, the authors do not know whether such a formula is useful
in proving our estimate (5.3). In the rest of this section, we see how the
weighted inequality (2.2) is used to prove the local-in-time estimate (5.3).

Proof of Theorem 5.1. We use the following result.

LEMMA 5.2. Supposen>1 and 0 <o <1/2. Let T be an arbitrary positive
number. There exists a constant C depending on n and o, and the estimate

(5.7) 2]~ *Well 2o,y xrm) < CTH D= o| L2 @n)
holds for all p € L*(R").

By scaling the proof of (5.7) can be reduced to the case T=1. For T =1,
the estimate (5.7) has been shown in [10] as a direct consequence of integra-
bility (in time) of the local energy [30]

(5.8) IWoll L2 mx {zerm|z|<1}) < Cll@llL2@®n),

scaling, and the energy estimate.
We are in a position to complete the proof of Theorem 5.1. Fix any p
(0 <1/p <1/2) satisfying 1/2 > (n — 1)((1/2) — (1/p)). It follows from the
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Sobolev-type estimate (3.9) and (5.7) that

(5.9) IWellL2(0,7); 0 (r7))

—(n—1)((1/2)—(1 1/2)—(1
< ||~ =D D DO L

< OT/D ===/ || D[~ g|| o

Our estimate (5.3) is a consequence of the interpolation between (5.9) and the
energy estimate. We have finished the proof of Theorem 5.1. O

6. End-point estimates for Schrédinger equations

The final section is devoted to the study of the Strichartz estimate for the
Schrédinger equation
(6.1) iOu—Au=0 inRxR"
subject to the initial data u(0,2) = ¢(x). The estimate

(6.2) 1SellL2®;2n/-2 @ny) < Cll@llL2®n)  (n23),

which was proved by Keel and Tao [18], is called an end-point estimate. (See
(1.2) for the definition of the operator S.) As Vilela has explained in Section 3
of [39], it is possible to prove (6.2) for radially symmetric data via the weighted
inequality (2.2) with a =/ =0. We revisit the problem of showing (6.2) for
radially symmetric data. Using our weighted inequality (2.2) with —( = «,
we prove

THEOREM 6.1. Suppose n >3 and —(1/2) + (1/n) < a < (1/2) — (1/n).
There exists a constant C depending on n, «, and the estimate
(6.3) 12| Da|* Sl 2 (r;2m/ -2 mmy) < Cllpll L2 mny
holds for radially symmetric data @ € L?(R™).

Proof. We need the following lemma.

LEMMA 6.2. Suppose n>2 and 1/2 <~y <n/2. There exists a constant C
depending on n, v, and the estimate

(6.4) 2]~ |De "7 S0l L2 @xrny < Clloll L2y
holds.

Large part of Lemma 6.2 was proved by Kato and Yajima [17], Ben-Artzi
and Klainerman [3], independently. Later, their results were not only comple-
mented but also generalized by Sugimoto [36] and Vilela [39]. For the proof
of (6.4), see Section 4 of Sugimoto [36] or Section 1 of Vilela [39].

In what follows, we denote 2n/(n — 2) by po. We note that
n

n 1 1 1
—<(n—1) - — — —Ck<§ e 1—5—§<a<§—ﬁ
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and that the inequality

1 1 n < 1 n 1
n 2 2 n
is true for all n > 3 (actually, for all n > 1). Taking account of the obvious
fact
1 1 1
—a<l — < —-+-<aq
Po 2 n

we can employing (2.2) with —3 = « first and (6.4) secondly to have for
radially symmetric ¢

(6.5)  [l|lz]*[Dx]|* Sl L2 (®;Lro (m))
< CH mf(nfl)((1/2)f(1/po))+a|Dr|a+(1/2)7(1/po)SQHL%RXR”)
< C||90||L2(Rn)-

It is only at the last inequality above that the choice of py =2n/(n — 2) is
essential. The proof of Theorem 6.1 has been completed. 0
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