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AREA OF IDEAL TRIANGLES AND GROMOV
HYPERBOLICITY IN HILBERT GEOMETRY

B. COLBOIS, C. VERNICOS, AND P. VEROVIC

Abstract. We show that a Hilbert geometry is hyperbolic in the
sense of Gromov if and only if there is an upper bound on the
area of ideal triangles.

Introduction and statements

The aim of this paper is to show, in the context of Hilbert geometry, the
equivalence between the existence of an upper bound on the area of ideal
triangles and the Gromov-hyperbolicity.

Let us recall that a Hilbert geometry (C, dC ) is a nonempty bounded open
convex set C on R

n (that we shall call convex domain) with the Hilbert dis-
tance dC defined as follows: for any distinct points p and q in C, the line
passing through p and q meets the boundary ∂C of C at two points a and b,
such that one walking on the line goes consecutively by a, p, q, b (Figure 1).
Then we define

dC (p, q) =
1
2

ln[a, p, q, b],

where [a, p, q, b] is the cross-product of (a, p, q, b), i.e.,

[a, p, q, b] =
‖q − a‖

‖p − a‖ × ‖p − b‖
‖q − b‖ > 1,

with ‖ · ‖ the canonical Euclidean norm in R
n.

Note that the invariance of the cross-ratio by a projective map implies the
invariance of dC by such a map.

These geometries are naturally endowed with a C0 Finsler metric FC as
follows: if p ∈ C and v ∈ TpC = R

n with v �= 0, the straight line passing by p
and directed by v meets ∂C at two points p+

C and p−
C (see Figure 2); we then

Received August 21, 2006; received in final form January 8, 2007.

2000 Mathematics Subject Classification. Primary 53C60. Secondary 53C24, 51F99.

319

c©2009 University of Illinois

http://www.ams.org/msc/


320 B. COLBOIS, C. VERNICOS, AND P. VEROVIC

Figure 1. The Hilbert distance.

Figure 2. The Finsler structure.

define

FC (p, v) =
1
2

‖v‖
(

1
‖p − p−

C ‖
+

1
‖p − p+

C ‖

)
and FC (p,0) = 0.

The Hilbert distance dC is the length distance associated to FC .
Thanks to that Finsler metric, we can built a Borel measure μC on C (which

is actually the Hausdorff measure of the metric space (C, dC ); see [BBI01],
Example 5.5.13) as follows.

To any p ∈ C, let BC (p) = {v ∈ R
n|FC (p, v) < 1} be the open unit ball in

TpC = R
n of the norm FC (p, ·) and ωn the Euclidean volume of the open unit

ball of the standard Euclidean space R
n. Consider the (density) function

hC : C −→ R given by hC (p) = ωn/Vol(BC (p)), where Vol is the canonical
Lebesgue measure of R

n. We define μC , which we shall call the Hilbert Measure
on C, by

μC (A) =
∫

A

hC (p)dVol(p)

for any Borel set A of C.
A fundamental result of Y. Benoist [Ben03] gives an extrinsic characteriza-

tion of Gromov-hyperbolic Hilbert geometries, that is sufficient and necessary
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conditions on the boundary ∂C of a convex domain C to insure that the asso-
ciate Hilbert geometry (C, dC ) is Gromov-hyperbolic.

The goal of this paper is to give an intrinsic condition equivalent to the
Gromov-hyperbolicity in terms of the area of the ideal triangles of (C, dC ).

We define an ideal triangle T ⊂ C as the affine convex hull of three points
a, b, c of ∂C not on a line, and such that T ∩ ∂C = a ∪ b ∪ c. (Note that the
affine convex hull coincide with the geodesic convex hull when the space is
uniquely geodesic, which is the case of Gromov-hyperbolic Hilbert geometry.)
The area of a triangle T (ideal or not) of (C, dC ), denoted by AreaC (T ), is its
area for the Hilbert measure of (C ∩ P,dC ∩P ), where P is the unique plane in
R

n containing the triangle (in dimension 2, as C ∩ P = C, we will also denote
it by μC (T )).

In this paper, we prove the following theorem.

Theorem 1. A Hilbert Geometry (C, dC ) is hyperbolic in the sense of Gro-
mov if and only if there is a bound on the area of ideal triangles. Precisely,

(1) for any M > 0 there exists δ(M) > 0 such that if the area of any ideal
triangle T ⊂ C is bounded above by M , then (C, dC ) is δ(M)-hyperbolic;

(2) for any δ > 0, there exists M(δ) > 0 such that if the Hilbert geometry
(C, dC ) is δ-hyperbolic then the area of any ideal triangle T ⊂ C is bounded
above by M(δ).

To show that the bound on the area of ideal triangles implies the
δ-hyperbolicity is quite straightforward and its proof is in the first part of
the paper (Theorem 2). The converse is much more delicate: we show it on
the second part of the paper (Theorem 7). The main ingredient of the proof
is a cocompacity lemma (Theorem 8, whose idea goes back in some sense to
Benzecri [Ben60]) and the results of Benoist’s paper [Ben03]. To make the
proof readable, we allowed some technical lemmas in the Appendix at the end
of the paper, in particular Lemma 21 deduced from [Ben03], which implies
an α-Hölder regularity of the boundary of a convex domain whose Hilbert
geometry is δ-hyperbolic, with α depending only on δ, and Lemma 18, where
we show that the α-Hölder regularity implies the finiteness of the area of ideal
triangles.

Note that the results of this Appendix are used many times in the proof of
Theorem 7.

In the sequel, we will switch between affine geometry (where our results are
stated) and projective geometry (where Benoist’s results are stated). We will
use the following two classical facts (see [Sam88], Section 1.3, pages 8–11)

(1) Any affine space can be embedded into a projective space (by “adding an
hyperplane at infinity”). Furthermore any one-to-one affine map extends
to a homography keeping the “hyperplane at infinity” globally invariant.
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(2) The complement of a projective hyperplane in a projective space is an
affine space. Furthermore, all homographies keeping this hyperplane glob-
ally invariant are naturally identified with an affine map on the comple-
ment.

1. Bounded area implies δ-hyperbolicity

In this part, we prove the following theorem.

Theorem 2. Let M > 0. There exists δ = δ(M) > 0 with the follow-
ing property: Let (C, dC ) be a convex domain with its induced Hilbert dis-
tance. If any ideal triangle in (C, dC ) has its area less than M, then (C, dC ) is
δ-hyperbolic.

This theorem is a straightforward consequence of the following proposition.

Proposition 3. There exist a constant C > 0 with the following property:
for any δ, if (C, dC ) is not δ-hyperbolic, then there exists an ideal triangle
T ⊂ C, whose area satisfies μC (T ) ≥ C · δ.

Indeed, if the assumption of Theorem 2 is satisfied, then C has to be
δ-hyperbolic for any δ > M/C , otherwise we would get a contradiction with
the Proposition 3.

Now let us prove Proposition 3. We already know that if ∂C is not strictly
convex, then there is an ideal triangle of arbitrarily large area ([CVV04],
Corollaire 6.1, page 210). Hence, we can assume that ∂C is strictly con-
vex, which implies that all the geodesics of (C, dC ) are straight segments (see
[dlH93], Proposition 2, page 99).

Each triangle T ⊂ C determines a plane section of C, and is contained in
an ideal triangle of this plane section. So, it suffices to exhibit a triangle (not
necessarily ideal) such that μC (T ) ≥ C · δ.

This is done thanks to the two following lemmas.

Lemma 4. If (C, dC ) is not δ-hyperbolic, there is a plane P and a triangle T
in P ∩ C such that a point in the triangle is at a distance greater than δ/4
from its sides.

Proof. If (C, dC ) is not δ-hyperbolic, there exists a triangle T ∈ C of vertices
a, b, c, a point p ∈ ∂T , say between a and b, such that the distance from p to
the two opposite sides of ∂T is greater than δ. The end of the proof takes
place in the plane determined by the triangle T .

Let R = δ/2. Consider a circle S of center p and radius R. Let p1, p2 =
S ∩ ∂T . We have dC (p1, p2) = 2R.

If q ∈ S, then dC (p1, q) + d(q, p2) ≥ 2R by the triangle inequality. By con-
tinuity, we can choose q ∈ S ∩ T , with dC (q, p1) ≥ R; dC (q, p2) ≥ R. From this
fact, and by the classical triangular inequality, we deduce dC (q, ∂T ) ≥ R/2:
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to see it, let p3 be the middle of the segment pp1. We have dC (p, p3) =
dC (p3, p1) = R/2.
• If q′ ∈ pp3, dC (q, q′) ≥ dC (p, q) − dC (p, p3) ≥ R/2.
• If q′ ∈ p3p1, then dC (q, q′) ≥ dC (q, p1) − dC (q′q1) ≥ R/2 and this show also

that if dC (q′, p1) ≤ R/2 then dC (q, q′) ≥ R/2.
• If q′ is such that dC (q′, p) ≥ 3R/2, then dC (q, q′) ≥ R/2.

This allows to conclude for the half-line issue from p through p1 and we
can do the same for the other half line. �

Lemma 5. There exists a constant Cn such that any ball of radius R > 2 in
any Hilbert geometry of dimension n has a volume greater or equal to Cn · R.

Proof. Let B a ball centered at q of radius R. Consider a geodesic segment
starting at q: it has length R and lies inside B. We can cover it by N =
integer part of R, pairwise disjoint balls of radius 1 contained in B, with
N → ∞ with δ. But we know (Theorem 12, [CV]) that the volume of a
radius 1 ball is uniformly bounded below for all the Hilbert geometries by a
constant c(n). Hence, the volume of the ball of radius R ≥ 2 is greater than
(R − 1) · c(n) ≥ R · c(n)/2. �

Hence, if (C, dC ) is not δ hyperbolic thanks to Lemma 4, we would find
a triangle T containing a two-dimensional ball of radius δ/4, hence its area
would be greater than δ/4 · C2 thanks to Lemma 5, which ends the proof of
Proposition 3.

A consequence of Theorem 2, already proved with different approaches
by Karlsson and Noskov [KN02], Benoist [Ben03], and Colbois and Verovic
[CV04], is the following corollary.

Corollary 6. If the boundary of C is C2 with strictly positive curvature,
then (C, dC ) is Gromov hyperbolic.

This is a consequence of Theorem 4 in [CVV04] which says that if the
boundary is C2 with strictly positive curvature, then the assumptions of The-
orem 2 are satisfied.

2. From δ-hyperbolicity to bounded area

The aim of this section is to prove the following

Theorem 7. Let δ > 0. Then there exists V = V (δ) > 0 with the following
property: Let C be a convex domain such that (C, dC ) is δ-hyperbolic. Then
for any ideal triangle T of C, we have AreaC (T ) ≤ V .

Though the ideas to prove Theorem 7 are quite simple, the proof itself is
somewhat technical. The bound on the area of ideal triangle depends only on
the δ of the Gromov hyperbolicity. Therefore, it suffices to prove Theorem 7
in the two-dimensional case. Thus, from this point on, everything will be done
in the two-dimensional case.
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2.1. Cocompactness of triangle-pointed convex. Let us begin with
some notations.

Let Gn := PGL(Rn), P
n := P(Rn+1) the projective space of R

n+1. A prop-
erly open convex subset Ω of P

n is an open convex set such that there is a
projective hyperplane who does not meet its closure. Denote by Xn the set of
properly open convex sets. Let Xδ

n be the set of δ-hyperbolic properly open
convex sets in P

n

In Xn, we will consider the topology induced by the Hausdorff distance
between sets, denoted by d.

We will say that a convex domain C is triangle-pointed if one fixes an ideal
triangle in C. Let

T δ
2 = {(ω,x, y, z) ∈ Xδ

2 × P
2 × P

2 × P
2 |

x, y, z ∈ ∂ω,x �= y, y �= z, z �= x}
be the set of triangle-pointed convex sets C with C ∈ Xδ

2 .
One of the main steps of our proof will rely upon the following cocompact-

ness result.

Theorem 8. G2 acts cocompactly on T δ
2 , i.e., for any sequence (ωn,

Δn)n∈N in T δ
2 , there is a sequence (gn)n∈N in G2 and a sub-sequence of

(gnωn, gnΔn)n∈N that converges to (ω,Δ) ∈ T δ
2 .

Actually, Theorem 8 is a corollary of the following more precise statement.

Proposition 9. Let (ωn, Tn)n∈N be a sequence in T δ
2 , then

(1) There is a sequence (gn)n∈N in G2 and a number 0 < e ≤ 1/2 such that
gnTn = Δ ⊂ R

2 the triangle whose coordinates are the points (1,0), (0,1),
(1,1), and gnωn ⊂ R

+ × R
+ is tangent at (1,0) to the x-axe, at (0,1) to

the y-axe and at (1,1) to the line passing through the points (1/αn,0) and
(0,1/(1 − αn)) for some 0 < e ≤ αn ≤ 1/2;

(2) From the previous sequence we can extract a subsequence converging to
some (ω,Δ) ∈ T δ

2 .

Proof. Step 1: A first transformation
According to [CVV04] (see the proof of Théorème 3, page 215 and Lemma 9,

page 216), for each n ∈ N, there is a number αn ∈ (0,1/2] and an affine trans-
formation An of R

2 such that:
(1) The bounded open convex domain Ωn := An(ωn) is contained in the tri-

angle T ⊂ R
2 whose vertices are the points (0,0), (1,0) and (0,1).

(2) The points (αn,0), (0,1 − αn) and (αn,1 − αn) are in ∂Ωn and the ideal
triangle Δn they define in (Ωn, dΩn) is equal to An(Tn).

(3) The x-axis, the y-axis, and the line passing through (1,0) and (0,1) are
tangent to ∂Ωn at the points (αn,0), (0,1 − αn) and (αn,1 − αn), respec-
tively (see Figure 3).
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Figure 3. The Ωn are convex sets included in a fixed triangle.

Remark that we may have to take out different projective lines to see the
proper convex sets ωn as convex sets in an affine space. But up to some
homography, we can suppose that we always took the same. The geometries
involved will not be changed.

Step 2: Proof of the first part of (1)
In this part, we show the first part of point (1). The second point of (1),

that is to see that the set of {αn} is uniformly bounded below by e > 0, will
be done at the step 4.

For each n ∈ N, if we consider the linear transformation Ln of R
2 defined

by

Ln(1,0) = (1/αn,0) and Ln(0,1) =
(
0,1/(1 − αn)

)
,

we have:

(1) The bounded open convex domain Cn := Ln(Ωn) is contained in the tri-
angle Tn ⊂ R

2 whose vertices are the points (0,0), (1/αn,0) and (0,1/
(1 − αn)).

(2) The points (1,0), (0,1), and (1,1) are in ∂Cn and the ideal triangle Δ
they define in (Cn, dCn) is equal to Ln(Δn).
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(3) The x-axis, the y-axis, and the line passing through (1/αn,0) and (0,1/
(1 − αn)) are tangent to ∂Cn at the points (1,0), (0,1) and (1,1), respec-
tively (see Figure 4).

For each n ∈ N, the affine transformation Ln ◦ An of R
2 induces an isometry

from (ωn, dωn) onto the metric space (Cn, dCn). Hence, we have that (Cn, dCn)
is δ-hyperbolic for all n ∈ N.

Step 3: Convergence of a subsequence
All the convex domains Cn ⊂ R

2 contain the fixed triangle Δ and are by con-
struction contained in the convex subset B = {(x, y) ∈ R

2 : x ≥ 0;
0 ≤ y ≤ 2}. The convex B correspond to a properly convex set of the pro-
jective plane because it does not contain the line {x + y = −1}.

From Lemma 2.2, page 189 in [Ben03], the set of all the bounded open
convex domains in the projective plane P

2 contained in B and containing the
image of Δ is compact for the Hausdorff distance d. Thus, there exist a proper
convex domain Ω in P

2 such that Ω ⊂ B and a subsequence of (Cn)n∈N, still
denoted by (Cn)n∈N, such that d(Cn,Ω) → 0 as n → +∞.

Point (a) of Proposition 2.10, page 12, in Benoist [Ben03], then implies
that Ω is δ-hyperbolic and strictly convex.

Note that since the points (1,0), (0,1), and (1,1) are in ∂Cn for all n ∈ N,
they also are in ∂Ω.

Step 4: The bound on the αn

By contradiction: Suppose inf {αn : n ∈ N} = 0.
By considering a subsequence, we can assume that

lim
n→+∞

αn = 0.

Figure 4. The Cn are convex sets with a fixed ideal triangle.
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Then we have that for any Cn, a part of its boundary is in the triangle (0,1),
(1,1), and (0,1/(1 − αn)). When n → +∞, the last point converges toward
(0,1), i.e., the triangle collapses on the segment defined by (0,1) and (1,1).
Hence, this segment is on ∂Ω, which contradicts the strict convexity of step 3.

This implies that there exists a constant e > 0 such that αn ∈ [e,1/2] for
all n ∈ N, and that Ω is bounded in R

2. �

Proposition 10. Let C be a bounded open convex domain in R
2 such that

∂C is α-Hölder for some α > 1. Then for any ideal triangle T in (C, dC ),
μC (T ) is finite.

Proof. Let T be an ideal triangle in (C, dC ) whose boundary ∂C is of reg-
ularity α-Hölder for some α > 1. Let a, b, and c be the vertices of T . Let
Da, Db, and Dc be the tangent at a, b, and c respectively to ∂C. For any two
points p, q in the plane, let Dpq be the straight line passing by p and q. Let
us focus on the vertex a, and choose a system of coordinates in R

2 such that
the x-axes is the straight line Da and the convex C lies in R × [0,+∞).

Then Lemma 16 implies that for ρ small enough, there is a function
f : [−ρ, ρ] → R and a real number h > 0 such that ∂C ∩ ([−ρ, ρ] × [0, h]) is
the graph of f . Now choose a′ ∈ Dab and a′ ′ ∈ Dac such that Da′a′ ′ is parallel
to Dbc and [a′, a′ ′] ⊂ [−ρ, ρ] × [0, h]. Lemma 18 implies that the area of the
triangle Ta = aa′a′ ′ is finite.

In the same way, we built two other triangles bb′b′ ′, cc′c′ ′ which are of finite
area. Now the hexagon H = (a′a′ ′b′b′ ′c′ ′c′) is a compact set in (C, dC ), hence
of finite area.

Thus, the ideal triangle T which is the union of the hexagon H and the
triangles Ta, Tb, and Tc is of finite area. �

From Benoist work, mainly Corollaire 1.5(a), page 184 in [Ben03], we know
that if (C, dC ) is Gromov-hyperbolic, then there is some α ∈ ]1,2] such that
∂C is Cα. Hence, the corollary follows.

Corollary 11. Let C be a bounded open convex domain in R
2 such that

(C, dC ) is Gromov-hyperbolic. Then for any ideal triangle T in (C, dC ), we
have that μC (T ) is finite.

2.2. Proof of Theorem 7. The proof is done by contradiction.
Assume that we can find a sequence (ωn, Tn) ∈ T δ

2 such that

sup {μωn(Tn) : n ∈ N} = +∞
and prove this is not possible.

The main idea is to use the fact that G2 acts cocompactly by isometries
on the triangle-pointed convex, to transform a converging subsequence of
(ωn, Tn) ∈ T δ

2 into a sequence of convex sets (Cn,Δ) ∈ T δ
2 evolving around

a fixed ideal triangle Δ.
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Then in a perfect world we would be able to find a convex set Cperfect

containing Δ as an ideal triangle with finite area and included in all Cn, and
then we would get a contradiction.

Things are not that easy, but almost. Actually, we will cut Δ into 4 pieces,
and for each of these pieces, we will show that there is a convex set for which
it is of finite volume and included in Cn for all n ∈ N.

Before going deeper into the proof, let us first make an overview of the
different steps.

Step 1: We transform the problem to obtain a converging sequence
(Cn,Δ) ∈ T δ

2 to (Ω,Δ), where Δ is a fixed ideal triangle, and Cn are con-
vex sets tangent to two fixed lines at two of the vertices of Δ.

Step 2: In this step, we built a small convex set G1 ⊂ Cn around the vertex
(1,0) of Δ, which is tangent to the x-axe at (1,0) and such that a sufficiently
small section T1 of Δ containing the vertex (1,0) is of finite volume V1 in G1.

Step 3: Reasoning as in the previous step we built a small convex set
G2 ⊂ Cn around the vertex (0,1) of Δ, which is tangent to the y-axe at (0,1)
and such that a sufficiently small section T2 of Δ containing the vertex (0,1)
is of finite volume V2 in G2.

Step 4: We built a small triangle A which is a section of Δ admitting the
vertex (1,1) as one of its vertices and whose volume is bounded by a finite
number V3 for any Cn.

Step 5: We built a convex set U and a compact set S such that

(a) for all n, U ⊂ Cn;
(b) μU (S) = V4 is finite; and
(c) S ∪ A ∪ T1 ∪ T2 = Δ.

We then conclude that for all n

μCn(Δ) ≤ μCn(T1) + μCn(T2) + μCn(A) + μCn(S)
≤ μG1(T1)︸ ︷︷ ︸

≤V1 by step 2

+ μG2(T2)︸ ︷︷ ︸
≤V2 by step 3

+ μCn(A)︸ ︷︷ ︸
≤V3 by step 4

+ μU (S)︸ ︷︷ ︸
≤V4 by step 5

(1)

≤ V1 + V2 + V3 + V4 < +∞

which is absurd.

Step 1: Extraction of the subsequence.
Following the proof of Proposition 9, and keeping its notations, we can find

a sequence (gn) in G2 such that gnTn = Δ and gnωn = Cn, which therefore
satisfies

(2) μCn(Δ) = μωn(Tn).

This implies that

(3) sup{μCn(Δ) : n ∈ N} = +∞.
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Furthermore, always by Proposition 9, we have (Cn,Δ)n∈N which converges
toward some Ω. Recall that (for all n ∈ N) Cn and Ω are tangent to the x-axe
at (1,0), to the y-axe at (0,1), and at (1,1) to some line.

Step 2: We will need the following theorem.

Theorem 12. Let (Dn)n∈N be a sequence of convex sets in R
2 whose Hilbert

geometry is δ-hyperbolic, for some fixed δ, and a straight line L. Assume that
• The sequence (Dn)n∈N converges to some open convex set D;
• There is some p ∈ L such that for all n, Dn lies in the same half plane

determined by L, and is tangent at p to L;
then taking as origin the point p, as x-axe the line L, and as y-axe an orthog-
onal line to L,
(1) There is a number 3a = ρ > 0 such that for all n ∈ N, there is a convex

function fn : [−3a,3a] → R and numbers bn > 0 and sn ∈ R such that

(4) ∂Dn ∩ {(x, y) ∈ R
2 : x ∈ [−3a,3a] and y < snx + bn} = Graphfn.

(2) There is some μ > 0 and α > 0 (which will be made explicit in the proof)
such that

fn(x) ≤ μ|x|α for all x ∈ [−a, a].

(3) Let
m(fn) = min{fn(−a), fn(a)}

then we have u0 := inf{m(fn) : n ∈ N} > 0.

We first show how to use Theorem 12 to achieve the second step of the
proof of Theorem 7.

We just have to exhibit the part T1 of the triangle whose area will be
bounded from above, independently of the δ-hyperbolic convex set Cn we
consider.

Let

(5) D := Ω + (−1,0)

(translate of C by the vector (−1,0)) and

(6) Dn := Cn + (−1,0) for all n ∈ N.

Note that since (Ω, dΩ) is Gromov-hyperbolic, the same is true for (D, dD).
We thus apply Theorem 12 to this sequence Dn in order to use Lemma 18

to see that a fixed triangle T1 has finite area.
To do this, let us consider a0 := (αμ)

1
1−α > 0. The tangent line to

{(x,μ|x|α) : x ∈ R} at the point (−a0, μaα
0 ) is then parallel to the line {(x, y) ∈

R
2 : y = −x}.
Define

u1 := min {u0, μaα
0 } > 0
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and pick any u ∈ (0, u1/3]. Applying the linear transformation of R
2 given by

(x, y) 
→
(

−x(3u/μ)−1/α, y/3u
)
,

we are in the situation of Lemma 18 with

λ = (3u/μ)1/α/3u ≥ 1,

from which we can deduce with τ := 2/3 ∈ (0,1) that the triangle

{(x, y) ∈ R
2 : x < 0 and −x < y < 2u}

is included in the bounded open convex domain

{(x, y) ∈ R
2 : μ|x|α < 3u and μ|x|α < y < 3u}

and has a finite Hilbert area.
So, if we consider the triangle

T1(u) := {(x, y) ∈ R
2 : x < 0 and −x < y < 2u} + (1,0)

and the bounded open convex domain

G1(u) := {(x, y) ∈ R
2 : μ|x|α < 3u and μ|x|α < y < 3u} + (1,0),

we have T1(u) ⊂ G1(u) and V1 := μG1(u)(T1(u)) is finite.
In addition, since 3u < u0, we get that for all n ∈ N, G1(u) is contained

in the convex set Cn, and thus μCn(T1(u)) ≤ V1 by Proposition 14 of the
Appendix.

Proof of Theorem 12. Let us postpone the proof of claim (1), and prove
the other two claims.

Claim (2). First note that we have fn ≥ 0 and fn(0) = 0 since (0,0) ∈ ∂Dn.
In addition, as (Dn, dDn) is δ-hyperbolic, Lemma 6.2, page 216, and Proposi-
tion 6.6, page 219, in Benoist [Ben03] implies there is a number H = H(δ) ≥ 1,
independent of n such that fn is H-quasi-symmetrically convex on the com-
pact set

[−2a,2a] ⊂ (−3a,3a).

Therefore, by Lemma 21, we have for H2 = (4H(H + 1))
1+a

a ,

(7) fn(x) ≤ 160(H2 + 1)M(fn)|x|α for all x ∈ [−a, a],

where

(8) α = 1 + log2 (1 + H−1
2 ) > 1

and

(9) M(fn) = max{fn(−a), fn(a)}.

We next claim that the sequence (M(fn))n∈N is bounded from above.
Indeed, suppose that sup {M(fn) : n ∈ N} = +∞. If

π2 : R
2 → R
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denotes the projection onto the second factor, since D is bounded and included
in R × [0,+∞), there is a number R > 0 such that

π2(D) ⊂ [0,R]

(this latter point is a consequence of the fact that Dn ⊂ R × [0,+∞) for all
n ∈ N). Then using dH(π2(Dn), π2(D)) → 0 as n → +∞, there is an integer
n1 ∈ N such that π2(Dn) ⊂ [0,3R] for all n ≥ n1.

Now there exists n ≥ n1 such that M(fn) ≥ 4R, that is,

π2(−a, fn(−a)) = fn(−a) ≥ 4R or π2(a, fn(a)) = fn(a) ≥ 4R.

As the points (−a, fn(−a)) and (a, fn(a)) are both in Dn, we get that π2(Dn) ∩
[4R,+∞) �= ∅, which is not possible.

Hence, there is a constant M > 0 such that for all n ∈ N, we have M(fn) ≤
M , and thus

fn(x) ≤ μ|x|α for all x ∈ [−a, a],
where μ := 160(H + 1)M > 0. Which proves our second claim.

Claim (3). Now, for any n ∈ N, recall that

(10) m(fn) = min{fn(−a), fn(a)}.

We have to show that

(11) inf{fn(−a) : n ∈ N} and inf{fn(a) : n ∈ N}
are both positive numbers. So, assume that one of them, for example, the
second one is equal to zero.

Therefore, there would exist a subsequence of ((a, fn(a)))n∈N that converges
to (a,0), and hence (a,0) ∈ D, since

d((a, fn(a)), D) → 0 as n → +∞.

As (0,0) ∈ D, the whole line segment {0} × [0, a] would then be included in
the convex set D. But D is included in R × [0,+∞) whose boundary contains

{0} × [0, a].
This would imply that {0} × [0, a] ⊂ ∂D, and thus D would not be strictly

convex, contradicting the Gromov hyperbolicity of (D, dD) by Socié–Méthou
[SM00].

Claim (1). Now back to the first claim. It suffices to use the following
lemma.

Lemma 13. There is a number ρ > 0 such that for all n ∈ N, we have

Dn ∩
(
(−∞, −ρ) × R

)
�= ∅ and Dn ∩

(
(ρ,+∞) × R

)
�= ∅.

Thus, given any n ∈ N, as Dn ⊂ R × [0,+∞), it suffices to apply Lemma 16
with a := ρ/3 and S = Dn in order to get numbers bn > 0 and sn ∈ R and a
convex function fn : [−3a,3a] → R such that

�(12) ∂Dn ∩ {(x, y) ∈ R
2 : x ∈ [−3a,3a] and y < snx + bn} = Graphfn.
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Proof of Lemma 13. From the Gromov hyperbolicity of (D, dD), we get
that the boundary ∂D is a 1-dimensional submanifold of R

2 of class C1 by
Karlson–Noskov [KN02].

As (0,0) ∈ ∂D, Lemma 15 then implies that D neither lies in (0,+∞) ×
(0,+∞), nor in (−∞,0) × (0,+∞).

Hence, denoting by π1 : R
2 → R the projection onto the first factor, π1(D)

is an open set in R that contains 0, and thus there exists a number r > 0 such
that

[−2r,2r] ⊂ π1(D).

Since π1 is continuous and

(13) dH(Dn, D) → 0 as n → +∞,

we get that

(14) dH(π1(Dn), π1(D)) → 0 as n → +∞,

which implies there is an integer n0 ∈ N such that for all n > n0, one has

(15) π1(Dn) ∩ (−∞, −r) �= ∅ and π1(Dn) ∩ (r,+∞) �= ∅.

Finally, given any n ∈ {0, . . . , n0}, there exists rn > 0 such that [−2rn,
2rn] ⊂ π1(Dn) by applying to Dn the same argument as the one used for D
above.

But this implies that

(16) π1(Dn) ∩ (−∞, −rn) �= ∅ and π1(Dn) ∩ (rn,+∞) �= ∅.

Then choosing ρ = min {r, r0, . . . , rn0 } > 0, Lemma 13 is proved. �

Step 3: Using the translation by the vector (0, −1) and reasoning as in
Step 1 with x and y exchanged, we get numbers β > 1, ν > 0, b0 > 0 and
0 < v1 ≤ νbβ

0 such that the following holds:

(1) The tangent line to {(ν|y|β , y) : y ∈ R} at the point (νbβ
0 , b0) is parallel to

the line {(x, y) ∈ R
2 : y = −x}.

(2) For each v ∈ (0, v1/3], the triangle

T2(v) := {(x, y) ∈ R
2 : y < 0 and −y < x < 2v} + (0,1)

and the bounded open convex domain

G2(v) := {(x, y) ∈ R
2 : ν|y|β < 3v and ν|y|α < x < 3v} + (0,1),

satisfy
T2(v) ⊂ G2(v) ⊂ Cn

for all n ∈ N and
V2 := μG2(v)(T2(v))

is finite.
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Therefore, we deduce that μCn(T2(v)) ≤ V2 for all n ∈ N.
Step 4: The geometric idea is similar to the two precedent steps. The only

difficulty is that the tangent line to Cn is not always the same, and we have
to be sure to make a uniform choice.

For each n ∈ N, consider the affine transformation Φn of R
2 defined by

Φn(1,1) = (0,0), Φn(αn − 1, αn) = (1,0),
Φn(−αn, αn − 1) = (0,1).

As
Φn

(
(1,1) + R+(−1,0)

)
= R+(1 − αn, αn)

and
Φn

(
(1,1) + R+(0, −1)

)
= R+(−αn,1 − αn),

since αn ∈ [e,1/2] (see Proposition 9), we also have

(17) Φn(Δ) ⊂ {(x, y) ∈ R
2 : y ≥ e : |x|/(1 − e)}.

Then applying Theorem 12 to Φn(Cn) ⊂ R × [0,+∞), we get numbers c > 0,
γ > 1 and κ > 0 and a convex function gn : [−c, c] → R such that

gn(x) ≤ κ|x|γ for all x ∈ [−c, c].

Next, as in claim (12) of Theorem 12 in Step 2, there exists a constant w0 > 0
such that for all n ∈ N, we have both

gn(−c) ≥ w0 and gn(c) ≥ w0.

Let

(18) c0 :=
(
e/

(
κ(1 − e)

))1/(γ−1)
> 0.

The point (c0, κcγ
0) is then the intersection point between the curve

{(x,κ|x|γ) : x ∈ R}
and the half line

{(x, y) ∈ R
2 : y = ex/(1 − e), x ≥ 0}.

Define

(19) w1 := min {w0, κcγ
0 } > 0

and pick any w ∈ (0,w1/4].
Applying the linear transformation of R

2 given by

(x, y) 
→
(

−x(4w/κ)−1/γ , y/4w
)
,

we are in the situation of Lemma 18 with

λ =
e

1 − e
(4w/κ)1/γ/4w.
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If λ ≥ 1, it is an immediate application of Lemma 18. If λ < 1, we have to
do a new linear transformation given by

(x, y) 
→ (αx,αγy)

with α = λ
1

1−γ , which allow to be in situation of Lemma 18 with λ = 1.
From this, we can deduce with τ := 3/4 ∈ (0,1) that the triangle

{(x, y) ∈ R
2 : x < 0 and −x < y < 3w}

is included in the bounded open convex domain

{(x, y) ∈ R
2 : κ|x|γ < 4w and κ|x|γ < y < 4w}

and has a finite Hilbert area, we denote by V3.
So, for every n ∈ N, if we consider the triangle

An(w) := Φ−1
n

(
{(x, y) ∈ R

2 : x < 0 and −x < y < 3w}
)

and the bounded open convex domain

Gn(w) := Φ−1
n

(
{(x, y) ∈ R

2 : μ|x|α < 4w and μ|x|α < y < 4w}
)
,

we have

An(w) ⊂ Gn(w) and μGn(w)(An(w)) = V3.

In addition, since 4w < w0, we get that for all n ∈ N, Gn(w) is contained in
the convex set Cn, and thus μCn(An(w)) ≤ V3 by Proposition 14.

Now, fix n ∈ N.
The edge of the triangle

{(x, y) ∈ R
2 : x < 0 and −x < y < 3w}

that does not contain (0,0) lies in the line � := (0,3w) + R(1,0). Hence, the
edge of the triangle An(w) that does not contain (1,1) lies in the line

�n := Φ−1
n (�) = Φ−1

n (0,3w) + R(Φn)−1(1,0)(20)
=

(
1 − 3αnw,1 + 3(αn − 1)w

)
+ R(αn − 1, αn).

The x-coordinate xn of the intersection point between �n and the line

{(x, y) ∈ R
2 : y = 1}

is then equal to
xn = 1 − 3αnw + s(αn − 1)

with s = 3(1 − αn)w/αn. From αn ∈ [e,1/2], we get that s > 0, and thus

(21) xn < 1 − 3αnw < 1 − 3ew.

On the other hand, the y-coordinate yn of the intersection point between
�n and the line

{(x, y) ∈ R
2 : x = 1}

is equal to
yn = 1 + 3(αn − 1)w + tαn
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Figure 5. The triangle A(w).

with t = 3αnw/(αn − 1). As αn ∈ [e,1/2], we have t < 0, and thus

(22) yn < 1 + 3(αn − 1)w < 1 − w < 1 − 3ew.

Using equation (17), this proves that the fixed triangle A(w) whose vertices
are the points (1,1), (1 − 3ew,1), and (1,1 − 3ew) is included in the triangle
An(w) (see Figure 5).

Conclusion: By Proposition 14, μCn(A(w)) ≤ V3 for all n ∈ N.
Step 5:Let us introduce the points

p3 := (1,1 − ew), p4 := (1 − ew,1),

by step 4, p3 and p4 are in A(w) (see Figure 6).
Now consider U the convex hull of G1(u) ∪ G2(v) ∪ {p3, p4}, recall that for

all n ∈ N we have

G1(u) ⊂ Cn, by step 2;
G2(v) ⊂ Cn, by step 3;

p3, p4 ∈ A(w) ⊂ Cn, by step 4,

hence, the fixed bounded open convex domain U is included in the convex
set Cn, for all n ∈ N.
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Figure 6. The convex set U and the compact set S.

Now, if S is the closed convex hull in R
2 of the points (see Figure 6)

q1 := (1 − u,u), q2 := (1, u), q3 := (1,1 − 2ew),
q4 := (1 − 2ew,1), q5 := (v,1), q6 := (v,1 − v),

we have S ∈ U , and thus V4 := μU (S) is finite, since S is compact.
This gives that S ⊂ Cn with μCn(S) ≤ V4 for all n ∈ N.
Finally, as Δ ⊂ T1(u) ∪ T2(v) ∪ A(w) ∪ S, we get

μCn(Δ) ≤ μCn(T1(u)) + μCn(T2(v))(23)
+ μCn(A(w)) + μCn(S)

≤ V1 + V2 + V3 + V4 =: V < +∞.

But this is in contradiction with the assumption

sup {μCn(Δ) : n ∈ N} = +∞,
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hence, Theorem 7 is proved.

Appendix. Technical lemmas

We recall, without proof, Proposition 5 in [CVV04], page 208.

Proposition 14. Let (A, dA) and (B, dB) be two Hilbert’s geometries such
that A ⊂ B ⊂ R

n. Then
(1) The Finsler metrics FA and FB satisfy FB(p, v) ≤ FA(p, v) for all p ∈ A

and all none null v ∈ R
n with equality, if and only if p−

A = p−
B and p+

A = p+
B .

(2) If p, q ∈ A, we have dB(p, q) ≤ dA(p, q).
(3) For all p ∈ A, we have μ(BA(p)) ≤ μ(BB(p)) with equality, if, and only

if A = B.
(4) For any Borel set A in A, we have μB(A) ≤ μA(A) with equality, if and

only if A = B.

Lemma 15. Fix s ∈ R and consider the half-closed cone C = {(x, y) ∈
R

2 : x ≥ 0 and y ≤ sx} in R
2. Then we have:

(1) For any ε > 0 and any parameterized curve σ : (−ε, ε) → R
2 that is differ-

entiable at t = 0, if σ(0) = (0,0) and σ((−ε, ε)) ⊂ C, then σ′(0) = (0,0).
(2) For any 1-dimensional topological submanifold Γ of R

2, if (0,0) ∈ Γ and
Γ ⊂ C, then Γ is not a differentiable submanifold of R

2 at (0,0).

Proof. Point 1: Let σ(t) = (x(t), y(t)) for all t ∈ (−ε, ε). As x(t) ≥ 0 = x(0)
for all t ∈ (−ε, ε), the function x : (−ε, ε) → R has a local minimum at t = 0,
and thus x′(0) = 0.

On the other hand, for all t ∈ (−ε, ε), we have y(t) ≤ sx(t), or equivalently
y(t) − sx(t) ≤ 0 = y(0) − sx(0). This shows that the function y − sx : (−ε, ε) →
R has a local minimum at t = 0, and thus (y − sx)′(0) = 0. But x′(0) = 0, and
hence y′(0) = 0, which proves the first point of the lemma.

Point 2: Assume that Γ is a 1-dimensional differentiable submanifold of
R

2 at (0,0).
Then we can find open sets U and V in R

2 that contain (0,0) together
with a diffeomorphism Φ : U → V satisfying Φ(U ∩ Γ) = V ∩ (R × {0}) and
Φ(0,0) = (0,0).

Let ε > 0 such that (−ε, ε) × {0} ⊂ V ∩ (R × {0}), and consider the para-
meterized curve σ : (−ε, ε) → R

2 defined by σ(t) = Φ−1(t,0).
As σ is differentiable at t = 0 and satisfies σ((−ε, ε)) ⊂ U ∩ Γ ⊂ Γ ⊂ C and

σ(0) = (0,0), we get from Point (1) above that σ′(0) = (0,0), which implies
that (Φ ◦ σ)′(0) = (0,0) by the chain rule.

But a direct calculation gives (Φ ◦ σ)(t) = (t,0) for all t ∈ (−ε, ε), and hence
(Φ ◦ σ)′(0) = (1,0) �= (0,0).

So Γ cannot be a 1-dimensional differentiable submanifold of R
2 at (0,0),

proving the second point of the lemma. �
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Lemma 16. Let ρ > 0 and S be an open convex domain in R
2 that lies in

R × (0,+∞).
If S ∩ ((−∞, −ρ) × R) �= ∅ and S ∩ ((ρ,+∞) × R) �= ∅, then there exist s ∈ R,

b > 0 and a function f : [−ρ, ρ] → R such that

∂S ∩ {(x, y) ∈ R
2 : x ∈ [−ρ, ρ] and y < sx + b} = Graphf.

Proof. Pick
p0 = (x0, y0) ∈ S ∩

(
(−∞, −ρ) × R

)
and

p1 = (x1, y1) ∈ S ∩
(
(ρ,+∞) × R

)
.

The closed line segment L with vertices p0 and p1 then lies in the convex
set S . Denoting by π1 : R

2 → R the projection onto the first factor, we thus
get [−ρ, ρ] ⊂ [x0, x1] = π1(L) ⊂ π1(S). Since S ⊂ R × (0,+∞), this allows us
to consider the function f : [−ρ, ρ] → R defined by

f(x) = inf{y ≥ 0 : (x, y) ∈ S }.

Fix x ∈ [−ρ, ρ].
Given any z ≥ 0 such that (x, z) ∈ S , we have by compactness

f(x) = inf{y ∈ [0, z] : (x, y) ∈ S } = min{y ∈ [0, z] : (x, y) ∈ S },

and thus (x, f(x)) ∈ S .
If (x, f(x)) were in S , there would exist ε > 0 such that

[x − ε,x + ε] × [f(x) − ε, f(x) + ε] ⊂ S ⊂ R × [0,+∞),

and thus we would get f(x) − ε ∈ {y ≥ 0 : (x, y) ∈ S }. But this contradicts the
very definition of f(x). Therefore, we have (x, f(x)) ∈ ∂S .

Now let s = (y1 − y0)/(x1 − x0) and b = (x1y0 − x0y1)/(x1 − x0) > 0.
The equation of the straight line containing L is then y = sx + b.

Since for all x ∈ [−ρ, ρ], the point (x, sx + b) ∈ L ⊂ S , we get f(x) ≤ sx + b
from the definition of f . As (x, f(x)) ∈ ∂S and L ∩ ∂S = ∅, we also have
f(x) �= sx + b. Hence,

Graphf ⊂ ∂S ∩ {(x, y) ∈ R
2 : x ∈ [−ρ, ρ] and y < sx + b}.

On the other hand, for any given (x, z) ∈ ∂S ∩ {(x, y) ∈ R
2 : x ∈ [−ρ, ρ] and

y < sx+ b}, assume there is y ≥ 0 with (x, y) ∈ S satisfying y < z. Then (x, z)
is in the triangle whose vertices are p0, p1 and (x, y), which is not possible
since this triangle lies in S (the interior of the closure of a convex set in R

n

is equal to the interior of that convex set in R
n) and (x, z) ∈ ∂S . Therefore,

z ≤ y, which shows that z = f(x) by the definition of f . This proves that

∂S ∩ {(x, y) ∈ R
2 : x ∈ [−ρ, ρ] and y < sx + b} ⊂ Graphf. �
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Figure 7. Lemma 18 illustrated.

Remark 17. The function f obtained in Lemma 16 satisfies f ≥ 0 and is
automatically convex since its epigraph is equal to the convex set in R

2 equal
to the union of the convex set

S ∩ {(x, y) ∈ R
2 : x ∈ [−ρ, ρ] and y < sx + b} ⊂ R

2

(intersection of two convex sets in R
2) and the convex set

{(x, y) ∈ R
2 : x ∈ [−ρ, ρ] and y ≥ sx + b} ⊂ R

2.

Lemma 18. Let α > 1, λ ≥ 1 and τ ∈ (0,1). Consider the bounded open
convex domain

(24) G = {(x, y) ∈ R
2 : −1 < x < 1 and |x|α < y < 1}

and the triangle

(25) T = {(x, y) ∈ R
2 : x > 0 and λx < y < τ }.

Then we have T ⊂ G and the area μG (T ) is finite (see Figure 7).

Proof. Step 1: For each p = (x, y) ∈ T , let BG (p) = {v ∈ R
2 : FG (p, v) < 1}

be the open unit ball in TpG = R
2 of the norm FG (p, ·).

An easy computation shows that the vectors

v1 =
(
(y2/α − x2)/y1/α,0

)
and v2 =

(
0,2(1 − y)(y − xα)/(1 − xα)

)
are in the boundary ∂BG (p) of BG (p).

As BG (p) is convex and symmetric about (0,0) in TpG = R
2, we get that

the rhombus defined as the convex hull of v1, v2, −v1 and −v2 is included in
the closure of BG (p) in TpG = R

2.
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Therefore, the Euclidian volume of this rhombus is less than or equal to
that of BG (p), which writes

Vol(BG (p)) ≥ 4
(1 − y)(y − xα)(y2/α − x2)

y1/α(1 − xα)
.

Since 1 − xα ≤ 1 and 1 − y ≥ 1 − τ , we then deduce

Vol(BG (p)) ≥ 4(1 − τ)
(y − xα)(y2/α − x2)

y1/α
.

Step 2: From the inequality obtained in step 1, we have

(26) μG (T ) = π

∫ ∫
T

dxdy

VolBG (p)
≤ π

4(1 − τ)
I,

where

I :=
∫ ∫

T

y1/αdxdy

(y − xα)(y2/α − x2)
.

Now, using the change of variables Φ : (0,+∞)2 → (0,+∞)2 defined by

(s, t) = Φ(x, y) := (x/y1/α, x),

whose Jacobian at any (x, y) ∈ (0,+∞)2 is equal to x/(αy1+1/α), we get

I = α

∫ ∫
Φ(T )

dsdt

t(1 − sα)(1 − s2)

with

Φ(T ) = {(s, t) ∈ R
2 : 0 < t < τ/λ

and t · τ −1/α < s < λ−1/α · t1−1/α}.

So,

I = α

∫ τ
λ

0

1
t

(∫ λ−1/αt1−1/α

τ −1/αt

1
(1 − sα)(1 − s2)

ds

)
dt

≤ α

∫ τ
λ

0

1
t

(∫ λ−1/αt1−1/α

τ −1/αt

1
(1 − τα−1λ−α)(1 − τ2−2/αλ−2)

ds

)
dt,

since (s, t) ∈ Φ(T ) implies

1 − sα ≥ 1 − tα−1/λ ≥ τα−1λ−α and

1 − s2 ≥ 1 − λ−2/αt2−2/α ≥ τ2−2/αλ−2.

Therefore, one has

I ≤ α

∫ τ/λ

0

λ−1/αt−1/α − τ −1/α

(1 − τα−1λ−α)(1 − τ2−2/αλ−2)
dt

≤ Λ
∫ τ/λ

0

1
t1/α

dt,



TRIANGLES AND δ-HYPERBOLICITY IN HILBERT GEOMETRY 341

where Λ := αλ−1/α

(1−τα−1λ−α)(1−τ2−2/αλ−2)
.

Since 1/α < 1, this shows that I < +∞, and equation (26) proves the
lemma. �

Definition 19. Given a number K ≥ 1 and an interval I ⊂ R, a function
f : I → R is said to be K-quasi-symmetric if and only if one has:

∀x ∈ I, ∀h ∈ R (x + h ∈ I and x − h ∈ I)(27)
=⇒ |f(x + h) − f(x)| ≤ K|f(x) − f(x − h)|.

Definition 20. Given a number H ≥ 1 and an interval I ⊂ R, a function
f : I → R is said to be H-quasi-symmetrically convex if and only if it is convex,
differentiable and has the following property:

∀x ∈ I, ∀h ∈ R (x + h ∈ I and x − h ∈ I)(28)
=⇒ Dx(h) ≤ HDx(−h),

where
Dx(h) := f(x + h) − f(x) − f ′(x)h.

Lemma 21. Let a > 0, H ≥ 1 and f : [−2a,2a] → R a H-quasi-symmetri-
cally convex function that satisfies f ≥ 0 and f(0) = 0. Define

(29) H2 =
(
4H(H + 1)

) 1+a
a > 1

and

(30) α = 1 + log2(1 + H−1
2 ) > 1

and M(f) = max{f(−a), f(a)}. Then we have

(31) f(x) ≤ 160(H2 + 1)M(f)|x|α for all x ∈ [−a, a].

Before proving this lemma, recall the two following results due to Benoist
[Ben03].

Lemma 22 ([Ben03], Lemma 5.3(b), page 204). Let a > 0, H ≥ 1 and
f : [−2a,2a] → R a H-quasi-symmetrically convex function. Then the re-
striction of the derivative f ′ to [−a, a] is K-quasi-symmetric, where K =
(4H(H + 1))

1+a
a ≥ 1.

Lemma 23 ([Ben03], Lemma 4.9(a), page 203). Let a > 0, K ≥ 1 and
f : [−a, a] → R a differentiable convex function.

If the derivative f ′ is K-quasi-symmetric, then for all x, y ∈ [−a, a], we
have

|f ′(x) − f ′(y)| ≤ 160(1 + K)‖f ‖∞ |x − y|α−1,

where α = 1 + log2

(
1 + 1/K

)
> 1.
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Proof of Lemma 21. Using Lemma 22, we have that the derivative f ′ of
f is K-quasi-symmetric when restricted to [−a, a]. But then according to
Lemma 23 with y = 0 and the fact that f ′(0) = 0, since 0 is the minimum
of f , we get that

|f ′(x)| ≤ 160(1 + K) max
t∈[−a,a]

|f(t)| |x|α−1 for all x ∈ [−a, a].

Now, the convexity of f implies that f ′ is a nondecreasing function. As
f ′(0) = 0, we have that f ′(x) ≤ 0 for all x ∈ [−a,0] and f ′(x) ≥ 0 for all x ∈
[0, a]. Hence, f is a function that is nonincreasing on [−a,0] and nondecreasing
on [0, a], which yields to maxt∈[−a,a] |f(t)| = M(f) and

(32) |f ′(x)| ≤ 160(1 + K)M(f)|x|α−1 for all x ∈ [−a, a].

Choosing an arbitrary u ∈ [−a, a] and applying Taylor’s theorem to f between
0 and u, we get the existence of ϑ ∈ (0,1) such that

f ′(ϑu)u = f(u) − f(0) = f(u).

Therefore, plugging x = ϑu ∈ [−a, a] in equation (32) and multiplying by |u|,
one has

|f(u)| = |f ′(ϑu)| |u| ≤ 160(1 + K)M(f)|ϑu|α−1|u|(33)
≤ 160(1 + K)M(f)|u|α

since |ϑu| ≤ |u|. This proves Lemma 21. �
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Hilbert plane, Bull. Soc. Math. France 134 (2006), 357–381. MR 2245997

[CV04] B. Colbois and P. Verovic, Hilbert geometry for strictly convex domains, Geom.
Dedicata 105 (2004), 29–42. MR 2057242

[CVV04] B. Colbois, C. Vernicos, and P. Verovic, L’aire des triangles idéaux en géométrie
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