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DIRECT SINGULARITIES AND COMPLETELY INVARIANT
DOMAINS OF ENTIRE FUNCTIONS

WALTER BERGWEILER AND ALEXANDRE EREMENKO

Abstract. Let f be a transcendental entire function which omits
a point a ∈ C. We show that if D is a simply connected domain

which does not contain a, then the full preimage f −1(D) is dis-
connected. Thus, in dynamical context, if an entire function has

a completely invariant domain and omits some value, then the

omitted value belongs to the completely invariant domain. We

conjecture that the same property holds if a is a locally omit-
ted value (i.e., the projection of a direct singularity of f −1). We

were able to prove this conjecture for entire functions of finite

order. We include some auxiliary results on singularities of f −1

for entire functions f , which can be of independent interest.

1. Introduction and results

The question considered in this paper is motivated by dynamics of entire
functions ([3], [6]). A component D of the Fatou set of an entire function f
is called a completely invariant domain if f −1(D) = D. This is a stronger
property than simple invariance f(D) ⊂ D.

In what follows, all entire functions are assumed to be transcendental. It
follows from a result of Baker [2, Theorem 1] that all invariant components
of the Fatou set of such a function are simply connected. Baker also proved
that at most one completely invariant domain can exist [1], and if f has
a completely invariant domain, then all critical values (and thus all critical
points) of f are contained in it [2, Theorem 2].
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In [6, Lemma 11], the latter result of Baker was extended to the loga-
rithmic singularities of f −1: a completely invariant domain must contain all
projections of logarithmic singularities of f −1. In this paper, we consider
possibilities of extension of this result to other types of singularities of f −1.

A point a ∈ C is omitted by an entire function f if f(z) �= a for z ∈ C.
A point a ∈ C is locally omitted by f if there exists r > 0 and a component G
of the set f −1(B(a, r)) such that f(z) �= a in G. Here and in what follows, we
use the notation B(a, r) for a disc of radius r centered at a ∈ C. According
to Iversen’s classification of singularities, which will be recalled in Section 2,
a value is locally omitted if and only if it is the projection of a direct singularity
of f −1. In the special case that f : G → B(a, r) \ {a} is a universal covering
we say that a is the projection of a logarithmic singularity of f −1.

It is known that an omitted value does not have to be the projection of a
logarithmic singularity. An example of this is

(1) f(z) = exp

( ∞∑
k=1

(
z

2k

)2k)
.

We will analyze this example at the end of the paper.

Theorem 1. Let f be an entire transcendental function omitting a point
a ∈ C, and let D be a simply connected region that does not contain a. Then
f −1(D) is disconnected.

Corollary. Let f be a transcendental entire function having a completely
invariant domain D. If f omits a point, then this point belongs to D.

We conjecture that Theorem 1 and the corollary can be extended to lo-
cally omitted values. Paper [6] contains a statement that the corollary can
be proved for locally omitted values in the same way as for projections of
logarithmic singularities. However, the argument given in [6] does not ap-
ply to locally omitted values of arbitrary entire functions. So, the conjecture
remains open.

In this paper, we prove the conjecture for functions of finite order. Namely,
we establish the following.

Theorem 2. Let f be an entire function of finite order, and let a ∈ C be
either a critical value or a locally omitted value. If D is a simply connected
region that does not contain a, then f −1(D) is disconnected.

Iversen’s theorem (stated in Section 2) implies that a locally omitted value
has to be an asymptotic value. There is an example [4] of an entire function
of finite order with a completely invariant domain D and an asymptotic value
that does not belong to D.

It is interesting that Theorem 2 has a converse.
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Theorem 3. Let f be an entire function of finite order, and let a ∈ C

be neither a critical value nor a locally omitted value. Then there exists a
simply connected region D which does not contain a, and such that f −1(D)
is connected.

The case of a locally omitted value in Theorem 2 is based on the following
result which is of independent interest.

Theorem 4. Let f be an entire function of finite order, and a ∈ C a locally
omitted value. Then a is the projection of a logarithmic singularity of f −1.

The structure of the paper is the following. In Section 2, we recall auxiliary
facts on the singularities of the inverses of entire functions. In Section 3, we
prove Theorems 1, 2, and 4. In Section 4, we discuss some results needed
for the proof of Theorem 3 and then we prove Theorem 3 in Section 5. In
Section 6, we analyze the example (1).

2. Preliminaries

We shall repeatedly use the following result of Iversen [11], which follows
easily from the Gross Star theorem [12, p. 292], or from the variant of the
Gross Star theorem stated as Proposition 1 in Section 4 below.

Iversen’s theorem. Let φ be a holomorphic branch of the inverse f −1

defined in a neighborhood of some point w0 and let γ : [0,1] → C be a curve
with γ(0) = w0. Then for every ε > 0, there exists a curve γ̃ : [0,1] → C satis-
fying γ̃(0) = w0 and |γ(t) − γ̃(t)| < ε such that φ has an analytic continuation
along γ̃.

Now we recall Iversen’s classification of singularities; see [5], [11], or [12,
p. 289]. Let f be a transcendental meromorphic function and a ∈ C. Consider
the open discs B(a, r) of radius r centered at a. For every r > 0, it is possible
to choose a component Ur of the preimage f −1(B(a, r)) in such a way that
r1 < r2 implies Ur1 ⊂ Ur2 . The possibility of such a choice of (nonempty)
components Ur follows from Iversen’s theorem.

Now, we have two possibilities:
(a)

⋂
r>0 Ur consists of one point, or

(b)
⋂

r>0 Ur = ∅.

In the latter case, we say that our choice r �→ Ur defines a transcendental
singularity of f −1 over a. We also say that a is the projection of the transcen-
dental singularity, or that the transcendental singularity lies over a, and any
of the sets Ur is called a neighborhood of the transcendental singularity. Pro-
jections of transcendental singularities coincide with asymptotic values of f .
A transcendental singularity over a is called direct if for some r > 0 we have
f(z) �= a for z ∈ Ur. Otherwise, it is called indirect. A direct singularity is
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called logarithmic if the restriction f : Ur → B(a, r)\{a} is a universal cover-
ing for some r > 0. All these definitions can be also given for a = ∞ using
B(∞, r) = {z ∈ C : |z| > 1/r}.

It is clear from these definitions that locally omitted values are exactly the
projections of direct singularities.

For example, expz has a logarithmic singularity over 0, and (sinz)/z has
two indirect singularities over 0.

The importance of direct singularities comes to a great extent from the
following result [12, Section XI.4].

Denjoy–Carleman–Ahlfors theorem. A meromorphic function of fi-
nite order has only finitely many direct singularities.

A corollary of this result is that an entire function of finite order has only
finitely many asymptotic values [12, p. 313].

In Section 6, we will prove that for the function (1) the set of direct singu-
larities over 0 has the power of continuum, but none of these singularities is
logarithmic. According to Heins [10], the set of projections of direct singular-
ities is always at most countable, but the set of direct singularities over one
point can have the power of the continuum. Example (1) is a new example
of this kind; unlike the previous examples, it is given by a simple explicit
formula.

3. Proofs of Theorems 1, 2 and 4

Proof of Theorem 1. Suppose that f −1(D) is connected. Using Iversen’s
theorem, we can find a Jordan curve Γ : [0,1] → C with Γ(0) = Γ(1) = b for
some point b ∈ D, such that Γ does not pass through a,

1
2π

∫
Γ

dw

w − a
= 1,

and there exists a holomorphic branch φ of f −1 at b, such that φ has an
analytic continuation along Γ. The preimage of Γ under this branch φ and its
analytic continuation along Γ is a simple compact arc γ, which may be closed
or not. Both endpoints of γ belong to f −1(D), and as f −1(D) is supposed
to be connected, we can find an arc γ1 in f −1(D), connecting the endpoints
of γ. We have f(γ′) ⊂ D, D is simply connected, and a /∈ D. So,

1
2π

∫
f(γ′)

dw

w − a
= 0.

So,
1
2π

∫
γ∪γ′

df(z)
f(z) − a

=
1
2π

∫
Γ∪f(γ′)

dw

w − a
= 1,

which is a contradiction because γ ∪ γ′ is a closed curve and f(z) �= a in the
plane. This proves Theorem 1. �
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Now, we prove the following result from which Theorem 4 follows.

Theorem 5. If an entire function has a direct singularity over some point
a which is not a logarithmic singularity, then every neighborhood of this sin-
gularity is also a neighborhood of other direct singularities over a.

It follows that whenever we have a direct singularity over some point and
no logarithmic singularities over the same point, then the set of direct singu-
larities over this point has the power of the continuum.

As functions of finite order have only finitely many direct singularities by
the Denjoy–Carleman–Ahlfors theorem, we obtain Theorem 4.

The proof of Theorem 5 requires the following lemma.

Lemma 1. Let μ be a singular measure on the unit circle, and A = {eiθ : θ ∈
(a, b)} an arc of the unit circle such that μ(A) > 0. Then there exists a point
θ ∈ (a, b) such

lim
r→1

u(reiθ) = +∞,

where

u(reiθ) =
1
2π

∫ π

−π

1 − r2

1 + r2 − 2r cos(t − θ)
dμ(t)

is the Poisson integral of μ.

This is well known and we include a standard proof for completeness (see,
for example, [7, (6.3)]).

Proof of Lemma 1. For a subinterval (x, y) of (a, b), we denote by μ(x, y)
the measure of the arc {eiθ : θ ∈ (x, y)}. We first prove that there exists
θ ∈ (a, b) such that

(2) lim
ε→0

1
2ε

μ(θ − ε, θ + ε) = +∞.

Proving this by contradiction, suppose that such θ does not exist. Then
the sets

En =
{

x ∈ (a + 1/n, b − 1/n) : lim inf
ε→0

1
2ε

μ(x − ε,x + ε) ≤ n

}
,

n = n0, n0 + 1, . . . , cover (a, b). Fix n ≥ n0. For every x ∈ En, there exists
an interval of the form (x − ε,x + ε) with ε ∈ (0, n−2) whose μ-measure is at
most 4εn. By the well-known covering lemma [9, Theorem 1.1], En can be
covered by some of these intervals such that the multiplicity of this covering
is an absolute constant K. Thus, we obtain that μ(En) ≤ 4K/n. As the sets
En form an increasing sequence, we conclude that μ(En) = 0 for all n ≥ n0.
So, μ(a, b) = 0 and we obtain a contradiction, which proves the existence of
the point θ satisfying (2).
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Now, it is easy to pass from (2) to the Poisson integral. For 0 < ε < π, we
have

u(reiθ) ≥ 1
2π

∫ θ+ε

θ−ε

1 − r2

1 + r2 − 2r cos(t − θ)
dμ(t)

≥ 1
2π

1 − r2

1 + r2 − 2r cosε
μ(θ − ε, θ + ε).

Putting r = 1 − ε and noting that then

1 − r2

1 + r2 − 2r cosε
≥ 1

ε

for sufficiently small ε, we obtain

u(reiθ) ≥ 1
2πε

μ(θ − ε, θ + ε),

which completes the proof. �

Proof of Theorem 5. Suppose that U = Ur is a neighborhood of exactly one
direct singularity over a finite point a, where r > 0 is so small that f(z) �= a
in U . We are going to prove that this singularity is logarithmic.

By the maximum principle, U is simply connected. It is easy to see that
the closure of U in the Riemann sphere is locally connected. So, a conformal
map φ : B(0,1) → U extends to a continuous map from the unit disc to the
Riemann sphere. The preimage of infinity under φ is a closed subset E, of the
unit circle, which by a theorem of Beurling [15, p. 344] has zero logarithmic
capacity.

We consider the positive harmonic function

u(z) := log
r

|f(φ(z)) − a| , z ∈ B(0,1).

It has a Poisson representation

u(reiθ) =
1
2π

∫ π

−π

1 − r2

1 + r2 − 2r cos(t − θ)
dμ(t)

for some finite Borel measure μ, and we have limr→1 u(reiθ) = 0 if eiθ /∈ E.
As E has zero capacity, and thus zero length, the measure μ is singular.
It is easy to see that if μ is a single atom so that u is proportional to the
Poisson kernel, then f : U → B(r, a) \ {a} is a universal covering, and thus the
singularity we consider is logarithmic.

Otherwise, there is a simple cross-cut σ in B(0,1) beginning and ending in
the complement of E, such that the two arcs on the unit circle bounded by
the endpoints of σ both intersect the support of μ. Lemma 1 implies that u
is unbounded in each of the two components G1 and G2 of B(0,1)\σ. The
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image φ(σ) of this cross-cut separates U into two regions Dj = φ(Gj). The
harmonic function

v(z) := u(φ−1(z)) = log
r

|f(z) − a|

is unbounded in each Dj and bounded on ∂Dj for j = 1,2. Thus, there exists
ε > 0 such that{

z ∈ U : v(z) > log
r

ε

}
= {z ∈ U : |f(z) − a| < ε}

is disconnected. As f(z) �= a for z ∈ U we conclude that U is a neighborhood
of at least two singularities over 0. This completes the proof of Theorem 5. �

As we already mentioned, Theorem 4 follows from Theorem 5 and the
Denjoy–Carleman–Ahlfors theorem.

Now, Theorem 2 is an easy corollary: In the case of a critical value, we
repeat Baker’s argument [1] and in the case of a locally omitted value, we first
use Theorem 4, to conclude that this singularity is in fact logarithmic, and
then repeat the argument from [6]. Both [1] and [6] deal only with the case
that D is completely invariant, but the arguments extend to the situation of
Theorem 2 without difficulty.

4. Results needed for the proof of Theorem 3

The following definition will be used in the proof of Theorem 3. Let f be
an entire function. A simple curve γ will be called good for f , if γ contains
no critical values of f and all components of the full preimage f −1(γ) are
compact.

It is easy to see that a simple curve which contains neither critical values
nor asymptotic values is good. For entire functions of finite order, there can
be only finitely many asymptotic values by the Denjoy–Carleman–Ahlfors
theorem. Thus, we obtain the existence of good curves, and in fact we see
that the conclusion of Proposition 1 and 2 below holds for entire functions of
finite order.

In general, there are entire functions for which every point in the complex
plane is an asymptotic value [8], so the existence of good curves for such
functions is not evident. An instructive example is given by f(z) = (sin z)/z.
Here, 0 is the projection of an indirect singularity. However, one can show
that the segment [−i, i] is good. On the other hand, [−ε, ε] is not good for
any positive ε.

In the remaining part of this section, we will prove the existence of good
curves in general. This material is not used anywhere else in the paper, but
may be of independent interest.
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Our Propositions 1 and 2 below are similar to the results of Shimizu [13,
p. 186] and Terasaka [14, Lemma on p. 310]. We need the following version
of the classical Gross Star theorem [12, p. 292]:

Proposition 1. Let φ be a holomorphic branch of the inverse f −1 defined
in some disc B, and let 	 be some direction in the plane. Then φ has an
analytic continuation along almost all straight lines intersecting B and having
the direction 	.

Such lines can be parametrized by the points of their intersection with the
diameter of B perpendicular to 	. “Almost all” refers to the Lebesgue measure
on this diameter.

Proof of Proposition 1. We assume for simplicity that the direction 	 is
parallel to the real axis, and that the diameter of B perpendicular to this
direction is (ia, ib), where a < b. Let M > b − a. Consider the rectangle

QM := {z = x + iy : |x| < M,y ∈ (a, b)}.

For each horizontal interval {x+ iy0 : |x| < M }, where y0 ∈ (a, b), we consider
the maximal open subinterval containing the point iy0 such that an analytic
continuation of φ is possible along this subinterval. The union of these max-
imal subintervals over all y0 ∈ (a, b) forms a region GM ⊂ QM . If a maximal
horizontal interval in GM has an endpoint inside QM , then we will call this
endpoint a singular point of φ. It is enough to show that the Lebesgue mea-
sure of the projection of the set of singular points on the imaginary axis is
zero, for every fixed M > b − a. The analytic continuation of φ along maximal
horizontal intervals in GM maps GM univalently onto some region G′

M ⊂ C.
The singular points in GM correspond to the critical values of f and to the
accessible points at infinity of G′

M . Since the set of critical values is countable,
the Lebesgue measure of its projection on the imaginary axis is zero.

Let σ′
r be the intersection of G′

M with the circle {z : |z| = r}. We may
assume that φ is bounded in B. Then for r > r0 the set σr := f(σ′

r) is a
union of cross-cuts in GM which separate the diameter [ia, ib] from the set of
singular points of φ on the boundary of GM . It is enough to show that the
length of σr tends to zero as r → ∞ on some sequence.

We have
length(σr) =

∫
σ′

r

|f ′(z)| |dz|

and by Schwarz’s inequality

length2(σr) ≤ 2πr

∫
σ′

r

|f ′(z)|2 |dz|.

Dividing by r and integrating with respect to r from r0 to ∞, we obtain∫ ∞

r0

length2(σr)
dr

r
≤ 2π

∫ ∫
G′

M

|f ′(z)|2 dxdy = 2π area(GM ) ≤ 2π area(QM ).
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Thus, the integral on the left-hand side converges.
We conclude that length(σr) → 0 on some sequence r = rk → ∞. This

proves the proposition. �

Proposition 2. Let f be an entire function, and Q = (a, b, c, d) a rectangle
in the plane. Then almost every closed interval connecting the opposite sides
[a, b] and [c, d] and parallel to the other sides is good for f .

Proof. Consider the set of pairs {Bj , φj }, where Bj is a disc contained in Q,
having rational center and rational radius, and φ is a holomorphic branch
of f −1 in this disc. According to the Poincaré–Volterra theorem, this set is
countable. Applying Proposition 1 to the pair {Bj , φj } and the direction [a, d]
we obtain an exceptional set of lines Ej of measure zero. Then E =

⋃
Ej is a

set of measure zero, and all intervals which are intersections of Q with lines
parallel to [a, d] and not in E are good for f . This proves the proposition. �

As mentioned, we will use Propositions 1 and 2 only for entire functions of
finite order, and for such functions the conclusion follows from the Denjoy–
Carleman–Ahlfors theorem.

5. Proof of Theorem 3

Lemma 2. Let f be an entire function of finite order and let a ∈ C. Then
there exists r0 > 0 such that if 0 < r ≤ r0, then all components of f −1(B(a, r))
have connected boundary.

Proof. Let U be a component of f −1(B(a, r)). By the maximum principle,
U is simply connected. Each complementary component of U contains a
neighborhood of a singularity of f −1 over ∞.

By the Denjoy–Carleman–Ahlfors theorem, there are only finitely many
singularities of f −1 over ∞. It follows that there exists r0 > 0 such that
f −1(C \ B(a, r)) is connected for 0 < r ≤ r0. As this set is a neighborhood
of each singularity of f −1 over ∞, we deduce that the complement of U is
connected. Hence, the boundary of U is connected. �

Proof of Theorem 3. We will construct a simple curve Γ connecting a
with ∞ such that the preimage of Γ consists of infinitely many simple, pairwise
disjoint curves which connect the preimages of a with ∞. With D := C\Γ, we
then see that both D and f −1(D) are simply connected.

We choose r0 according to Lemma 2. We begin with a simple curve Γ0 (for
example, a straight line segment) which is good for f and connects a point
w0 ∈ B(a, r0) to some point in C\B(a, r0). In addition, we may assume that
Γ0 ∩ ∂B(a, r) consists of at most one point for all r. Curves with the latter
property will be called a-monotonic. The existence of a curve Γ0 with the
properties mentioned follows from Proposition 2.
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Take a point a point b ∈ Γ0 ∩ C\B(a, r0) which is not the endpoint of Γ0

and let (cj) be the sequence of b-points of f . Let γ0
1 be the component of

f −1(Γ0) which contains c1. Then γ0
1 is a simple curve connecting a w0-point

x1 with c1. Let U1 be the component of f −1(B(a, r0)) that contains x1. Since
f has no direct singularity or critical point over a, there exists z1 ∈ U1 with
f(z1) = a and f ′(z1) �= 0. Thus, there exists r1 with 0 < r1 < r0 such that
there is a branch φ1 of f −1 which is defined in B(a, r1) and maps a to z1. We
may also assume that φ1 is bounded in B(a, r1).

We can connect z1 by a curve σ1 to ∂U1 such that f(σ1) is a straight line
connecting a to ∂B(a, r0). (Here, we say that a curve γ connects a point z
to a set S if γ is a simple curve such that one endpoint of γ is z while the
other one is in S, and S ∩ γ consists only of that endpoint.) Since r0 has been
chosen according to Lemma 2, the boundary of U1 is connected. Thus, we can
connect the endpoint of σ1 in ∂U1 by a curve σ′

1 ⊂ ∂U1 to the point v1 which
lies in the intersection of γ0

1 and ∂U1. (Note that the intersection of γ0
1 and ∂U1

consists of only one point since Γ0 = f(γ0
1) is a-monotonic.) The curve σ1 +σ′

1

thus connects z1 to v1. By deforming σ′
1 slightly we can replace the curve

σ1 +σ′
1 by a curve τ1 which connects z1 to v1 such that f(τ1) is a-monotonic.

Using Proposition 2, we can replace τ1 by a curve τ ′
1 which connects a point

y1
1 ∈ φ1(B(a, r1)) to γ0

1 ∩ U1 and which has the property that f(τ ′
1) is good and

a-monotonic. Combining f(τ ′
1) and Γ0, we thus obtain a curve Γ1 which is

good and a-monotonic and which connects w1 := f(y1
1) ∈ B(a, r1) to b. More

precisely, if u1 is the endpoint of f(τ ′
1) in Γ0 and if Σ0 is the arc that connects

u1 and b in Γ0, then we take Γ1 := f(τ ′
1) ∪ Σ0. Note that u1 ∈ B(a, r0) since

the endpoint of τ ′
1 is in U1.

The component γ1
1 of f −1(Γ1) that contains c1 consists of τ ′

1 and a subarc
of γ0

1 , and it is a simple curve connecting y1
1 ∈ φ(B(a, r1)) to c1. In fact,

since Γ1 is good, we see that for all for j ∈ N the component γ1
j of f −1(Γ1)

which contains cj is a simple curve connecting a w1-point y1
j to cj .

The following fact is important: no matter how we extend Γ1 by attaching
a piece in B(a, r1), the component of the preimage of the extended curve that
contains c1 and hence γ1

1 will be compact. This follows since the part added
to γ1

1 will be contained in φ1(B(a, r1)).
Now, we repeat this process of extension. Suppose that rn−1 < rn−2 <

· · · < r1 < r0 and that Γn−1 is a good and a-monotonic curve which connects
a point wn−1 ∈ B(a, rn−1) to b such that for 1 ≤ j ≤ n − 1 the component
γn−1

j of f −1(Γn−1) which contains cj has the following property: no matter
how we extend Γn−1 by attaching a piece in B(a, rn−1), the component of the
preimage of the extended curve that contains cj and hence γ1

j will be compact
for 1 ≤ j ≤ n − 1.

The way we obtain Γn from Γn−1 is essentially the same that we used to
obtain Γ1 from Γ0: since Γn−1 is good, the component γn−1

n of f −1(Γn−1)
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that contains cn is a simple curve connecting a wn-point xn to cn. Let Un

be the component of f −1(B(a, rn−1)) that contains xn. Then there exists
zn ∈ Un with f(zn) = a and f ′(zn) �= 0, and hence there exists rn with 0 <
rn < rn−1 such that there is a branch φn of f −1 in B(a, rn) with φn(a) = zn,
where we may again assume that φn is bounded in B(a, rn). We connect
zn by a curve σn to ∂Un such that f(σn) is a straight line and we connect
the endpoint of σn by a curve σ′

n ⊂ ∂Un to the point vn which lies in the
intersection of γn−1

n and ∂Un. Again, we can replace the curve σn + σ′
n by a

curve τn which connects zn to vn such that f(τn) is a-monotonic and using
Proposition 2, we can replace τn by a curve τ ′

n which connects a point yn
n ∈

φn(B(a, rn)) to γn−1
n ∩ Un and which has the property that f(τ ′

n) is good and
a-monotonic. From f(τ ′

n) and Γn−1, we now obtain a curve Γn which is good
and a-monotonic and which connects wn := f(yn

n) ∈ B(a, rn) to b. Moreover,
the component γn

n of f −1(Γn) that contains cn is a simple curve connecting
yn

n ∈ φn(B(a, rn)) to cn, and no matter how we extend Γn by attaching a piece
in B(a, rn), the component γn

n of the preimage of the extended curve which
contains cn will be compact. And, it follows from our induction hypothesis
that the same is true for the preimages γn

j of the extended curve which contain
cj , for 1 ≤ j ≤ n − 1.

Note that Γn need not contain Γn−1, but since the endpoint of f(τ ′
n) is

contained in B(a, rn−1) we have

Γn \ B(a, rn−1) = Γn−1 \ B(a, rn−1) ⊃ Γn−1 \ B(a, rn−2)

for n ≥ 2.
We now combine the curves Γn defined inductively in the above way to a

curve Γ∞ by putting

Γ∞ := {a} ∪
∞⋃

n=1

(
Γn \ B(a, rn−1)

)
.

Then Γ∞ is a simple (and in fact a-monotonic) curve that connects a to b,
and it follows from the construction of the Γn that the preimage of Γ∞ that
contains cj is a simple curve that connects zj with cj .

Finally, we connect b to ∞ by an a-monotonic curve Σ with the property
that every compact subarc of Σ is good. Such a curve exists by Proposition 2.
It then follows that

Γ := Γ∞ ∪ Σ

has the properties stated at the beginning of the proof.
This completes the proof of Theorem 3. �
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6. An example

We show that the function f given by (1) has infinitely many direct but
no logarithmic singularity over 0. Let

g(z) :=
∞∑

k=1

(
z

2k

)2k

so that f(z) = expg(z). We fix ε with 0 < ε ≤ 1
8 and put rn := (1 + ε)2n+1

and r′
n := (1 − 2ε)2n+2 for n ∈ N. For j ∈ {0,1, . . . ,2n − 1}, we define the sets

Aj,n :=
{

r exp
(

2πij

2n

)
: r ≥ rn

}
, i =

√
−1,

Bj,n :=
{

r exp
(

πi

2n
+

2πij

2n

)
: rn ≤ r ≤ r′

n

}
,

and

C±
j,n :=

{
r exp

(
πi

2n
+

2πij

2n
± r − r′

n

rn+1 − r′
n

πi

2n+1

)
: r′

n ≤ r ≤ rn+1

}
.

We shall show that if n is large enough, then

(3) Reg(z) > 22n

for z ∈ Aj,n

while

(4) Reg(z) < −22n

for z ∈ Bj,n ∪ C+
j,n ∪ C−

j,n.

Note that C−
j,n connects Bj,n to B2j,n+1 while C+

j,n connects Bj,n to B2j+1,n+1.
This implies that

T := [−ir1, ir1] ∪
∞⋃

n=1

2n −1⋃
j=0

(Bj,n ∪ C+
j,n ∪ C−

j,n)

is an infinite binary tree; see Figure 1. By (4), every unbounded simple path
on this tree starting at 0 is an asymptotic curve on which Reg(z) → −∞.
Choosing Uρ as the component of

{z : Reg(z) < logρ} = {z : |f(z)| < ρ}
which contains the “tail” of this curve we thus obtain a transcendental sin-
gularity of f −1 over 0, and this singularity is direct because f has no zeros.
Using (3), we see that different curves define different singularities. Thus, we
obtain a set of direct singularities which has the power of the continuum.

Moreover, it follows from (3) and (4) and the above considerations that if
Uρ is a component of {z : |f(z)| < ρ} containing the “tail” of some curve in T ,
then Uρ also contains the “tail” of some other curve in T and thus there exists
ρ′ < ρ such that Uρ contains at least two components of {z : |f(z)| < ρ′ }. This
implies that the singularity defined by ρ �→ Uρ is not logarithmic.
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Figure 1. The part of the tree T lying in {z : | Re z| ≤
80, | Imz| ≤ 80}, for ε = 1/16. The sets Aj,n are drawn as
dotted lines.

To prove (3), we note that if z = r exp(2πij/2n) ∈ Aj,n so that r ≥ rn, then

Reg(z) ≥
∞∑

k=n

(
r

2k

)2k

−
n−1∑
k=1

(
r

2k

)2k

≥
(

r

2n

)2n

−
n−1∑
k=1

(
r

2k

)2k

.

Put s := r/2n and

Σ1 :=
n−1∑
k=1

(
r

2k

)2k

.

Then

Σ1 =
n−1∑
k=1

(s2n−k)2
k ≤ s2n−1

n−1∑
k=1

2(n−k)2k

.

Now (n − k)2k ≤ 2n−1 for 1 ≤ k ≤ n − 1 and s < 2 + 2ε so that

Σ1 ≤ s2n−1
(n − 1)22n−1

= o(s2n

)

as n → ∞, and hence

Reg(z) ≥
(

r

2n

)2n

− Σ1 =
(
1 − o(1)

)
s2n

> 22n
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for large n. To prove (4) for z ∈ Bj,n, let z = r exp(πi/2n + 2πij/2n) ∈ Bj,n,
with rn ≤ r ≤ r′

n. Then

Reg(z) ≤ −
(

r

2n

)2n

+ Σ1 + Σ2

with

Σ2 :=
∞∑

k=n+1

(
r

2k

)2k

=
∞∑

k=n+1

(s2n−k)2
k

.

Thus,

Σ2 ≤
(

s

2

)2n

+
∞∑

k=n+2

(
s

4

)2k

.

Since s/4 ≤ 1 − 2ε, we find that

Σ2 = o(s2n

)

as n → ∞, and thus

Reg(z) ≤ −
(
1 − o(1)

)
s2n

< −22n

for z ∈ Bj,n, provided n is sufficiently large.
Finally, we prove (4) for z ∈ C+

j,n. So let

z = r exp
(

πi

2n
+

2πij

2n
+

r − r′
n

rn+1 − r′
n

πi

2n+1

)

= r exp
(

πi

2n
+

2πij

2n
+

s − 4(1 − 2ε)
12ε

πi

2n+1

)
∈ C+

j,n,

with r′
n ≤ r ≤ rn+1, so that 4(1 − 2ε) ≤ s ≤ 4(1 + ε). We have

Reg(z) ≤ Re
(

z

2n

)2n

+ Re
(

z

2n+1

)2n+1

+ Σ1 + Σ3

with

Σ3 :=
∞∑

k=n+2

(
r

2k

)2k

≤
∞∑

k=n+2

(
s

4

)2k

= o(1)

since s > 4. Since Σ1 = o(s2n

), we find that

Reg(z) ≤ s2n

cos
(

π +
s − 4(1 − 2ε)

12ε

π

2

)

+
(

s

2

)2n+1

cos
(

s − 4(1 − 2ε)
12ε

π

)
+ o(s2n

)

= s2n

(
cos

(
π + t

π

2

)
+

(
s

4

)2n

cos(tπ) + o(1)
)
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as n → ∞, with t := (s − 4(1 − 2ε))/12ε. The range 4(1 − 2ε) ≤ s ≤ 4(1 + ε)
corresponds to 0 ≤ t ≤ 1 and s = 4(1 − 2ε) + 12εt. We define

h(t) := cos
(

π + t
π

2

)
+

(
s

4

)2n

cos(tπ)

= cos
((

1 +
t

2

)
π

)
+ (1 − 2ε + 3εt)2

n

cos(tπ).

and put δ := − cos(11π/8)/2 > 0. For 0 ≤ t ≤ 1
2 we have

h(t) ≤ cos
(

5
4
π

)
+

(
1 − ε

2

)2n

< −2δ

if n is large enough. For 1
2 ≤ t ≤ 3

4 , we have cos(tπ) < 0, and thus

h(t) ≤ cos
((

1 +
t

2

)
π

)
≤ cos

(
11
8

π

)
= −2δ.

Finally, for 3
4 ≤ t ≤ 1, we have cos((1 + t

2 )π) < 0, and thus

h(t) ≤ (1 − 2ε + 3εt)2
n

cos(tπ) ≤
(

1 +
1
4

)2n

cos
(

3
4
π

)
≤ −2δ

if n is large. Overall, we find that h(t) ≤ −2δ for all t, and thus

Reg(z) ≤ −δs2n

< −22n

for z ∈ C+
j,n, provided n is large enough. The proof that

Reg(z) < −22n

for z ∈ C−
j,n is analogous. This completes the proofs of (3) and (4). As already

mentioned, this implies that every path going to ∞ in T corresponds to a
direct singularity of f over 0 which is not logarithmic, and the set of such
singularities has the power of the continuum. Also, we see that if ρ → Uρ is
a singularity over 0 such that Uρ ∩ T �= ∅ for all ρ > 0, then this singularity is
not logarithmic.

It remains to prove that there are no other singularities over 0. Suppose
that ρ → Uρ is a singularity over 0 such that Uρ ∩ T = ∅ for some ρ > 0. In
order to obtain a contradiction, we note that it follows as in the proofs of (3)
and (4) that if rn ≤ |z| ≤ r′

n, then

g(z) =
(
1 + η(z)

)( z

2n

)2n

where η(z) → 0 as n → ∞. For large n, we thus have |η(z)| ≤ ε2 ≤ 1
2 . Differ-

entiating, we obtain
g′(z)
g(z)

− 2n

z
=

η′(z)
1 + η(z)

.
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For (1 + 2ε)2n+1 ≤ |z| ≤ (1 − 3ε)2n+2, we thus have∣∣∣∣g′(z)
g(z)

− 2n

z

∣∣∣∣ ≤ 2|η′(z)|

= 2
∣∣∣∣ 1
2πi

∫
|ζ−z|=ε2n+1

η(ζ)
(ζ − z)2

dζ

∣∣∣∣
≤ 2

1
ε2n+1

max
|ζ−z|=ε2n+1

|η(z)|

≤ ε

2n

and hence ∣∣∣∣zg′(z)
g(z)

− 2n

∣∣∣∣ ≤ ε|z|
2n

≤ 4ε(1 − 3ε) <
1
2
.

We deduce that
darg g(reiθ)

dθ
= Im

(
d log g(reiθ)

dθ

)

= Re
(

reiθg′(reiθ)
g(reiθ)

)

≥ 2n − 1
2

> 0

for (1+2ε)2n+1 ≤ r ≤ (1 − 3ε)2n+2 and large n. We conclude that arg g(reiθ)
is an increasing function of θ, and it increases by 2n2π as θ increases by 2π.
Choose n and r as above so large that the circle {z : |z| = r} intersects
Uρ, that (3) and (4) hold and that −22n

< logρ. From the behavior of
arg g(reiθ), we deduce that the circle {z : |z| = r} contains at most 2n arcs
where Reg(reiθ) < logρ. On the other hand, for j ∈ {0,1, . . . ,2n − 1} the
points r exp(πi/2n +2πij/2n) are contained in such an arc by (4), and each of
them is contained in a different one by (3). Hence, there are precisely 2n such
arcs and each one contains one of the points r exp(πi/2n + 2πij/2n). Thus,
each such arc intersects some Bj,n and hence T . In particular, Uρ ∩ {z : |z| = r}
intersects T , contradicting the assumption that Uρ ∩ T = ∅. This completes
the proof that f has no logarithmic singularities over 0.

Remark. It is much easier to find meromorphic functions with a direct
singularity which is not logarithmic. For example, f(z) = 1/(z sin z) has two
direct singularities over 0, but none of them is logarithmic, since their neigh-
borhoods are multiply connected.
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