
Illinois Journal of Mathematics
Volume 52, Number 1, Spring 2008, Pages 17–46
S 0019-2082

MORE MIXED TSIRELSON SPACES THAT ARE NOT
ISOMORPHIC TO THEIR MODIFIED VERSIONS

DENNY H. LEUNG AND WEE-KEE TANG

Abstract. The class of mixed Tsirelson spaces is an important
source of examples in the recent development of the structure

theory of Banach spaces. The related class of modified mixed

Tsirelson spaces has also been well studied. In the present pa-
per, we investigate the problem of comparing isomorphically the

mixed Tsirelson space T [(Sn, θn)∞
n=1] and its modified version

TM [(Sn, θn)∞
n=1]. It is shown that these spaces are not isomor-

phic for a large class of parameters (θn).

1. Introduction

In 1974, Tsirelson [19] settled a fundamental problem in the structure the-
ory of Banach spaces when he gave a surprisingly simple construction of a Ba-
nach space that does not contain any isomorphic copy of c0 or �p, 1 ≤ p < ∞.
Figiel and Johnson [7] provided an analytic description, based on iteration,
of the norm of the dual of Tsirelson’s original space. Subsequently, other ex-
amples of spaces were constructed with norms described iteratively, notable
among them were Tzafriri’s spaces [20] and Schlumprecht’s space [18]. Gow-
ers’ and Maurey’s solution to the unconditional basic sequence problem [8]
is a variation based on the same theme. It has emerged in recent years that
far from being isolated examples, Tsirelson’s space and its variants form an
important class of Banach spaces. Argyros and Deliyanni [2] were the first
to provide a general framework for such spaces by defining the class of mixed
Tsirelson spaces. Among the earliest variants of Tsirelson’s space was its mod-
ified version introduced by Johnson [9]. Casazza and Odell [6] showed that
Tsirelson’s space is isomorphic to its modified version. This isomorphism was
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exploited to study the structure of the space. The modification can be ex-
tended directly to the class of mixed Tsirelson spaces, forming the class of
modified mixed Tsirelson spaces. It is thus of natural interest to determine if
a mixed Tsirelson space is isomorphic to its modified version. This question
has been considered by various authors, e.g., [3, 12], who provided answers
in what may be considered “extremal” cases. In the present paper, we show
that for a large class of parameters, a mixed Tsirelson space and its modified
version are not isomorphic.

We shall be concerned exclusively with mixed Tsirelson spaces of the form
T [(Sn, θn)∞

n=1] or T [(Sni , θi)k
i=1] and their modified versions. We now recall

the definitions of these spaces and the various notions involved. Denote by
N the set of natural numbers. For any infinite subset M of N, let [M ] and
[M ]<∞ be the set of all infinite and finite subsets of M , respectively. These
are subspaces of the power set of N, which is identified with 2N and endowed
with the topology of pointwise convergence. If I and J are nonempty finite
subsets of N, we write I < J to mean max I < minJ . We also allow that
∅ < I and I < ∅. For a singleton {n}, {n} < J is abbreviated to n < J .
The general Schreier families Sα, α < ω1, were introduced by Alspach and
Argyros [1]. We shall restrict ourselves to finite parameters. Let S0 consist of
all singleton subsets of N together with the empty set. Inductively, if n ∈ N,
let Sn consist of all sets of the form

⋃k
i=1 Gi, where Gi ∈ Sn−1, G1 < · · · < Gk

and k ≤ minG1. The Schreier families are hereditary : G ∈ Sn whenever G ⊆
F and F ∈ Sn; spreading : for all strictly increasing sequences (mi)k

i=1 and
(ni)k

i=1, (ni)k
i=1 ∈ Sn if (mi)k

i=1 ∈ Sn and mi ≤ ni for all i; and compact as
subspaces of [N]<∞. A sequence (Ei)k

i=1 in [N]<∞ is said to be Sn-admissible
if E1 < · · · < Ek and {minEi}k

i=1 ∈ Sn. It is Sn-allowable if the Ei’s are
pairwise disjoint, and {minEi}k

i=1 ∈ Sn.
Denote by c00 the space of all finitely supported real sequences, whose unit

vector basis will be denoted by (ek). For a finite subset E of N and x ∈ c00,
let Ex be the coordinate-wise product of x with the characteristic function
of E. The sup norm and the �1-norm on c00 are denoted by ‖ · ‖c0 and ‖ · ‖�1 ,
respectively. Given a null sequence (θn)∞

n=1 in (0,1), define sequences of norms
‖ · ‖m and ||| · |||m on c00 as follows. Let ‖x‖0 = |||x|||0 = ‖x‖c0 and

‖x‖m+1 = max

{
‖x‖m, sup

n
θn sup

r∑
i=1

‖Eix‖m

}
,(1)

where the last sup is taken over all Sn-admissible sequences (Ei)r
i=1. The

norm |||x|||m is defined as in (1) except that the last sup is taken over all
Sn-allowable sequences (Ei)r

i=1. Since these norms are all dominated by the
�1-norm, ‖x‖ = limm ‖x‖m and |||x||| = limm |||x|||m exist and are norms on c00.
The mixed Tsirelson space T [(Sn, θn)∞

n=1] and the modified mixed Tsirelson
space TM [(Sn, θn)∞

n=1] are the completions of c00 with respect to the norms
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‖ · ‖ and ||| · |||, respectively. From equation (1), we can deduce that these norms
satisfy the implicit equations

‖x‖ = max

{
‖x‖c0 , sup

n
θn sup

r∑
i=1

‖Eix‖
}

(2)

and

|||x||| = max

{
‖x‖c0 , sup

n
θn sup

r∑
i=1

|||Eix|||
}

,(3)

where the innermost suprema are taken over all Sn-admissible, respectively,
Sn-allowable sequences (Ei)r

i=1. The mixed Tsirelson space T [(Sni , θi)k
i=1]

and modified mixed Tsirelson space TM [(Sni , θi)k
i=1] are defined similarly.

When considering the spaces T [(Sn, θn)∞
n=1] and TM [(Sn, θn)∞

n=1], we may
assume without loss of generality that (θn) is nonincreasing and that θm+n ≥
θmθn. Such sequences are said to be regular. It is known that [17] limθ

1/n
n =

supθ
1/n
n for a regular sequence (θn). Let θ = limn θ

1/n
n and ϕn = θn/θn. The

main result of the paper is the following theorem.

Theorem 1. If 0 < c = inf ϕn ≤ supϕn = d < 1, then T [(Sn, θn)∞
n=1] is not

isomorphic to TM [(Sn, θn)∞
n=1].

For standard Banach space terminology and notation, we refer to [15]. Two
Banach spaces X and Y are said to be isomorphic if they are linearly home-
omorphic. A linear homeomorphism from X into Y is called an embedding.
We say that X embeds into Y if such an embedding exists. X and Y are to-
tally incomparable if no infinite dimensional subspace of one embeds into the
other. A sequence (xn) in X is said to dominate a sequence (yn) in Y if there
is a finite constant K such that ‖

∑
anyn‖ ≤ K‖

∑
anxn‖ for all (an) ∈ c00.

Two sequences are equivalent if they dominate each other.

2. Brief survey of known results

The aim of the present paper is to compare isomorphically the spaces
T [(Sn, θn)∞

n=1] and TM [(Sn, θn)∞
n=1] (and also the spaces T [(Sni , θi)k

i=1] and
TM [(Sni , θi)k

i=1]). Let us recall some known results in this direction. Casazza
and Odell [6] showed that the Tsirelson space T [S1, θ] is isomorphic to the
modified Tsirelson space TM [S1, θ], with no specific isomorphism constant
given in their proof. In [5], Bellenot proved that they are θ−1-isomorphic.
Recently, Manoussakis [12] showed that the spaces T [Sn, θ] and TM [Sn, θ] are
3-isomorphic for all n ∈ N and all θ ∈ (0,1). He also stated without proof in
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[11, Section 4] that T [(Sni , θi)k
i=1] is isomorphic to TM [(Sni , θi)k

i=1]. A proof
of a nominally more general fact will be given below.

Argyros et al. showed that if (θn) is regular and limn θ
1/n
n = 1, then

T [(Sn, θn)∞
n=1] contains copies of �∞(n)’s uniformly and hereditarily [3, The-

orem 1.6]. As a result, they were able to conclude that T [(Sn, θn)∞
n=1] and

TM [(Sn, θn)∞
n=1] are totally incomparable.

In [13], the authors introduced the condition

lim
m

limsup
n

θm+n

θn
> 0.(†)

Condition (†) is weaker than the condition limn θ
1/n
n = 1. More precisely, if

limn θ
1/n
n = 1, then

lim
m

limsup
n

θm+n

θn
= 1.

Indeed, if there exist δ < 1, m ∈ N and N ∈ N such that θn+m

θn
< δ for all

n ≥ N , then θkm+N < δkθN for all k ∈ N. Thus, θ
1

km+N

km+N < δ
k

km+N θ
k

km+N

N .

Taking k → ∞, we have limn θ
1/n
n ≤ δ1/m < 1. It can be shown that the

converse is false even for regular sequences.
If (θn) satisfies (†), it follows from [14, Proposition 9] that there exists ε > 0

such that for all V ∈ [N] and all k ∈ N, there exists a sequence of pairwise
disjoint vectors (yj)k

j=1 ⊆ span{ek : k ∈ V } such that ‖
∑k

j=1 yj ‖ ≤ 2 + 1/ε

and ‖yj ‖ ≥ 1 for all j. In other words, �∞(n)’s uniformly disjointly embeds
into the subspace of T [(Sn, θn)∞

n=1] generated by (ek)k∈V . In particular, the
norms ‖ · ‖ and ||| · ||| are not equivalent on span{ek : k ∈ V }. This together
with the proposition below imply that T [(Sn, θn)∞

n=1] is not isomorphic to
TM [(Sn, θn)∞

n=1].

Proposition 2. If T [(Sn, θn)∞
n=1] embeds into TM [(Sn, θn)∞

n=1], then there
exists V ∈ [N] such that ||| · ||| is equivalent to ‖ · ‖ on the subspace span{ek :
k ∈ V }.

Proof. Let J : T [(Sn, θn)∞
n=1] → TM [(Sn, θn)∞

n=1] be an embedding. Then
(Jek) is a weakly null sequence. By the Bessaga–Pe�lczynski selection principle
(see, e.g., [15, Proposition 1.a.12]), there is a subsequence (Jekj ) of (Jek)
such that (Jekj ) is equivalent to a seminormalized block sequence (uj) in
TM [(Sn, θn)∞

n=1]. Let mj = minsuppuj . By taking a subsequence if necessary,
we may assume that

max{kj ,mj } < min{kj+1,mj+1}.

As a result, the sequences (emj ) and (ekj ) are equivalent in T [(Sn, θn)∞
n=1].

On the other hand, in TM [(Sn, θn)∞
n=1], (emj ) is dominated by (uj), which is

equivalent to (Jekj ). Hence, there exist finite constants λ and λ′ such that
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for all (ai) ∈ c00, ∣∣∣∣∣∣∣∣∣∑ajemj

∣∣∣∣∣∣∣∣∣ ≤ λ
∥∥∥∑

ajekj

∥∥∥
≤ λ′

∥∥∥∑
ajemj

∥∥∥
≤ λ′

∣∣∣∣∣∣∣∣∣∑ajemj

∣∣∣∣∣∣∣∣∣.
Thus, ||| · ||| is equivalent to ‖ · ‖ on the subspace span{(emj )}. �

3. Essentially finitely generated spaces

The fact that T [(Sni , θi)k
i=1] is isomorphic to TM [(Sni , θi)k

i=1] was stated
by Manoussakis in [11]. We present a nominally more general result here. Let
us note that Lopez–Abad and Manoussakis [10] has undertaken a thorough
study of mixed Tsirelson spaces generated by finitely many terms.

We shall compute the norm of an element in T [(Sn, θn)∞
n=1], respectively,

TM [(Sn, θn)∞
n=1], with the help of norming trees. This is derived from the

implicit description of the norms given in equations (2) and (3) and have been
used in [5, 14, 16]. An ((Sn))-admissible tree (respectively, allowable tree) is
a finite collection of elements (Em

i ), 0 ≤ m ≤ r, 1 ≤ i ≤ k(m), in [N]<∞ with
the following properties.
(i) k(0) = 1,
(ii) every Em+1

i is a subset of some Em
j ,

(iii) for each j and m, the collection {Em+1
i : Em+1

i ⊆ Em
j } is Sn-admissible

(Sn-allowable) for some n.
The set E0

1 is called the root of the tree. The elements Em
i are called

nodes of the tree. Given a node Em
i , h(Em

i ) = m is called the height of the
node Em

i . The height of a tree T is defined by H(T ) = max{h(E) : E ∈ T }.
If En

i ⊆ Em
j and n > m, we say that En

i is a descendant of Em
j and Em

j is
an ancestor of En

i . If in the above notation, n = m + 1, then En
i is said to

be an immediate successor of Em
j , and Em

j the immediate predecessor of En
i .

Nodes with no descendants are called terminal nodes or leaves of the tree. We
denote the set of all leaves of a tree T by L(T ). Nodes that attain maximal
height are called base nodes.

Assign tags to the individual nodes inductively as follows. Let t(E0
1) = 1.

If t(Em
i ) has been defined and the collection (Em+1

j ) of all immediate suc-
cessors of Em

i forms an Sk-admissible (Sk-allowable) collection, then define
t(Em+1

j ) = θkt(Em
i ) for all immediate successors Em+1

j of Em
i . If x ∈ c00 and

T is an admissible (allowable) tree, let T x =
∑

t(E)‖Ex‖c0 where the sum is
taken over all leaves in T . It follows from the implicit description of the norm
in T [(Sn, θn)∞

n=1] (respectively, TM [(Sn, θn)∞
n=1]) that ‖x‖ = max T x (respec-

tively, |||x||| = max T x), with the maximum taken over the set of all admissible
(respectively, allowable) trees. Given a node E ∈ T with tag t(E) =

∏m
i=1 θni ,
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define oT (E) =
∑m

i=1 ni. When there is no confusion, we write o(E) instead
of oT (E).

To simplify notation, we shall henceforth denote the spaces T [(Sn, θn)∞
n=1]

and TM [(Sn, θn)∞
n=1] by X and XM , respectively. The norms on these spaces

will be denoted by ‖ · ‖ and ‖ · ‖XM
, respectively.

For a fixed N ∈ N, an SN -admissible (-allowable) tree is a tree satisfying
conditions (i)–(ii) above and

(iii′) For each j and m, the collection {Em+1
i : Em+1

i ⊆ Em
j } is SN -admissible

(-allowable).
It is well known that an Sm-admissible collection of Sn-admissible sets is

Sm+n-admissible. The corresponding fact for the “allowable” case comes from
[3] (see also [12, Lemma 2.1]).

Lemma 3. Given an (Sn)∞
n=1-admissible (-allowable) tree T of finite height,

there exists an S1-admissible (-allowable) tree T ′ with the same root such that
L(T ) = L(T ′), and oT (E) = oT ′ (E) for all E ∈ L(T ).

Proof. The proof is by induction on the height H(T ) of T . If H(T ) = 0,
then there is nothing to prove. Assume the statement holds if H(T ) ≤ N for
some N . Let T be an (Sn)∞

n=1-admissible (-allowable) tree with H(T ) = N +1.
Let E1 be the collection of all nodes of T at height 1. There exists n0 such
that E1 is Sn0 -admissible (-allowable). It is easy to see that there is an S1-
admissible (-allowable) tree T1 having the same root as T and of height n0

such that L(T1) = E1 and that every E ∈ E1 is a leaf of T1 at height n0. If
E ∈ E , then TE = {F ∈ T : F ⊆ E} is an (Sn)∞

n=1-admissible (-allowable) tree
with H(TE) ≤ N . By the inductive hypothesis, for each E ∈ E1, there exists
an S1-admissible (-allowable) tree T ′

E with root E such that L(TE) = L(T ′
E)

and oTE
(F ) = oT ′

E
(F ) for all F ∈ L(TE).

Consider T ′ = T1 ∪
⋃

E∈E1
T ′

E . Then T ′ is an S1-admissible (-allowable) tree
with the same root as T . If F ∈ L(T ), then F ⊆ E for some E ∈ E1 (since the
root cannot be a leaf in this case because H(T ) ≥ N + 1 ≥ 1). Now oT (F ) =
oTE

(F ) + n0 and F ∈ L(TE). Hence, F ∈ L(T ′
E) and oT ′ (F ) = oT ′

E
(F ) + n0 =

oTE
(F ) + n0 = oT (F ). Conversely, if F ∈ L(T ′), then F ∈ L(T ′

E) for some
E ∈ E1. Thus, F ∈ L(TE), and hence F ∈ L(T ). �

Lemma 4. Let T be an (Sn)∞
n=1-admissible (-allowable) tree. If E is a

collection of pairwise disjoint nodes of T such that o(E) ≤ m for all E ∈ E ,
then E is Sm-admissible (allowable).

Proof. The proof is by induction on m. The case m = 0 is clear. Now
suppose the lemma holds for all k < m, m ≥ 1. If the root of T belongs
to E , then it is the only node in E and the lemma clearly holds. Otherwise,
let k ∈ N be such that the nodes G1 < · · · < Gq in T with height 1 is Sk-
admissible (-allowable). Since each E ∈ E is either equal to or is a descendant
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of some Gi, m ≥ o(E) ≥ o(Gi) = k. If m = k, then E ⊆ {G1, . . . ,Gq }, and
thus is Sm-admissible (-allowable). If k < m, then for each i, the subtree
Ti with root Gi is an admissible (-allowable) tree such that oTi(E) ≤ m − k
for all E ∈ E ∩ Ti. By induction, E ∈ E ∩ Ti is Sm−k-admissible (-allowable).
Therefore, E is an Sk-admissible (-allowable) collection of Sm−k-admissible
(-allowable) sets, and hence an Sm-admissible (-allowable) set. �

Given k ∈ N, let �k denote the least integer greater than or equal to k.

Lemma 5. Let T be an S1-admissible (-allowable) tree. For any N ∈ N,
there exists an SN -admissible (-allowable) tree T ′ with the same root such that
L(T ) = L(T ′) and oT ′ (E) = N �oT (E)/N  for all E ∈ L(T ).

Proof. Note that the statement holds if H(T ) ≤ N by Lemma 4. Now
suppose that the statement holds if H(T ) ≤ kN for some k ∈ N. Let T
be an S1-admissible (-allowable) tree with H(T ) ≤ (k + 1)N . Denote by T0

the tree consisting of all nodes in T with height ≤ N . For each E ∈ T at
height N , H(TE) ≤ kN , where TE consists of all nodes F in T such that
F ⊆ E. By induction, for each E ∈ T at height N , there exists an SN -
admissible (-allowable) tree T ′

E with root E such that L(TE) = L(T ′
E) and

oT ′
E
(F ) = N �oTE

(F )/N  for all F ∈ L(TE). At the same time, there exists an
SN -admissible (-allowable) tree T ′

0 with the same root as T0 such that L(T ′
0 ) =

L(T0) and oT ′
0
(F ) = N �oT0(F )/N  for all F ∈ L(T0). Let T ′ = T ′

0 ∪
⋃

T ′
E ,

where the second union is taken over all nodes E ∈ T at height N . Then T ′

is an SN -admissible (-allowable) tree with the same root as T .
If E ∈ L(T ) and h(E) < N , then E ∈ L(T0) = L(T ′

0 ) and has no descendants
in T ′. Hence, E ∈ L(T ′). Moreover, oT ′ (E) = oT ′

0
(E) = N �oT0(E)/N  =

N �oT (E)/N . If E ∈ L(T ) and h(E) ≥ N , then E ⊆ F for some F ∈ T at
height N . Hence, E ∈ L(TF ) = L(T ′

F ) ⊆ L(T ′) and

oT ′ (E) = N + oT ′
F
(E) = N + N �oTF

(E)/N 

= N

⌈
oTF

(E) + N

N

⌉
= N �oT (E)/N .

Conversely, suppose that E ∈ L(T ′). Then either E ∈ L(T ′
0 ) = L(T0) with

h(E) < N (taken in T0) or else E ∈ L(T ′
F ) for some F ∈ T at height N . Thus,

E ∈ L(TF ). In either case, E ∈ L(T ). �
Combining Lemmas 3 and 5, we obtain:

Proposition 6. Let T be an (Sn)∞
n=1-admissible (-allowable) tree T and

let N ∈ N. Then there exists an SN -admissible (-allowable) tree T ′ with
the same root such that L(T ) = L(T ′) and oT ′ (E) = N �oT (E)/N  for all
E ∈ L(T ).

Proposition 7. Let (θn)∞
n=1 be a regular sequence. Suppose that there

exists N ∈ N such that θ
1/N
N = θ = sup θ

1/n
n , then the spaces X,XM , Y , and YM
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are pairwise isomorphic via the formal identity, where Y and YM denote the
spaces T [S1, θ] and TM [S1, θ], respectively.

Proof. It is known that Y and YM are isomorphic via the formal identity
[5, 6, 12]. We shall show that XM is isomorphic to YM via the formal identity.
The proof that X is isomorphic to Y via the formal identity is similar. Let x
be a finitely supported vector. There exists an (Sn)∞

n=1-allowable tree T such
that

‖x‖XM
=

∑
E∈L(T )

t(E)‖Ex‖c0 .

By Proposition 6, there exists an S1-allowable tree T ′ with the same root such
that L(T ) = L(T ′) and oT ′ (E) = N �oT (E)/N  for all E ∈ L(T ). If E ∈ L(T )
and t(E) = θn1 · · · θnj , then

t(E) ≤ θn1 · · · θnj = θn1+···+nj = θoT (E) < θ−NθoT ′ (E).

Therefore,

‖x‖XM
=

∑
E∈L(T )

t(E)‖Ex‖c0

< θ−N
∑

E∈L(T ′)

θoT ′ (E)‖Ex‖c0 ≤ θ−N ‖x‖YM
.

Conversely, choose an S1-allowable tree T ′ ′ such that

‖x‖YM
=

∑
E∈L(T ′ ′)

t(E)‖Ex‖c0 .

Since T ′ ′ is also (Sn)∞
n=1-allowable, there exists an SN -allowable tree T ′ ′ ′ such

that L(T ′ ′) = L(T ′ ′ ′) and oT ′ ′ ′ (E) = N �oT ′ ′ (E)/N  for all E ∈ L(T ′ ′). Hence,
t(E) = θoT ′ ′ (E) ≤ θ−N+oT ′ ′ ′ (E). Thus,

‖x‖YM
≤ θ−N

∑
E∈L(T ′ ′ ′)

θ
oT ′ ′ ′ (E)/N
N ‖Ex‖c0 ≤ ‖x‖XM

.

The final inequality holds since T ′ ′ ′ is also (Sn)∞
n=1-allowable and the tag of

E in T ′ ′ ′ is θ
oT ′ ′ ′ (E)/N
N . �

4. Main construction

The main aim of the present paper is to show that the spaces X and XM

are not isomorphic for a large class of regular sequences (θn). In view of
Proposition 2, it suffices to show that the norms ‖ · ‖ and ‖ · ‖XM

are not
equivalent on span{ek : k ∈ V } for any V ∈ [N]. Our strategy is to construct,
for any V ∈ [N], vectors x ∈ span{ek : k ∈ V } where the ratio ‖x‖XM

/‖x‖ can
be made arbitrarily large. The basic units of the construction are the re-
peated averages due to Argyros, Mercourakis, and Tsarpalias [4]. These are
then layered together, where each layer consists of repeated averages whose
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complexities go through a cycle. This variation within a layer is the main
feature that distinguishes the present construction from related previous con-
structions that are used in, e.g., [3, 14]. The reason for layered construction
of vectors is to dictate that the norming trees that approximately norm the
given vector must structurally resemble the vector itself. In the presence of
a condition such as (†), one may exploit the large ratio between θm+n and
θmθn to ensure that different layers behave differently. In the absence of such
a condition, one must find a way to “lock in” the behavior of the norming tree
on the given vector. Our idea is to make the vector cycle through different
complexities within each layer so that the norming tree is forced to follow
these ups and downs.

If x, y ∈ span{(ek)}, we define x < y, respectively, x ⊆ y, to mean suppx <
suppy and suppx ⊆ suppy, respectively. We shall also say that E ⊆ x if
E ∈ [N]<∞ and E ⊆ suppx. An S0-repeated average is a vector ek for some
k ∈ N. For any p ∈ N, an Sp-repeated average is a vector of the form 1

k

∑k
i=1 xi,

where x1 < · · · < xk are repeated Sp−1-repeated averages and k = minsuppx1.
Observe that any Sp-repeated average x is a convex combination of {ek : k ∈
suppx} such that ‖x‖ ∞ ≤ (min suppx)−1 and suppx ∈ Sp.

Let (θn)∞
n=1 be a given regular decreasing sequence that satisfies the fol-

lowing:

(¬ †) limm δm = 0, where δm = limsupn
θm+n

θn
.

(‡) There exists F : N → R with limn→∞ F (n) = 0 such that for all R, t ∈ N

and any arithmetic progression (si)R
i=1 in N,

max
1≤i≤R

θsi+t

θsi

≤ F (R)
R∑

i=1

θsi+t

θsi

.

Recall from Section 2 that X and XM are known to be nonisomorphic if
condition (†) holds. The condition (‡) is imposed to make the construction
work. As we shall see, it is general enough to include many interesting cases.

From here on fix N ∈ N and V ∈ [N] arbitrarily. Choose sequences (pk)N
k=1

and (Lk)N
k=1 in N, Lk ≥ 2, that satisfy the following conditions:

(A)
θpM+1+n

θn
≤ θ1

24N2

∏M
i=1 θLipi if 0 ≤ M ≤ N − 2 and n ≥ pN (the vacuous

product
∏0

i=1 θLipi is taken to be 1),
(B) pM+1 >

∑M
i=1 Lipi if 0 < M ≤ N − 2,

(C) F (LM+1) ≤ θ1
144N2

∏M
i=1 θLipi if 0 < M ≤ N − 2.

Note that condition (A) may be realized because of (¬ †) and condition (C)
by way of (‡). Given k ∈ N and 1 ≤ M ≤ N , define rM (k) to be the integer
in {1,2, . . . ,LM } such that LM |(k − rM (k)). We can construct sequences of
vectors x0,x1, . . . ,xN with the following properties.

(α) x0 is a subsequence of (ek)k∈V .
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(β) Say xM = (xM
j ) and mj = minsuppxM

j . Then there is a sequence (IM+1
k )

of integer intervals such that IM+1
k < IM+1

k+1 ,
⋃∞

k=1I
M+1
k = N and each

vector xM+1
k ∈ xM+1 is of the form

xM+1
k =

∑
j∈IM+1

k

ajx
M
j ,

where θrM+1(k)pM+1

∑
j∈IM+1

k
ajemj is an SrM+1(k)pM+1 -repeated average.

Moreover, the sequence (aj)∞
j=1 is decreasing.

Each xM+1
k is made up of components of diverse complexities. In order to

estimate its ‖ · ‖- and ‖ · ‖XM
- norms, we decompose xM+1

k into components of
pure forms in the following manner. The coefficients (aj) are as given in (β).

Notation. Given 1 ≤ ri ≤ Li, 1 ≤ M ≤ N − 1, write

xM+1
k (rM ) =

∑
j∈IM+1

k
rM (j)=rM

ajx
M
j .

For 1 ≤ s < M , define

xM+1
k (rs, . . . , rM ) =

∑
j∈IM+1

k
rM (j) =rM

ajx
M
j (rs, . . . , rM −1).

If 1 ≤ s ≤ M , it is clear that xM+1
k =

∑
xM+1

k (rs, . . . , rM ), where the sum is
taken over all possible values of rs, . . . , rM .

Given a sequence u = (u1, u2, ...) of linearly independent vectors, write
[y]u = (ak) if y =

∑
akuk. For instance, ‖[xM+1

k ]
xM

‖�1 =
∑

j∈IM+1
k

aj =

θ−1
rM+1(k)pM+1

. To compute ‖[xM+1
k ]

xs−1 ‖�1 ,1 ≤ s ≤ M , calculate the �1-norms

of each of the pure forms [xM+1
k (rs, . . . , rM )]xs−1 and sum over all rs, . . . , rM .

The following simple lemma is useful for our computations. A subset I of
N is said to be L-skipped if |i − j| ≥ L whenever i and j are distinct elements
of I .

Lemma 8. If (ai) is a nonnegative decreasing sequence defined on an in-
terval J in N and I is an L-skipped set, then

∑
i∈I

ai ≤ 1
L

∑
ai + supai.
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Moreover, if there exists r such that I = {i ∈ J : i = r mod L}, then

1
L

∑
ai − supai ≤

∑
i∈I

ai.

Proposition 9. If 1 ≤ s ≤ M < N and k ∈ N, then
M∏
i=s

(L−1
i − k−1) ≤ ‖[xM+1

k (rs, . . . , rM )]xs−1 ‖�1

θ−1
rM+1(k)pM+1

∏M
i=s θ−1

ripi

≤
M∏
i=s

(L−1
i + k−1).

Proof. The proof is by induction on M . When M = s,

‖[xM+1
k (rs, . . . , rM )]xs−1 ‖�1

= ‖[xM+1
k (rM )]xM −1 ‖�1

=
∥∥∥∥
[ ∑

j∈IM+1
k

rM (j)=rM

ajx
M
j

]
xM −1

∥∥∥∥
�1

=
∑

j∈IM+1
k

rM (j)=rM

aj ‖[xM
j ]

xM −1 ‖�1 = θ−1
rM pM

∑
j∈IM+1

k
rM (j)=rM

aj .

Note that {j ∈ IM+1
k : rM (j) = rM } is an LM -skipped subset of the integer

interval IM+1
k . It follows from Lemma 8 that∑

j∈IM+1
k

rM (j)=rM

aj ≤ 1
LM

∑
j∈IM+1

k

aj + supaj

≤ (L−1
M + k−1)θ−1

rM+1(k)pM+1
.

Therefore, ‖[xM+1
k (rM )]xM −1 ‖�1 ≤ θ−1

rM+1(k)pM+1
θ−1

rM pM
(L−1

M + k−1).
Suppose that the proposition holds for M − 1. Then

‖[xM+1
k (rs, . . . , rM )]xs−1 ‖�1

= ‖
∑

j∈IM+1
k

rM (j)=rM

aj [xM
j (rs, . . . , rM −1)]xs−1 ‖�1

=
∑

j∈IM+1
k

rM (j)=rM

aj ‖[xM
j (rs, . . . , rM −1)]xs−1 ‖�1

≤
M −1∏
i=s

θ−1
ripi

(L−1
i + k−1) ·

∑
j∈IM+1

k
rM (j)=rM

aj

θrM (j)pM

by the inductive hypothesis
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=
M −1∏
i=s

θ−1
ripi

(L−1
i + k−1) · θ−1

rM pM

∑
j∈IM+1

k
rM (j)=rM

aj

≤
M −1∏
i=s

θ−1
ripi

(L−1
i + k−1) · θ−1

rM pM

(
1

LM

∑
j∈IM+1

k

aj + supaj

)

by Lemma 8

≤
M −1∏
i=s

θ−1
ripi

(L−1
i + k−1)θ−1

rM pM
θ−1

rM+1(k)pM+1
(L−1

M + k−1)

= θ−1
rM+1(k)pM+1

M∏
i=s

θ−1
ripi

(L−1
i + k−1).

The other inequality is proved similarly. �

From this point onward, we shall only consider those k’s that satisfy

k ≥ 42N2
N∏

i=1

Liθ
−1
Lipi

.(4)

It follows from the choice of k that for all 1 ≤ s ≤ M ≤ N ,

M∏
i=s

(L−1
i + k−1) ≤ 2

M∏
i=s

L−1
i .(5)

Indeed, since L−1
i + k−1 ≤ (1 + 1

42N )L−1
i for all i, we have

M∏
i=s

(L−1
i + k−1) ≤

(
1 +

1
42N

)N M∏
i=s

L−1
i

≤ e1/42
M∏
i=s

L−1
i < 2

M∏
i=s

L−1
i .

Likewise, for all 1 ≤ s ≤ M ≤ N ,

M∏
i=s

(L−1
i − k−1) >

1
2

M∏
i=s

L−1
i .(6)

Corollary 10. If 1 ≤ s ≤ M < N and k satisfies (4), then

1
2

≤ ‖[xM+1
k (rs, . . . , rM )]xs−1 ‖�1

θ−1
rM+1(k)pM+1

∏M
i=s θ−1

ripiL
−1
i

≤ 2.
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Corollary 11. If k satisfies (4) and 1 ≤ M ≤ N , then

‖xM
k ‖�1 ≤ 2

M∏
i=1

θ−1
Lipi

.

Proof. If M = 1, then

‖x1
k ‖�1 = ‖[x1

k]x0 ‖�1 = θ−1
r1(k)p1

≤ θ−1
L1p1

.

If M ≥ 2, according to Corollary 10,

‖xM
k ‖�1 =

∑
r1,...,rM −1

‖[xM
k (r1, . . . , rM −1)]x0 ‖�1

≤ 2θ−1
rM (k)pM

∑
r1,...,rM −1

M −1∏
i=1

θ−1
ripi

L−1
i

≤ 2θ−1
LM pM

M −1∏
i=1

θ−1
Lipi

= 2
M∏
i=1

θ−1
Lipi

. �

We shall employ the same decomposition technique to estimate ‖xN
k ‖XM

.
To simplify notation, let p(rM , . . . , rM ′ ) =

∑M ′

i=M piri if M ≤ M ′.

Proposition 12. If k satisfies (4), then

‖xN
k ‖XM

≥ θ1

2

∑
r1,...,rN −1

θp(r1,...,rN −1,rN (k))θ
−1
rN (k)pN

N −1∏
i=1

θ−1
ripi

L−1
i .

Proof. We first decompose xN
k into a sum of pure forms, i.e.,

xN
k =

∑
r1,...,rN −1

xN
k (r1, . . . , rN −1).

Now given r1, . . . , rN −1, suppxN
k (r1, . . . , rN −1) ∈ Sp(r1,...,rN −1,rN (k)). Hence,

‖xN
k (r1, . . . , rN −1)‖XM

≥ θp(r1,...,rN −1,rN (k))‖xN
k (r1, . . . , rN −1)‖�1

≥
θp(r1,...,rN −1,rN (k))

2
θ−1

rN (k)pN

N −1∏
i=1

θ−1
ripi

L−1
i

by Corollary 11. Since k ≥
∏N −1

i=1 Li by (4), S ∈ S1 whenever S ⊆ N satisfies
k ≤ minS and |S| ≤

∏N −1
i=1 Li. In particular,

{suppxN
k (r1, . . . , rN −1) : 1 ≤ ri ≤ Li, 1 ≤ i ≤ N − 1}
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is S1-allowable. Thus,

‖xN
k ‖XM

≥ θ1

∑
r1,...,rN −1

‖xN
k (r1, . . . , rN −1)‖XM

≥ θ1

2

∑
r1,...,rN −1

θp(r1,...,rN −1,rN (k))θ
−1
rN (k)pN

N −1∏
i=1

θ−1
ripi

L−1
i ,

as required. �

The following estimate is easily obtainable from Proposition 12.

Corollary 13. If 0 ≤ M < N − 1 and k satisfies (4), then

(7) ‖xN
k ‖XM

≥ θ1

2

∑
rM+1,...,rN −1

θp(rM+1,...,rN −1,rN (k))θ
−1
rN (k)pN

N −1∏
i=M+1

θ−1
ripi

L−1
i .

Proof. By Proposition 12 and the regularity of (θn),

‖xN
k ‖XM

≥ θ1

2

∑
r1,...,rN −1

θp(r1,...,rN (k))θ
−1
rN (k)pN

N −1∏
i=1

θ−1
ripi

L−1
i

≥ θ1

2

∑
r1,...,rN −1

θp(r2,...,rN (k))θr1p1θ
−1
rN (k)pN

N −1∏
i=1

θ−1
ripi

L−1
i

=
θ1

2

∑
r2,...,rN −1

θp(r2,...,rN (k))θ
−1
rN (k)pN

N −1∏
i=2

θ−1
ripi

L−1
i .

Repeat the argument M times to obtain the required result. �

The main bulk of the calculations occur in estimating the X-norm of xN
k .

The next lemma is the mechanism behind one of the crucial estimates (Propo-
sition 16). If x ∈ c00 and p ≥ 0, let ‖x‖ Sp = supE∈Sp

‖Ex‖�1 .

Lemma 14. Let p, q ≥ 0, and P = (mn) ∈ [N] be given. Assume that G1 <
G2 < · · · is a sequence in [P ]<∞ such that

∑
mn ∈Gi

anemn is an Sq-repeated
average for all i and that there exists Q = (mnk

) ∈ [P ] so that for each k, there
is a vector zk satisfying:
(1) supp zk ⊆ [mnk

,mnk+1),
(2) ‖zk ‖�1 ≤ 1,
(3) ‖

∑j
k=1 zk ‖ Sp ≤ 6 for all j ∈ N.

Set yi =
∑

mnk
∈Gi

ank
zk. Then

(i) ‖
∑j

i=1 yi‖ Sp+q ≤ 6 for all j ∈ N,
(ii) ‖yi‖ Sp+q−1 ≤ 6/m if q ≥ 1, where m = minGi.
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Proof. We first establish (i). The proof is by induction on q. The case
q = 0 is trivial. Assume the result holds for some q, we shall prove it for
q + 1. If G1 < G2 < · · · is a sequence in [P ]<∞ such that

∑
mn ∈Gi

anemn is
an Sq+1-repeated average for all i, then each of these Sq+1-repeated averages
can be written as 1

mn(i)

∑
t∈Hi

∑
mn ∈Ft

bnemn , where mn(i) = minGi = |Hi|,
Ft < Ft′ if t < t′ and

∑
mn ∈Ft

bnemn is an Sq-repeated average for all t. Let
yi =

∑
mnk

∈Gi
ank

zk. Then yi = 1
mn(i)

∑
t∈Hi

vt, where vt =
∑

mnk
∈Ft

bnk
zk.

Given a set J ∈ Sp+q+1, write J =
⋃s

l=1 Jl, J1 < · · · < Js, Jl ∈ Sp+q , s ≤ minJ .
Note that by induction, ‖Jl(

∑
t∈Hi

vt)‖�1 ≤ 6 for all l and i. Hence, ‖Jlyi‖�1 ≤
6

mn(i)
. Let i0 be the smallest number such that J ∩ supp zk �= ∅ for some

mnk
∈ Hi0 . For any j,∥∥∥∥∥J

(
j∑

i=1

yi

)∥∥∥∥∥
�1

≤
i0+2∑
i=i0

‖yi‖�1 +
∑

l

∞∑
i=i0+3

‖Jlyi‖�1

≤ 3 +
∑

l

∞∑
i=i0+3

6
mn(i)

≤ 3 +
∑

l

12
mn(i0+3)

, since mn(i+1) ≥ 2mn(i),

= 3 +
12s

mn(i0+3)
.

But since minJ < mn(i0+1), s/mn(i0+3) < 1/4. Therefore,∥∥∥∥∥J

(
j∑

i=1

yi

)∥∥∥∥∥
�1

< 3 +
12
4

= 6.

To prove (ii), note that an Sq-repeated average
∑

mn ∈Gi
anemn may be writ-

ten as m−1(u1 + · · · + um), where u1 < · · · < um are Sq−1-repeated aver-
ages. If uj =

∑
mn ∈Fj

bnemn , then yi = m−1(w1 + · · · + wm), where wj =∑
mnk

∈Fj
bnk

zk. By (i), if J ∈ Sp+q−1, then ‖J(w1 + · · · +wm)‖�1 ≤ 6. Hence,
‖Jyi‖�1 ≤ 6/m. �

Assume that 0 ≤ M < M + s ≤ N and that r1, . . . , rN −1 are given. For
notational convenience, let xM+s

k (rM+1, . . . , rM+s−1) = xM+s
k if s = 1. Taking

mj = minsuppxM
j , define

uM+s
k (rM+1, . . . , rM+s−1) =

∑
bjemj

if xM+s
k (rM+1, . . . , rM+s−1) =

∑
bjx

M
j . (The vector is also labeled as uM+1

k if
s = 1.)
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Proposition 15. Let rN = rN (k). Then

‖uN
k (rM+1, . . . , rN −1)‖Sp(rM+1,...,rN )−1 ≤ 6

k

N∏
i=M+1

θ−1
ripi

.

Proof. We shall apply Lemma 14 repeatedly to show that
M+s∏

i=M+1

θripi ‖uM+s
t (rM+1, . . . , rM+s−1)‖Sp(rM+1,...,rM+s)−1 ≤ 6

t
(8)

if rM+s(t) = rM+s and

M+s∏
i=M+1

θripi ‖
∑

uM+s
t (rM+1, . . . , rM+s−1)‖Sp(rM+1,...,rM+s) ≤ 6

for any sum over a finite set of t’s satisfying rM+s(t) = rM+s. Suppose that
s = 1. Set p = 0 and q = rM+1pM+1. Let P = (mn), where mn = minsuppxM

n

and Q =
⋃

rM+1(t)=rM+1
{mn : xM

n ⊆ xM+1
t }. If rM+1(t) = rM+1, let Gt =

suppuM+1
t . Also, let zj = emnj

if mnj ∈ Q. Note that if rM+1(t) = rM+1,
θrM+1pM+1u

M+1
t is an Sq-repeated average. By Lemma 14,

‖θrM+1pM+1u
M+1
t ‖ SrM+1pM+1−1 ≤ 6

minGt
≤ 6

t

if rM+1(t) = rM+1 and ‖
∑

θrM+1pM+1u
M+1
t ‖ SrM+1pM+1

≤ 6 for any sum over
a finite set of t’s such that rM+1(t) = rM+1.

Inductively, suppose that the claim is true for some s < N − M . Set
p = p(rM+1, . . . , rM+s) and q = rM+s+1pM+s+1. Let P = (mn), where mn =
minsuppxM+s

n , and

Q =
⋃

rM+s+1(t)=rM+s+1

{mn : xM+s
n ⊆ xM+s+1

t , rM+s(n) = rM+s}.

If rM+s+1(t) = rM+s+1, set Gt = {mn : xM+s
n ⊆ xM+s+1

t }. Also let zj =∏M+s
i=M+1 θripiu

M+s
nj

(rM+1, . . . , rM+s−1) if mnj ∈ Q. Now

‖zj ‖�1 =

∥∥∥∥∥
M+s∏

i=M+1

θripi · uM+s
nj

(rM+1, . . . , rM+s−1)

∥∥∥∥∥
�1

=
M+s∏

i=M+1

θripi · ‖[xM+s
nj

(rM+1, . . . , rM+s−1)]xM ‖�1 ≤ 1

by Corollary 10. (Note the fact that Li ≥ 2.) By the inductive hypoth-
esis, ‖

∑
zj ‖ Sp(rM+1,...,rM+s) ≤ 6 for any sum over a finite set of j’s satis-

fying rM+s(nj) = rM+s. Finally, observe that if rM+s+1(t) = rM+s+1 and



MIXED TSIRELSON SPACES 33

uM+s+1
t =

∑
mn ∈Gt

cnuM+s
n , then θrM+s+1pM+s+1

∑
mn ∈Gt

cnemn is an Sq-
repeated average. Thus, it follows from Lemma 14 that

∥∥∥∥∥
M+s+1∏
i=M+1

θripi

∑
uM+s+1

t (rM+1, . . . , rM+s)

∥∥∥∥∥
Sp(rM+1,...,rM+s+1)

≤ 6

for any sum over a finite set of t’s such that rM+s+1(t) = rM+s+1 and∥∥∥∥∥
M+s+1∏
i=M+1

θripiu
M+s+1
t (rM+1, . . . , rM+s)

∥∥∥∥∥
Sp(rM+1,...,rM+s+1)

≤ 6
t

if rM+s+1(t) = rM+s+1. This completes the induction. The proposition fol-
lows by taking M + s = N and t = k in (8). �

Let T be an admissible tree and suppose that 0 ≤ M ≤ N − 2. Say
that a collection of nodes E in T is subordinated to xM if they are pair-
wise disjoint and for each E ∈ E , there exists j such that E ⊆ xM

j . Note
that in this case, for every E ∈ E , there exist unique rM+1, . . . , rN −1 such
that E ⊆ xN

k (rM+1, . . . , rN −1). Recall the assumption (4) on k. Note that if
xM

j ⊆ xN
k , then j ≥ k, and hence j also satisfies (4) in place of k.

Proposition 16. If E is a collection of nodes in an admissible tree that
is subordinated to xM and that o(E) < p(rM+1, . . . , rN (k)) for all E ∈ E with
E ⊆ xN

k (rM+1, . . . , rN −1), then∑
E∈E

t(E)‖ExN
k ‖ ≤ 1

3N2
.

Proof. Let E (rM+1, . . . , rN −1) be the set of all nodes in E such that E ⊆
xN

k (rM+1, . . . , rN −1). We have∑
E∈E(rM+1,...,rN −1)

t(E)‖ExN
k (rM+1, . . . , rN −1)‖

≤
∑
j∈G

bj ‖xM
j ‖ ≤ sup

j∈G
‖xM

j ‖�1

∑
j∈G

bj ,

where (bj) = [xN
k (rM+1, . . . , rN −1)]xM and G consists of all j’s such that there

exists E ∈ E (rM+1, . . . , rN −1) with E ⊆ xM
j . Then{

minsuppxM
j : j ∈ G \ {minG}

}
is a spreading of a subset of {minE : E ∈ E }. By Lemma 4, (xM

j )j∈G\ {minG}
is Sp(rM+1,...,rN (k))−1-admissible. Thus,∑

j∈G\ {minG}
bj ≤ ‖uN

k (rM+1, . . . , rN −1)‖Sp(rM+1,...,rN (k))−1 .
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It follows from Proposition 15 that

∑
j∈G

bj ≤ 6
k

N∏
i=M+1

θ−1
ripi

+ sup
j

bj ≤ 7
k

N∏
i=M+1

θ−1
ripi

.

Hence, using Corollary 11,∑
E∈E(rM+1,...,rN −1)

t(E)‖ExN
k (rM+1, . . . , rN −1)‖

≤ sup
j∈G

‖xM
j ‖�1

7
k

N∏
i=M+1

θ−1
ripi

≤ 2
M∏
i=1

θ−1
Lipi

· 7
k

N∏
i=M+1

θ−1
ripi

≤ 14
k

N∏
i=1

θ−1
Lipi

.

Summing over all possible rM+1, . . . , rN −1, we obtain

∑
E∈E

t(E)‖ExN
k ‖ ≤ 14

k

N∏
i=1

Liθ
−1
Lipi

≤ 1
3N2

by (4). �

Next, consider a set of nodes E ′ in T that is subordinated to xM and that

o(E) ≥ p
(
rM+1 + 1, rM+2, . . . , rN (k)

)
for all E ∈ E ′ with E ⊆ xN

k (rM+1, . . . , rN −1). In analogy to the above, for
given rM+1, . . . , rN −1, let E ′(rM+1, . . . , rN −1) be the set of all nodes in E ′

such that E ⊆ xN
k (rM+1, . . . , rN −1).

Proposition 17.
∑

E∈E ′ t(E)‖ExN
k ‖ ≤ 1

3N2 ‖xN
k ‖XM

.

Proof. We have ∑
E∈E ′(rM+1,...,rN −1)

t(E)‖ExN
k (rM+1, . . . , rN −1)‖

≤ θp(rM+1+1,...,rN (k))

∑
j∈G′

aj ‖xM
j ‖

≤ θp(rM+1+1,...,rN (k)) sup
j∈G′

‖xM
j ‖�1

∑
j∈G′

aj ,
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where (aj) = [xN
k (rM+1, . . . , rN −1)]xM and G′ consists of all j’s such that there

exists E ∈ E ′(rM+1, . . . , rN −1) with E ⊆ xM
j . But∑

j∈G′

aj ≤ ‖[xN
k (rM+1, . . . , rN −1)]xM ‖�1

≤ 2θ−1
rN (k)pN

N −1∏
i=M+1

θ−1
ripi

L−1
i by Corollary 10.

Applying Corollary 11 to the above, we have∑
E∈E ′(rM+1,...,rN −1)

t(E)‖ExN
k (rM+1, . . . , rN −1)‖(9)

≤ 4θp(rM+1+1,...,rN (k))θ
−1
rN (k)pN

M∏
i=1

θ−1
Lipi

N −1∏
i=M+1

θ−1
ripi

L−1
i .

Recall the lower estimate for ‖xN
k ‖XM

given by (7) in Corollary 13. For fixed
rM+1, . . . , rN −1, the ratio of (9) with the (rM+1, . . . , rN −1)-indexed term in
(7) is

≤ 8
θ1

θp(rM+1+1,...,rN (k))

θp(rM+1,...,rN (k))

M∏
i=1

θ−1
Lipi

=
8
θ1

θpM+1+p(rM+1,...,rN (k))

θp(rM+1,...,,rN (k))

M∏
i=1

θ−1
Lipi

≤ 8
θ1

θ1

24N2

M∏
i=1

θLipi

M∏
i=1

θ−1
Lipi

by condition (A)

=
1

3N2
.

Hence, ∑
E∈E ′

t(E)‖ExN
k ‖ ≤ 1

3N2
‖xN

k ‖XM
. �

In the next two results, let (dj) = [xN
k ]xM+1 . Recall the convention that

xN
k (rM+2, . . . , rN −1) = xN

k if M = N − 2.

Lemma 18. Suppose that 0 ≤ M ≤ N − 2. Given rM+2, . . . , rN −1, write

K = {j : xM+1
j ⊆ xN

k (rM+2, . . . , rN −1)}.

If J is an LM+1-skipped set, then∑
j∈J ∩K

dj ≤ (L−1
M+1 + k−1)

∑
j∈K

dj ≤ 3
2
L−1

M+1

∑
j∈K

dj .(10)
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Proof. The second inequality follows from the choice of k since k ≥ 2LM+1

by (4). Recall the notation from (β) expressing

xM+2
i =

∑
j∈IM+2

i

ajx
M+1
j .

For each i such that xM+2
i ⊆ xN

k , let Ji = J ∩ IM+2
i . Then Ji is an LM+1-

skipped subset of the integer interval IM+2
i . By Lemma 8,

∑
j∈Ji

dj ≤ L−1
M+1

∑
j∈IM+2

i

dj + sup
j∈IM+2

i

dj

= L−1
M+1

∑
j∈IM+2

i

dj + dmin IM+2
i

.

Now J ∩ K =
⋃

i∈K′ Ji, where K ′ = {i : xM+2
i ⊆ xN

k (rM+2, . . . , rN −1)}. Thus,

∑
j∈J ∩K

dj ≤ L−1
M+1

∑
i∈K′

∑
j∈IM+2

i

dj +
∑
i∈K′

dmin IM+2
i

= L−1
M+1

∑
j∈K

dj +
∑
i∈K′

dmin IM+2
i

.

If [xN
k ]xM+2 = (bi), then for all j ∈ IM+2

i , we can express dj = biaj , where
θrM+2(i)pM+2

∑
j∈IM+2

i
ajemj is an SrM+2(i)pM+2 -repeated average, with mj =

minsuppxM+1
j . In particular,

θrM+2(i)pM+2aj0 ≤ i−1 ≤ k−1

= k−1θrM+2(i)pM+2

∑
j∈IM+2

i

aj

for all j0 ∈ IM+2
i . Thus,

dmin IM+2
i

= biamin IM+2
i

≤ bik
−1

∑
j∈IM+2

i

aj

≤ k−1
∑

j∈IM+2
i

biaj = k−1
∑

j∈IM+2
i

dj .

Therefore, ∑
i∈K′

dmin IM+2
i

≤ k−1
∑
i∈K′

∑
j∈IM+2

i

dj = k−1
∑
j∈K

dj .



MIXED TSIRELSON SPACES 37

Hence, ∑
j∈J ∩K

dj = (L−1
M+1 + k−1)

∑
j∈K

dj . �

We say that an admissible tree T is subordinated to xM if its set of base
nodes is subordinated to xM and any leaf that is not at the base is a sin-
gleton. Given an admissible tree that is subordinated to xM , let E ′ ′ be the
collection of all base nodes E in T such that p(rM+1, . . . , rN (k)) ≤ o(E) <
p(rM+1 + 1, . . . , rN (k)) if E ⊆ xN

k (rM+1, . . . , rN −1). It follows from condi-
tion (B) that for E ∈ E ′ ′, o(E) uniquely determines rM+1, . . . , rN −1 such that
E ⊆ xN

k (rM+1, . . . , rN −1). Let D denote the set of all D’s that are immediate
predecessors of some E ∈ E ′ ′. We say that D effectively intersects xM+1

j for
some j if there exists E ∈ E ′ ′ such that E ⊆ suppxM+1

j ∩ D. Let D̃ be the sub-
collection of all D ∈ D such that D effectively intersects at least two xM+1

j ’s.
For each D ∈ D̃, let J(D) = {j : D effectively intersects xM+1

j }, then J(D) is
an LM+1-skipped set. Indeed, if D ∈ D and E1,E2 are successors of D in E ′ ′

such that Ei ⊆ suppxM+1
ji

∩ D, i = 1,2, and j1 < j2, then o(E1) = o(E2), and
hence rM+1(j1) = rM+1(j2). Thus, j2 − j1 ≥ LM+1. Let J =

⋃
D∈D̃ J(D). If

the elements of D̃ are arranged in order, then the union of J(D) taken over
every other D ∈ D̃ is an LM+1-skipped set. Hence, J is the union of at most
two LM+1-skipped sets.

Proposition 19.∑
D∈D̃

∑
E∈E ′ ′

E⊆D

t(E)‖ExN
k ‖ ≤ 1

3N2
‖xN

k ‖XM
.

Proof. Let (dj) be as in Lemma 18 and g(j) = p(rM+1, . . . , rN (k)) if xM+1
j ⊆

xN
k (rM+1, . . . , rN −1). Then∑

D∈D̃

∑
E∈E ′ ′

E⊆D

t(E)‖ExN
k ‖ ≤

∑
D∈D̃

∑
j∈J(D)

θg(j)dj ‖xM+1
j ‖�1 .

But xM+1
j =

∑
�∈IM+1

j
a�x

M
� with

∑
a� = θ−1

rM+1(j)pM+1
. Hence,

∑
D∈D̃

∑
E∈E ′ ′

E⊆D

t(E)‖ExN
k ‖ ≤ sup

�
‖xM

� ‖�1

∑
D∈D̃

∑
j∈J(D)

θg(j)djθ
−1
rM+1(j)pM+1

(11)

≤ 2 sup
�

‖xM
� ‖�1

∑
j∈J

θg(j)djθ
−1
rM+1(j)pM+1

,
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since each j belongs to at most two J(D). Fix rM+2, . . . , rN −1 and let K be
as in Lemma 18. Since J is the union of at most two LM+1-skipped sets,

∑
j∈J ∩K

θg(j)djθ
−1
rM+1(j)pM+1

≤ sup
j∈K

θg(j)

θrM+1(j)pM+1

∑
j∈J ∩K

dj

≤ 3
LM+1

sup
j∈K

θg(j)

θrM+1(j)pM+1

∑
j∈K

dj by (10).

However,

sup
j∈K

θg(j)

θrM+1(j)pM+1

≤ sup
1≤j≤LM+1

θrM+1(j)pM+1+p(rM+2,...,rN (k))

θrM+1(j)pM+1

≤ F (LM+1)
∑

rM+1

θrM+1pM+1+p(rM+2,...,rN (k))

θrM+1pM+1

by condition (‡). Therefore,

∑
j∈J ∩K

θg(j)djθ
−1
rM+1(j)pM+1

≤ 3F (LM+1)
LM+1

∑
rM+1

θp(rM+1,...,rN (k))

θrM+1pM+1

∑
j∈K

dj .

Note that

∑
j∈K

dj = ‖[xN
k (rM+2, . . . , rN −1)]xM+1 ‖�1 ≤ 2θ−1

rN (k)pN

N −1∏
i=M+2

θ−1
ripi

L−1
i

by Corollary 10. Summing over all rM+2, . . . , rN −1, we have∑
j∈J

θg(j)djθ
−1
rM+1(j)pM+1

(12)

≤ 6F (LM+1)
LM+1

∑
rM+1,...,rN −1

θp(rM+1,...,rN −1,rN (k))

θrM+1pM+1

· θ−1
rN (k)pN

×
N −1∏

i=M+2

θ−1
ripi

L−1
i

= 6F (LM+1)
∑

rM+1,...,rN −1

θp(rM+1,...,rN −1,rN (k))θ
−1
rN (k)pN

×
N −1∏

i=M+1

θ−1
ripi

L−1
i .

Comparing (11) and (12) with (7) in Corollary 13, we see that



MIXED TSIRELSON SPACES 39

∑
D∈D̃

∑
E∈E ′ ′

E⊆D

t(E)‖Ex‖ ≤ 24θ−1
1 F (LM+1)‖xN

k ‖XM
sup

�
‖xM

� ‖�1

≤ 48F (LM+1)θ−1
1

M∏
i=1

θ−1
Lipi

‖xN
k ‖XM

by Corollary 11,

≤ 1
3N2

‖xN
k ‖XM

by condition (C). �

Definition 20. Given N,p ∈ N define

Θp = Θp(N) = max

{
N∏

i=1

θ�i : �i ∈ N,

N∑
i=1

�i = p

}
.

For any N ∈ N and V ∈ [N], choose integer sequences (pk)N
k=1 and (Lk)N

k=1,
and sequences of vectors x0,x1, . . . ,xN as above.

Theorem 21. There exists a finitely supported vector x ∈ span{ek : k ∈ V }
such that

‖x‖ ≤
(

2
N

+ 4θ−1
1 sup

r1,...,rN −1

Θp(r1,...,rN (k))

θp(r1,...,rN (k))

)
‖x‖XM

.(13)

Proof. Consider an admissible tree T that is subordinated to xM , 0 ≤
M ≤ N − 2. Let E and E ′ be the set of all base nodes such that o(E) <
p(rM+1, . . . , rN (k)), respectively, o(E) ≥ p(rM+1 + 1, . . . , rK(k)) if E ⊆
xM

k (rM+1, . . . , rN −1). Also, define E ′ ′, D and D̃ as in the discussion preceding
Proposition 19. Finally, let E ′ ′ ′ be the set of all leaves of T not at the base.
By Proposition 19,∑

E∈E ′ ′

t(E)‖ExN
k ‖ =

∑
D∈D

∑
E∈E ′ ′

E⊆D

t(E)‖ExN
k ‖

≤ 1
3N2

‖xN
k ‖XM

+
∑

D∈D \ D̃

∑
E∈E ′ ′

E⊆D

t(E)‖ExN
k ‖.

If D ∈ D \ D̃, D effectively intersects at most one xM+1
j . Set D′ = D ∩

suppxM+1
j (D′ = ∅ if no such j exists). Then∑

E∈E ′ ′

E⊆D

t(E)‖ExN
k ‖ =

∑
E∈E ′ ′

E⊆D′

t(E)‖ExN
k ‖ ≤ t(D)‖D′xN

k ‖.
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Now let T ′ be a tree obtained from T by taking all D ∈ D \ D̃, all E ∈ E ′ ′ ′ and
all their ancestors, with each D ∈ D \D̃ modified into D′ as described above.
Then T ′ is an admissible tree that is subordinated to xM+1 and H(T ′) <
H(T ). (Note that every node in E ′ ′ ′ is a singleton.) By Propositions 16 and
17 and the above,∑
E∈L(T )

t(E)‖ExN
k ‖ ≤ 1

3N2
+

1
3N2

‖xN
k ‖XM

+
( ∑

E∈E ′ ′

+
∑

E∈E ′ ′ ′

)
t(E)‖ExN

k ‖

≤ 1
N2

‖xN
k ‖XM

+
∑

D∈D \ D̃

t(D)‖D′xN
k ‖ +

∑
E∈E ′ ′ ′

t(E)‖ExN
k ‖

=
1

N2
‖xN

k ‖XM
+

∑
E∈L(T ′)

t(E)‖ExN
k ‖.

Now let T be an admissible tree all of whose leaves are singletons. Let T1 be
the subtree of T consisting of leaves E in T with h(E) < N and their ancestors.
Then T1 is subordinated to x0 and H(T1) ≤ N − 1. By the above argument,
there is an admissible tree T ′

1 subordinated to x1 with H(T ′
1 ) ≤ N − 2 so that∑

E∈L(T1)

t(E)‖ExN
k ‖ ≤

∑
E∈L(T ′

1 )

t(E)‖ExN
k ‖ +

1
N2

‖xN
k ‖XM

.

Repeating the argument, we reach an admissible tree T (N −1)
1 subordinated to

xN −1 with H(T (N −1)
1 ) = 0 such that∑

E∈L(T1)

t(E)‖ExN
k ‖ ≤

∑
E∈L(T (N −1)

1 )

t(E)‖ExN
k ‖ +

N − 1
N2

‖xN
k ‖XM

.

Since H(T (N −1)
1 ) = 0 and T (N −1)

1 is subordinated to xN −1, T (N −1)
1 consists

of a single node E such that E ⊆ xN −1
j0

for some j0. Recall that xN
k =∑

j∈IN
k

ajx
N −1
j , where 0 ≤ θrN (k)pN

aj ≤ k−1 for all j ∈ IN
k . Hence,∑

E∈L(T (N −1)
1 )

t(E)‖ExN
k ‖ ≤ aj0 ‖xN −1

j0
‖�1

≤ 2θ−1
rN (k)pN

k−1
N −1∏
i=1

θ−1
Lipi

by Corollary 11

≤ 1
N2

by (4).

Therefore, ∑
E∈L(T1)

t(E)‖ExN
k ‖ ≤ 1

N
‖xN

k ‖XM
.(14)
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Let T2 be the subtree of T consisting of leaves E in T with h(E) ≥ N and
their ancestors. Since every leaf in T2 is a singleton, the set of all leaves is
subordinated to x0. Let G be the collection of all leaves E of T2 such that
o(E) < p(r1, . . . , rN (k)) if E ⊆ xN

k (r1, . . . , rN (k)). Then∑
E∈G

t(E)‖ExN
k ‖ ≤ 1

3N2
by Proposition 16.

Hence, ∑
E∈L(T2)

t(E)‖ExN
k ‖ ≤ 1

3N2
+

∑
E∈G ′

t(E)‖ExN
k ‖,

where G ′ consists of all leaves of T2 that are not in G. If E ∈ G ′ and E ⊆
xN

k (r1, . . . , rN −1), then o(E) ≥ p(r1, . . . , rN (k)) and h(E) ≥ N . Thus, t(E) =∏j
i=1 θ�i with j ≥ N and

∑j
i=1 �i ≥ p(r1, . . . , rN (k)). Choose (�′

i)
N
i=1 so that

1 ≤ �′
i ≤ �i for 1 ≤ i < N , 1 ≤ �′

N ≤ � =
∑j

i=N �i and
∑N

i=1 �′
i = p(r1, . . . , rN (k)).

Since (θn) is regular, t(E) =
∏j

i=1 θ�i ≤
∏N −1

i=1 θ�i · θ� ≤
∏N

i=1 θ�′
i

≤
Θp(r1,...,rN (k)). Therefore, using the estimates from Corollary 10 and Propo-
sition 12, we have∑

E∈L(T2)

t(E)‖ExN
k ‖(15)

≤ 1
3N2

+
∑

r1,...,rN −1

∑
E∈G ′

E⊆xN
k (r1,...,rN −1)

t(E)‖ExN
k ‖

≤ 1
3N2

+
∑

r1,...,rN −1

Θp(r1,...,rN (k))‖xN
k (r1, . . . , rN −1)‖�1

≤
(

1
3N2

+ 4θ−1
1 sup

r1,...,rN −1

Θp(r1,...,rN (k))

θp(r1,...,rN (k))

)
‖xN

k ‖XM
.

Combining (14) and (15) and maximizing over all admissible trees gives

‖xN
k ‖ = max

T
T xN

k

≤
(

2
N

+ 4θ−1
1 sup

r1,...,rN −1

Θp(r1,...,rN (k))

θp(r1,...,rN (k))

)
‖xN

k ‖XM
. �

Remark. Note that the term ‖xN
k ‖XM

enters the arguments leading up to
the proof of Theorem 21 only via the lower estimate established in Proposi-
tion 12. Therefore, if we define

ΦN
k =

θ1

2

∑
r1,...,rN −1

θp(r1,...,rN −1,rN (k))θ
−1
rN (k)pN

N −1∏
i=1

θ−1
ripi

L−1
i ,
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then we actually obtain the inequality

‖xN
k ‖ ≤

(
2
N

+ 4θ−1
1 sup

r1,...,rN −1

Θp(r1,...,rN (k))

θp(r1,...,rN (k))

)
ΦN

k .

5. Proof of main theorem and examples

In this section, we give a proof for Theorem 1. Recall that we define
θ = limθ

1/n
n = sup θ

1/n
n for a regular sequence (θn) and let ϕn = θn/θn. It was

mentioned in the discussion at the beginning of Section 2 that X and XM are
not isomorphic if θ = 1. If θ < 1 and ϕN = 1 for some N , then X and XM

are isomorphic by Proposition 7. We shall presently show that X and XM

are not isomorphic under some mild conditions on (ϕn). For the remainder
of the section, assume that θ < 1.

Proposition 22. If inf ϕn = c > 0. Then (θn) satisfies (¬ †) and (‡).

Proof. Indeed,

θm+n

θn
=

ϕm+n

ϕn
θm ≤ 1

c
θm for all m,n ∈ N.

Thus, (¬ †) holds. Also,

R∑
i=1

θsi+t

θsi

=
R∑

i=1

ϕsi+t

ϕsi

θt ≥ cRθt.

On the other hand,

max
1≤i≤R

θsi+t

θsi

= max
1≤i≤R

ϕsi+t

ϕsi

θt ≤ θt

c
.

Thus, (‡) holds with F (R) = 1
c2R . �

Proof of Theorem 1. Let ε > 0 and V ∈ [N] be given. Choose N ∈ N such
that 2

N +4θ−1
1

dN

c < ε. Obtain from Theorem 21 a vector x ∈ span{ek : k ∈ V }
that satisfies (13). Let p ∈ N, if (�i)N

i=1 is a sequence of positive integers such
that

∑N
i=1 �i = p, then

N∏
i=1

θ�i = θp
N∏

i=1

ϕ�i ≤ θpdN

and
θp = ϕpθ

p ≥ cθp.

Thus,

sup
p

Θp

θp
≤ dN

c
.
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It follows from (13) that

‖x‖ ≤
(

2
N

+ 4θ−1
1

dN

c

)
‖x‖XM

< ε‖x‖XM
.

Hence, according to Proposition 2, X and XM are not isomorphic. �

In the next two examples, we show that neither inf ϕn > 0 nor supϕn < 1
is a necessary condition for X and XM to be nonisomorphic.

Example 23. If θ < 1 and ϕn = 1
n+1 , then X and XM are not isomorphic.

Proof. It suffices to show that (θn) satisfies (¬ †), (‡) and limN supp
Θp(N)

θp
= 0. Note that

θm+n

θn
=

n + 1
m + n + 1

θm.

Hence,

δm = limsup
n

θm+n

θn
= θm → 0

as m → ∞. Thus, (¬ †) holds.
To see that (θn) satisfies (‡), let s1 < s2 < · · · < sR be an arithmetic pro-

gression in N. Note that s �→ s+1
s+t+1 is a concave increasing function for s ≥ 0.

Let g(s) be the linear function interpolating (s1,
s1+1

s1+t+1 ) and (sR, sR+1
sR+t+1 ).

Then
R∑

i=1

θsi+t

θsi

= θt
R∑

i=1

si + 1
si + t + 1

≥ θt
R∑

i=1

g(si)

= θt R

2
[g(s1) + g(sR)]

since (g(si))R
i=1 is an arithmetic progression

≥ θt R

2
max{g(s1), g(sR)} =

R

2
max

1≤i≤R

θsi+t

θsi

.

Hence, (‡) holds with F (R) = 2
R .

Finally, if If (�i)N
i=1 is a sequence of positive integers such that

∑N
i=1 �i = p,

then at least one �i is ≥ p
N . Without loss of generality, assume that �1 ≥ p

N .
Then

1
�1 + 1

≤ N

p + 1
.

Hence,

N∏
i=1

θ�i = θp
N∏

i=1

1
�i + 1

≤ θp

(
N

p + 1

)(
1
2

)N −1

=
N

2N −1
θp.
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Thus,

sup
p

Θp(N)
θp

≤ N

2N −1
.

It follows from Proposition 2 and Theorem 21 that X and XM are not iso-
morphic. �

Example 24. There exists a regular sequence (θn) with 0 < θ < 1 and
limn ϕn = 1 such that X and XM are not isomorphic.

Proof. Let 0 < θ1 < θ < 1 be given. Choose sequences (qn) and (Kn) in N

such that

θqM+N+1 ≤ 1
24N2

θ
2+s(M,N)
1

and
1

KM+N+1
≤ 1

144N2
θ
3+s(M,N)
1

if 0 ≤ M ≤ N , where s(M,N) =
∑M

i=1 KN+iqN+i if 0 < M ≤ N and
s(0,N) = 0. Then choose a sequence (ϕn) such that ϕ1 = θ1

θ , (ϕn) increases
to 1, ϕn+1 ≤ ϕn

θ and limN ϕN
s(N,N) = 0.

Define θn = ϕnθn. Then (θn) is a regular sequence such that limθ
1/n
n =

limϕ
1/n
n θ = θ. Since inf ϕn = ϕ1 > 0, (¬ †) and (‡) hold with F (R) = 1

ϕ2
1R

according to Proposition 22.
Given N ∈ N, we claim that the sequences (pk)N

k=1 = (qN+k)N
k=1 and

(Lk)N
k=1 = (KN+k)N

k=1 satisfy conditions (A), (B), and (C). Indeed,

θpM+1+n

θn
= θpM+1

ϕpM+1+n

ϕn
≤ θpM+1

ϕ1
≤ θqN+M+1

θ1
≤ 1

24N2
θ

s(M,N)
1 .

By regularity, θn ≥ θn
1 . Hence,

M∏
i=1

θLipi ≥ θ
∑M

i=1 Lipi

1 = θ
s(M,N)
1

if M > 0. Thus,

θpM+1+n

θn
≤ 1

24N2

M∏
i=1

θLipi .

Therefore, condition (A) is satisfied if M > 0. If M = 0, then s(M,N) = 0
and the vacuous product

∏M
i=1 θLipi = 1 and the result is clear.

To see that condition (B) is satisfied, we note that by the choice of (qn),
qM+N+1 ≥ 2 + s(M,N), which is equivalent to saying that pM+1 ≥ 2 +∑M

i=1 Lipi if M > 0.



MIXED TSIRELSON SPACES 45

If M > 0,

F (LM+1) =
1

ϕ2
1LM+1

=
1

ϕ2
1KM+N+1

≤ 1
θ2
1 · 144N2

θ
3+s(M,N)
1

≤ θ1

144N2
θ

∑M
i=1 Lipi

1 ≤ θ1

144N2

M∏
i=1

θLipi .

Therefore, condition (C) is also satisfied. Finally, we consider the ratio

Θp(r1,...,rN (k))

θp(r1,...,rN (k))
.

If (�i)N
i=1 is a sequence in N such that

∑N
i=1 �i = p(r1, . . . , rN (k)), then

N∏
i=1

θ�i = θp(r1,...,rN (k))
N∏

i=1

ϕ�i

≤ θp(r1,...,rN (k))ϕN
p(r1,...,rN (k))

since (ϕn) is increasing and 0 < ϕn < 1. Now

p(r1, . . . , rN (k)) = r1p1 + · · · + rN −1pN −1 + rN (k)pN

≤ L1p1 + · · · + LNpN =
N∑

i=1

KN+iqN+i = s(N,N).

Thus,

N∏
i=1

θ�i ≤ θp(r1,...,rN (k))ϕN
s(N,N)

=
ϕN

s(N,N)

ϕp(r1,...,rN (k))
θp(r1,...,rN (k))

≤ ϕN
s(N,N)ϕ

−1
1 θp(r1,...,rN (k)).

Hence,

sup
r1,...,rN −1

Θp(r1,...,rN (k))

θp(r1,...,rN (k))
≤ ϕN

s(N,N)ϕ
−1
1 .

Since (ϕN ) is chosen such that limN ϕN
s(N,N) = 0, we see that

lim
N

sup
r1,...,rN −1

Θp(r1,...,rN (k))

θp(r1,...,rN (k))
= 0.

Arguing as in the proof of Theorem 1, we may conclude that X and XM are
not isomorphic. �
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