ON B-INJECTORS OF THE COVERING GROUPS OF A_{N}

M. ALALI, CH. HERING, AND A. NEUMANN

Abstract

A B-injector in an arbitrary finite group G is defined as a maximal nilpotent subgroup of G, containing a subgroup A of G of maximal order satisfying $\operatorname{class}(A) \leq 2$. The aim of this paper is to determine the B-injector of the covering groups of A_{n}.

1. Introduction

Let G be a finite group. A subgroup $U \leq G$ is an N-injector of G, if for every subnormal subgroup S of $G, U \cap S$ is a maximal nilpotent subgroup of S. N-injectors for nonsolvable groups have been introduced first by Mann [8]. He extended Fischer's results to N-constrained groups, that is, to groups G, such that $C_{G}(F(G)) \subseteq F(G)$, where $F(G)$ denotes the Fitting subgroup of G. It is well known that a solvable group is always N-constrained. In [5], Fischer, Gaschutz, and Hartley proved that if G is solvable, then N-injectors exist and any two of them are conjugate. It was (Förster [6], Iranso and Perez-Monasor [7]) who proved that N-injectors exist in all finite groups. Arad and Chillag [2] proved that if G is an N-constrained group, then A is an N-injector of G if and only if A is a maximal nilpotent subgroup of G containing an element of $a_{2}(G)$ where $a_{2}(G)$ is the set of all nilpotent subgroups of G of class at most 2 and having order $d_{2}(G)$ where $d_{2}(G)$ denotes the maximum of the orders of all nilpotent subgroups of class at most 2 . A subgroup A of G is called a B-injector of G if A is a maximal nilpotent subgroup of G containing an element of $a_{2}(G)$. This definition has been used here and in [1]. In N-constrained groups the definition of N-injectors and the definition of B-injectors yield the same class of subgroups. If U is a B-injector of G, then U contains every nilpotent subgroup of G which is normalized by U [2]. In [9], Neumann proved that in any finite group G, B-injectors are N-injectors. The motivation behind this work is that B-injectors will lead to theorems similar
to Glauberman's ZJ-theorem and it is hoped that they provide tools and arguments for a modified and shortened the proof of the classification theorem of finite simple groups, in particular where the Thompson factorization theorem might fail [11]. The B-injectors of S_{n} and A_{n} have been determined in [3] and [4]. In [10], it is proved that the B-injectors of S_{n} and A_{n} are conjugate apart from some trivial cases which can be enumerated.

2. Preliminaries and notations

Our notation is fairly standard: throughout all groups are finite. If G is a group, $Z(G)$ denotes the center of G. If H and X are subsets of $G, C_{H}(X)$ and $N_{H}(X)$ denote respectively the centralizer and normalizer of X in H.

The generalized Fitting group $F^{*}(G)$ is defined by $F^{*}(G)=F(G) E(G)$ where $E(G)=\langle L| L \triangleleft \triangleleft G$ and L is quasisimple \rangle is a subgroup of G, A group L is called quasisimple if and only if $L^{\prime}=L$ where L^{\prime} is the derived group of L, and $L^{\prime} / Z(L)$ is non-Abelian simple. $O_{p}(G)$ denotes the unique maximal normal p-subgroup of G, it is the Sylow p-subgroup of $F(G)$ and $O_{p^{\prime}}(G)=\prod O_{q}(G), q \neq p$ and q is prime. If $\Omega=\{1,2, \ldots, n\}, S_{\Omega}$ will denote the symmetric group of degree n. Sometimes we write S_{n} for S_{Ω}. As is customary, we shall denote the alternating group on n points by A_{n}. Let $\Phi(G)$ denotes the Frattini subgroup of G, the intersection of all maximal subgroups of G. The integer part of the real number x is denoted by $[x]$. We denoted by $a_{2, p}(G)$ the set of p-subgroups, of class at most two and of largest possible order, of G.

We introduce the following definition.
Definition 1. Let G be a finite group, a nilpotent subgroup U of G is called a $B G$-injector of G if it contains every nilpotent subgroup it normalizes.

It is clear that $B G$-injector is maximal nilpotent and containing $F(G)$. Also, if U is a $B G$-injector of G and if $U \leq H \leq G$, then U is a $B G$-injector of H. Also, B-injectors are $B G$-injectors [9]. Schur [12] showed that if G is a nonAbelian simple group, then there exists a unique quasisimple group \hat{G} such that $\hat{G} / Z(\hat{G}) \cong G$, and given any quasisimple group H with $H / Z(H) \cong G$, then H is isomorphic to \hat{G} / Z for some subgroup $Z \subseteq Z(\hat{G}), Z(\hat{G})$ is called the Schur multiplier of G and denotes by $M(G)$ and $H \cong \hat{G} / Z$ is called a universal covering group of G. The Schur multipliers $M\left(A_{n}\right)$ for alternating groups A_{n}, have been determined in [12] and they are

$$
M\left(A_{n}\right)= \begin{cases}Z_{6}, & n=6,7 \\ Z_{2}, & n \geq 5, n \neq 6,7\end{cases}
$$

Hence, the universal covering groups of A_{n}, are $6 A_{6}, 6 A_{7}$, and $2 A_{n}$ where $n \neq 6,7$. Schur showed that there are two types of groups of shape $2 S_{n}$ which denoted by $2 \stackrel{+}{S}_{n}, 2 \bar{S}_{n}$, and $2 A_{n}$ is then the commutator group of any of these.

So, $2 A_{n}=\left(2 \stackrel{+}{S}_{n}\right)^{\prime}=\left(2 \bar{S}_{n}\right)^{\prime}$ where G^{\prime} denotes the commutator group of $G \cdot 2 \stackrel{+}{S}_{n}$ can be easily described by defining relations.

So, let $H=2 \stackrel{+}{S}_{n}$ and denote $Z(H)=\langle-1\rangle$, then we have the following. If $t \in S_{n}$ is a transposition and T is its preimage in $H=2 \stackrel{+}{S}_{n}$, then $T^{2}=-1$ and if s, t are two transpositions in S_{n} and disjoint support with preimages S, T in H, then $[s, T]=-1$. So, $H=2 \stackrel{+}{S}_{n}$ is uniquely determined by these two relations. Also, if s, t are two pairwise commuting transpositions with preimages $T_{1}, T_{2}, \ldots, T_{m}$, then

$$
\left(T_{1}, T_{2}, \ldots, T_{m}\right)^{2}=(-1)\binom{m+1}{2}
$$

Let Ω be a finite set, and let $\pi=\left(A_{1}, A_{2}, \ldots, A_{m}\right)$ be a partition of Ω into pairwise disjoint nonempty subsets of Ω, we denote its stabilizer by Y_{π}, Y_{π} is also called the Young subgroup of π, that is,

$$
Y_{\pi}=\left\{g \in S_{\Omega} \mid A_{i}^{g}=A_{i} \text { for all } i\right\}
$$

It is obvious that

$$
Y_{\pi}=Y_{A_{1}} \times Y_{A_{2}} \times \cdots \times Y_{A_{m}} \leq S_{\Omega}
$$

where $Y_{A_{i}}=\left\{g \in S_{\Omega} \mid g\right.$ fixes all points not in $\left.A_{i}\right\}$ and $Y_{A_{i}} \equiv S_{A_{i}}$.
Furthermore, we define $Y_{A_{i}}^{*} \equiv Y_{A_{i}} \cap A_{\Omega}$, where A_{Ω} is the alternating group of Ω and we have

$$
Y_{\pi}^{*}=\left\langle Y_{A_{1}}^{*}, Y_{A_{2}}^{*}, \ldots, Y_{A_{m}}^{*}\right\rangle=Y_{A_{1}}^{*} \times Y_{A_{2}}^{*} \times \cdots \times Y_{A_{m}}^{*} \leq A_{\Omega}
$$

Note 1. If $\sigma: K \longrightarrow A_{\Omega}$ be a surjective homomorphism, where $K=$ $\left(2 \stackrel{+}{S}_{n}\right)^{\prime}$, then $\operatorname{ker} \sigma=\langle-1\rangle$ and for any subgroup $X \leq A_{\Omega}$ we have the preimage $\hat{X}=\left\{x \in K \mid x^{\sigma} \in X\right\}$.

We prove the following lemma.
Lemma 1. $\hat{Y}_{\pi}^{*}=\hat{Y}_{A_{1}}^{*} \circ \hat{Y}_{A_{2}}^{*} \circ \cdots \circ \hat{Y}_{A_{m}}^{*}$, is the central product of $\hat{Y}_{A_{1}}^{*}, \hat{Y}_{A_{2}}^{*}, \ldots$, $\hat{Y}_{A_{m}}^{*}$, where \hat{Y}_{π}^{*} is the preimage of Y_{π}^{*} and $\hat{Y}_{A_{i}}^{*}$ is the preimage of $Y_{A_{i}}^{*}, i=$ $1,2, \ldots, m, A_{i}, \Omega$ and $Y_{A_{i}}^{*}$ are defined above.

Proof. Let $\sigma: K \longrightarrow A_{\Omega}$ be a surjective homomorphism and let $x \in \hat{Y}_{\pi}^{*}$, then $x^{\sigma} \in Y_{\pi}^{*}$, so $x^{\sigma}=y_{1} y_{2} \cdots y_{m}$ for $y_{i} \in Y_{A_{i}}^{*}$. Choose $x_{i} \in \hat{Y}_{A_{i}}^{*}$ such that $x_{i}^{\sigma}=y_{i}$. Thus, $\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in K$ and

$$
\left(x_{1}, x_{2}, \ldots, x_{m}\right)^{\sigma}=x_{1}^{\sigma} x_{2}^{\sigma} \cdots x_{m}^{\sigma}=y_{1} y_{2} \cdots y_{m}=x^{\sigma}
$$

so $x^{\sigma}=\left(x_{1} x_{2} \cdots x_{m}\right)^{\sigma}$, it follows that $\left[\left(x_{1} x_{2} \cdots x_{m}\right) x^{-1}\right]^{\sigma}=1$. This implies that $\left(x_{1} x_{2} \cdots x_{m}\right) x^{-1} \in \operatorname{ker} \sigma=\langle-1\rangle$, thus $x_{1} x_{2} \cdots x_{m}=x$ or $-x$. It remains to prove that $\left[\hat{Y}_{A_{i}}^{*}, \hat{Y}_{A_{j}}^{*}\right]=1$, for $i \neq j$.

Let $g \in Y_{A_{i}}, \quad h \in Y_{A_{j}}$, then $g=t_{1} t_{2} \cdots t_{k}$ where t_{i} 's are transpositions in $Y_{A_{i}}$ and $h=s_{1} s_{2} \cdots s_{m}$ where s_{i} 's are transpositions in $Y_{A_{j}}$. If T_{i}, S_{i}
are the corresponding preimages of t_{i}, s_{i} respectively, then $\left[T_{i}, S_{i}\right]=-1$ and $\hat{g}=T_{1} T_{2} \cdots T_{k}, \hat{h}=S_{1} S_{2} \cdots S_{m}$ are the preimages of g, h, respectively. So, $[\hat{g}, \hat{h}]=\hat{g}^{-1}(\hat{g})^{\hat{h}}=\left(T_{1} T_{2} \cdots T_{k}\right)^{S_{1} S_{2} \cdots S_{m}}=(-1)^{m k}\left(T_{1} T_{2} \cdots T_{k}\right)^{-1} T_{1} T_{2} \cdots T_{k}=$ $(-1)^{m k}$ as

$$
T_{i}^{S_{1} S_{2} \cdots S_{m}}=(-1)^{m} T_{i} .
$$

So,

$$
[\hat{g}, \hat{h}]= \begin{cases}-1, & \text { if } g, h \in S_{\Omega} \backslash A_{\Omega} \\ 1, & \text { otherwise }\end{cases}
$$

and it follows that $\left[\hat{Y}_{A_{i}}^{*}, \hat{Y}_{A_{j}}^{*}\right]=1$ for $i \neq j$. This completes the proof of the lemma.

Note 2. If Ω is a set of size n, and $\pi=\left(A_{1}, A_{2}, \ldots, A_{m}\right)$ is a partition of Ω, then the preimage $\hat{Y}_{A_{i}}^{*}$ of the Young subgroup $Y_{A_{i}}^{*}$ is isomorphic to:
(i) $2 A_{n_{i}}$, if $\left|A_{i}\right|=n_{i} \geq 5$.
(ii) Z_{2}, if $n_{i}=1,2$.
(iii) Z_{6}, if $n_{i}=3$ or $\operatorname{SL}(2,3)$ if $\left|A_{i}\right|=4$.

Lemma 2. Let G be a finite group and U be a $B G$-injector of it.
(i) If $Z \leq Z(G)$, then $Z \leq U$ and U / Z is a $B G$-injector of G / Z.
(ii) If $F^{*}(G)=O_{p}(G)$, for some prime p, then U is a Sylow p-subgroup of G.
(iii) If G is a central product of two subgroups G_{1}, G_{2} of G, that is, $G=$ $G_{1} G_{2},\left[G_{1}, G_{2}\right]=1$, then $U=\left(U \cap G_{1}\right)\left(U \cap G_{2}\right)$ and $U \cap G_{i}$ is a $B G$-injector of G_{i}, for $i=1,2$.

Proof. The proof is easy and is omitted.
Remark 1 ([6]). Let H be a finite group such that $H \cong Z_{p} 乙 S_{k}$; the Wreath product of the cyclic group Z_{p}, p a prime, with S_{k}, then $F^{*}(H)=O_{p}(H)$.

REmARK 2. If Ω is a finite set, we denote by S_{Ω}, A_{Ω} the corresponding symmetric and alternating group of Ω. For a partition $\Sigma=\left(A_{1}, A_{2}, \ldots, A_{m}\right)$ of Ω into pairwise disjoint nonempty subsets of Ω,

$$
Y_{\Sigma}=\left\{g \in S_{\Omega} \mid A_{i}{ }^{g}=A_{i}, 1 \leq i \leq m\right\}
$$

denotes the Young subgroup of Ω. It is obvious that

$$
Y_{\Sigma}=Y_{A_{1}} \times Y_{A_{2}} \times \cdots \times Y_{A_{m}} \leq S_{\Omega}
$$

where $Y_{A_{i}}=\left\{g \in S_{\Omega} \mid g\right.$ fixes all points not in $\left.A_{i}\right\}$ and $Y_{A_{i}} \cong S_{A_{i}}$. We define $Y_{A_{i}}^{*} \cap A_{\Omega}$ and $Y_{\Sigma}^{*}=\left\langle Y_{A_{1}}^{*}, Y_{A_{2}}^{*}, \ldots, Y_{A_{m}}^{*}\right\rangle=Y_{A_{1}}^{*} \times Y_{A_{2}}^{*} \times \cdots \times Y_{A_{m}}^{*} \leq A_{\Omega}$. Consider an element $g \in S_{\Omega}$ of prime order $p \neq 2$. Let $A=\left\{\alpha \in \Omega \mid \alpha^{g} \neq \alpha\right\}$, $\Gamma=\left\{\alpha \in \Omega \mid \alpha^{g}=\alpha\right\}$. So $\Sigma=(A, \Gamma)$ is a partition of Ω. If $|A|=p k$, then g is a product of k pairwise commuting p-cycles $t_{1}, t_{2}, \ldots, t_{k}$ and $t_{i} \in Y_{A}$ corresponding to the orbits of g in A. Since $C_{S_{\Omega}}(g)$ permutes these t_{i} 's, and in particular normalizes $V=\left\langle t_{1}, t_{2}, \ldots, t_{k}\right\rangle \cong Z_{p}{ }^{k}$.

We infer that $V \subseteq O_{p}\left(C_{S_{\Omega}}(g)\right)$, and $C_{S_{\Omega}}(g) \leq Y_{z}=Y_{A} \times \Gamma$, hence:

$$
C_{S_{\Omega}}(g)=C_{Y_{A}}(g) \times Y_{\Gamma}
$$

As $C_{Y_{A}}(g) \cong Z_{p}\left\langle S_{k}\right.$, by Remark 1, it follows that

$$
F^{*}\left(C_{Y_{A}}(g)\right)=O_{p}\left(C_{Y_{A}}(g)\right)
$$

and

$$
C(V)=V \times Y_{\Gamma}
$$

Lemma 3. Let U be a $B G$-injector in A_{Ω} and let $g \in Z(U)$ with $o(g)=$ $p \neq 2$, p prime, where $o(g)$ denotes the order of g. Then

$$
U=\left(U \cap C_{Y_{A}^{*}}(g)\right) \times\left(U \cap Y_{\Gamma}^{*}\right)
$$

Proof. Since $g \in Z(U), U \leq C_{A_{\Omega}}(g) \leq C_{S_{\Omega}}(g)=C_{Y_{A}}(g) \times Y_{\Gamma} \leq Y_{A} \times Y_{\Gamma}$. If V is as defined above, it follows that

$$
V \subseteq O_{p}\left(C_{S_{\Omega}}(g)\right)=O_{p}\left(C_{A_{\Omega}}(g)\right)=F^{*}\left(C_{A_{\Omega}}(g)\right)
$$

as p is odd.
As U is a $B G$-injector of $C_{A_{\Omega}}(g)$, this implies that $V \subseteq O_{p}\left(C_{A_{\Omega}}(g)\right) \subseteq U$, but U is nilpotent, so

$$
U=O_{p}(U) \times O_{p^{\prime}}(U)
$$

Also, $V \subseteq O_{p}(U)$ and $O_{p^{\prime}}(U) \subseteq C\left(O_{p}(U)\right)$, thus

$$
O_{p^{\prime}}(U) \subseteq C_{A_{\Omega}}(V)
$$

So,

$$
O_{p^{\prime}}(U) \leq C_{S_{\Omega}}(V)=V \times Y_{\Gamma}
$$

As $U \leq A_{\Omega}$ and $V \leq A_{\Omega}(p \neq 2)$, we obtain

$$
O_{p^{\prime}}(U)=O_{p^{\prime}}(U) \cap A_{\Omega} \leq\left(V \times Y_{\Gamma}\right) \cap A_{\Omega}=V \times\left(Y_{\Gamma} \cap A_{\Omega}\right)=V \times Y_{\Gamma}^{*}
$$

Thus, $O_{p^{\prime}} \leq Y_{\Gamma}^{*}$ as $p||V|$ and, therefore,

$$
U=O_{p}(U) \times O_{p^{\prime}}(U) \leq C_{Y_{A}}(g) \times Y_{\Gamma}^{*},
$$

this implies that $U \leq C_{Y_{A}^{*}}(g) \times Y_{\Gamma}^{*} \leq Y_{A}^{*} \times Y_{\Gamma}^{*}$, as $p \neq 2$. Hence, by Lemma 2 we have

$$
U=\left(U \cap C_{Y_{A}^{*}}(g)\right) \times\left(U \cap Y_{\Gamma}^{*}\right)=\left(U \cap Y_{A}^{*}\right) \times\left(U \cap Y_{\Gamma}^{*}\right)
$$

Lemma 4. Let Ω be a finite set and let U be a $B G$-injector of A_{Ω}, then there exists a partition $\Sigma=\left(A_{1}, A_{2}, \ldots, A_{m}\right)$ of Ω such that $U \leq Y_{A_{1}}^{*} \times Y_{A_{2}}^{*} \times$ $\cdots \times Y_{A_{m}}^{*}$ and $U=\left(U \cap Y_{A_{1}}^{*}\right) \times \cdots \times\left(U \cap Y_{A_{m}}^{*}\right)$. Also, for $i=1,2, \ldots, m$, there exists a prime p_{i} such that $\left(U \cap Y_{A_{i}}^{*}\right)$ is a Sylow p_{i}-subgroup of $Y_{A_{i}}^{*}$.

Proof. We consider two cases:
Case 1. U is a 2 -group. Let Σ be the partition consisting of Ω alone, that is, $\Sigma=(\Omega)$. So, $Y_{\Sigma}^{*}=A_{\Omega}$ and $U=U \cap Y_{\Sigma}^{*}$. As U is a $B G$-injector of A_{Ω}, it is maximal nilpotent, and thus U is a Sylow 2-subgroup of A_{Ω}.

Case 2. U is not a 2 -group, so there exists a prime $p \neq 2$ such that $p||U|$.
As U is nilpotent, it follows that there exists $z \in Z(U), o(z)=p$. Let A_{1} be the set of nonfixed points of $Z=Z(U)$ and Γ be the set of fixed points of Z. By Lemma 3, we get

$$
U \leq C_{A_{\Omega}}(z)=C_{Y_{A_{1}}^{*}}(z) \times Y_{\Gamma}^{*} \leq Y_{A_{1}}^{*} \times Y_{\Gamma}^{*}
$$

Also, by Lemma 3, we obtain

$$
U=U \cap C_{Y_{A_{1}}^{*}}(z) \times\left(U \cap Y_{\Gamma}^{*}\right)=\left(U \cap Y_{A_{1}}^{*}\right) \times\left(U \cap Y_{\Gamma}^{*}\right)
$$

$U \cap C_{Y_{A_{1}}^{*}}(z)$ is a $B G$-injector of $Y_{A_{1}}^{*}$, and $U \cap Y_{\Gamma}^{*}$ is a $B G$-injector of Y_{Γ}. As $U \cap C_{Y_{A_{1}}^{*}}(z)$ is a $B G$-injector of $C_{Y_{A_{1}}^{*}}(z)$ and $\Gamma^{*}\left(C_{Y_{A_{1}}^{*}}(z)\right)=O_{p}\left(C_{Y_{A_{1}}^{*}}(z)\right)$, we get that $U \cap C_{Y_{A_{1}}^{*}}(z)$ is a Sylow p-subgroup of $Y_{A_{1}}^{*} \cong A_{A_{1}}$ and $U \cap Y_{\Gamma}^{*}$ is a $B G$-injector of $Y_{\Gamma}^{*} \cong A_{\Gamma}$. Repeating the argument for $U \cap Y_{\Gamma}$ and $Y_{\Gamma}^{*} \cong A_{\Gamma}$, the claim follows.

Theorem 1. Let K be a group isomorphic to $2 A_{\Omega}$, where Ω is a finite set of size n. If B is a B-injector of K, then there exists a partition $\pi=$ $\left(A_{1}, A_{2}, \ldots, A_{m}\right)$ of Ω such that:
(i) For each $i, B \cap \hat{Y}_{A_{i}}^{*}$ is a B-injector of $\hat{Y}_{A_{i}}^{*}$.
(ii) Let $Z=Z(K)$ and $B_{i}=B \cap \hat{Y}_{A_{i}}^{*}$, then $B_{i} \cong Z \times O_{p_{i}}\left(B_{i}\right)$, for some prime $p_{i} \neq 2$.
(iii) $d_{2}\left(2 A_{A_{i}}\right)=2 p_{i}{ }^{n_{i} / p_{i}}$ and for any odd prime $p, p^{\left[n_{i} / p\right]} \leq p_{i}{ }^{n_{i} / p_{i}}$.
(iv) There is at most one i with $p_{i}=5$ and the union of the A_{i} 's with $p_{i}=3$ has size at most 6 , and there are no i, j such that $p_{i}=3$ and $p_{j}=5$.

Proof. (i) As B / Z is a B-injector of $K / Z \cong A_{\Omega}$, there exists by Lemma 4, a partition $\pi=\left(A_{1}, A_{2}, \ldots, A_{m}\right)$ of Ω such that

$$
\hat{Y}_{\pi}^{*}=\hat{Y}_{A_{1}}^{*} \times \cdots \times \hat{Y}_{A_{m}}^{*} .
$$

Let $B / Z=U$, then $U \leq Y_{\pi}^{*}$ and $U=\left(U \cap Y_{A_{1}}^{*}\right) \times \cdots \times\left(U \cap Y_{A_{m}}^{*}\right)$. Thus,

$$
B \leq \hat{Y}_{\pi}^{*}=\hat{Y}_{A_{1}}^{*} \circ \hat{Y}_{A_{2}}^{*} \circ \cdots \circ \hat{Y}_{A_{m}}^{*}
$$

the central product of $\hat{Y}_{A_{i}}^{*}$, by Lemma 1. Hence,

$$
B=\left(B \cap \hat{Y}_{A_{1}}^{*}\right) \times \cdots \times\left(B \cap \hat{Y}_{A_{m}}^{*}\right)
$$

and $B \cap \hat{Y}_{A_{i}}^{*}$ is a B-injector of $B \cap \hat{Y}_{A_{i}}^{*}$.
(ii) As $Z \leq B \cap \hat{Y}_{A_{i}}^{*}=B_{i}$ and $B_{i} / Z \cong U \cap Y_{A_{i}}^{*}$, then for any prime $p_{i} \neq 2$, we have $B_{i}=\prod_{p \text {-prime }} O_{p}\left(B_{i}\right)$ and $Z \leq O_{2}\left(B_{i}\right)$. So,

$$
B_{i} / Z \cong O_{2}\left(B_{i}\right) / Z \times \prod_{p \neq 2} O_{p}\left(B_{i}\right)
$$

As $B_{i} / Z \cong U \cap Y_{A_{i}}^{*}$ is a Sylow p_{i}-subgroup of $Y_{A_{i}}^{*}$ by Lemma 4, it follows that $B_{i}=Z \times O_{p_{i}}\left(B_{i}\right)$ and $U \cap Y_{A_{i}}^{*} \cong O_{p_{i}}\left(B_{i}\right)$, which is a Sylow p_{i}-subgroup of $Y_{A_{i}}^{*} \cong A_{A_{i}}=A_{n_{i}}$ where $\left|A_{i}\right|=n_{i}$.
(iii)

$$
\begin{aligned}
d_{2}\left(2 A_{A_{i}}\right) & =d_{2}\left(\hat{Y}_{A_{i}}^{*}\right)=d_{2}\left(B_{i}\right)=d_{2}(Z) d_{2}\left(O_{p_{i}}\left(B_{i}\right)\right) \\
& =2 d_{2, p}\left(A_{A_{i}}\right)=2 p_{i}^{n_{i} / p}
\end{aligned}
$$

Also, if p is a prime $\neq 2$, we have $d_{2, p}\left(2 A_{n}\right)=2 d_{2, p}\left(A_{n}\right)$, because $2 A_{n}$ and A_{n} have isomorphic Sylow p-subgroups. As $d_{2, p}\left(2 A_{n}\right) \leq d_{2}\left(2 A_{n}\right)$, we get

$$
2 p^{\left[n_{i} / p\right]}=2 d_{2, p}\left(A_{n_{i}}\right)=d_{2, p}\left(2 A_{n_{i}}\right) \leq d_{2}\left(2 A_{n_{i}}\right)=2 p_{i}^{n_{i} / p_{i}}
$$

or $p^{\left[n_{i} / p\right]} \leq p_{i}^{n_{i} / p_{i}}$ for all odd primes.
(iv) Let $I \subseteq\{1,2, \ldots, n\}$, so that p_{i} is an odd prime for all $i \in I$. Then for $A=\bigcup_{i \in I} A_{i}$, it follows that the central product

$$
\prod_{\circ} \hat{Y}_{A_{i}}^{*} \leq \hat{Y}_{A}^{*}
$$

$B \cap \hat{Y}_{A}^{*}=\prod_{\circ}\left(B \cap \hat{Y}_{A_{i}}^{*}\right)$ and $\left(B \cap \hat{Y}_{A}^{*}\right)$ is a B-injector in $\hat{Y}_{A}^{*} \cong 2 A_{A}$.
Consider the following cases.
Case 1. Assume that there are disjoint A_{i}, A_{j} such that $p_{i}=p_{j}=5$. So, $\left|A_{i}\right|=\left|A_{j}\right|=5$. Set $A=A_{i} \cup A_{j}$. It follows that

$$
B \cap \hat{Y}_{A}^{*}=\left(B \cap \hat{Y}_{A_{i}}^{*}\right)\left(B \cap \hat{Y}_{A_{j}}^{*}\right)
$$

is a B-injector in \hat{Y}_{A}^{*} of order $2 \cdot 5^{2}$: this is a contradiction, as $d_{2}\left(2 A_{10}\right) \geq$ $d_{2}\left(2 A_{8}\right) \geq 2^{6}$.

Case 2. Let J be the set of numbers j such that $p_{j}=3$ and let $A=$ $\bigcup_{j \in J} A_{j}$, then $\left(B \cap \hat{Y}_{A}^{*}\right)$ is a B-injector of \hat{Y}_{A}^{*} and it is of the form $Z \times P$ for some Sylow 3-subgroup P of \hat{Y}_{A}^{*}. Hence, if $|A|=3 k$, then

$$
d_{2}\left(2 A_{A}\right)=d_{2}\left(\hat{Y}_{A}^{*}\right)=2 \cdot 3^{6} .
$$

So, $d_{2,2}\left(2 A_{A}\right) \supsetneqq 2 \cdot 3^{k}$. By Corollary 3 , we have $3 k<8$ or $3 k=15$, but $d_{2}\left(2 A_{15}\right) \geq 2 \cdot \frac{d_{2,2}\left(2 A_{8}\right)}{2} \cdot \frac{d_{2,2}\left(2 A_{4}\right)}{2} \cdot \frac{d_{2,2}\left(2 A_{3}\right)}{2} \geq 2 \cdot \frac{64}{2} \cdot \frac{8}{2} \cdot \frac{6}{2}$. Hence, $64 \cdot 24 \leq$ $d_{2}\left(2 A_{15}\right)=d_{2}\left(\hat{Y}_{A}^{*}\right)=2 \cdot 3^{5}$ is a contradiction.

Case 3. Assume that there exist i, j such that $p_{i}=5$ and $p_{j}=3$, then $\left|A_{i}\right|=5$ and $\left|A_{j}\right|=3$ or 6 . Set $A=A_{i} \cup A_{j}$, it follows that $\left(B \cap \hat{Y}_{A}^{*}\right)$ is a B-injector of $\hat{Y}_{A}^{*} \cong 2 A_{A}$, and hence $\left|A_{j}\right|=3$, thus $|A|=8$ and $d_{2}\left(2 A_{8}\right)=$ $d_{2}\left(\hat{Y}_{A}^{*}\right)=2 \cdot 3 \cdot 5=30$, a contradiction, as $64 \leq d_{2,2}\left(2 A_{8}\right) \leq d_{2}\left(2 A_{8}\right)$.

If $\left|A_{j}\right|=6$, then $|A|=11$ and $d_{2}\left(2 A_{11}\right)=d_{2}\left(\hat{Y}_{A}^{*}\right)=2 \cdot 5 \cdot 3^{2}=90$, a contradiction, as $d_{2}\left(2 A_{11}\right) \geq 2 \cdot \frac{d_{2,2}\left(2 A_{8}\right)}{2} \cdot d_{2,2}\left(2 A_{3}\right) \geq 2 \cdot \frac{64}{2} \cdot \frac{6}{2}>90$.

Lemma 5. Let Ω be a finite set of size n, and let P be a transitive p-subgroup of S_{Ω} of class ≤ 2. Then there exist integers $a \geq 0, b \geq 0$ such that $n=p^{a+b}$ and $|P| \leq p^{a+b+a b}$.

Proof. As P is transitive on $\Omega, Z=Z(P)$ acts semiregularly on Ω that $Z_{\alpha}=1 \forall \alpha \in \Omega$, because let $z \in Z_{\alpha}$, so $z \in Z(P)$, it follows that P leaves invariant the set of fixed points of Z, so fix $(z)=\Omega$, and thus $z=1$. As class $P \leq 2$, it follows that $P^{\prime} \leq Z(P)$, and hence

$$
\left(P_{\alpha}\right)^{\prime} \leq\left(P^{\prime}\right)_{\alpha} \leq Z_{\alpha}=1
$$

So, P_{α} is Abelian, and $M=\left\langle Z, P_{\alpha}\right\rangle=Z \times P_{\alpha}$ is an Abelian normal subgroup of P, as $P^{\prime} \leq Z \leq M$ and $Z \cap Z_{\alpha}=Z_{\alpha}=1$. Set $|P / M|=P^{\alpha}$ and $|Z|=p^{b}$, then there exist $t_{1}, t_{2}, \ldots, t_{a} \in P$ such that $P / M=\left\langle M t_{1}, M t_{2}, \ldots, M t_{a}\right\rangle$. Next, consider the map $\sigma: P_{\alpha} \longrightarrow\left(P^{\prime}\right)^{a}$ defined by $\sigma(x)=\left(\left[x, t_{1}\right], \ldots,\left[x, t_{a}\right]\right)$. As class $(P) \leq 2$, it follows that σ is a homomorphism. This can be seen as follows. In groups of class, at most two, we have the following relation:

$$
[x y, t]=y^{-1}[x, t] y^{t}=[x, t] y^{-1} y^{t}
$$

as $[x, t] \in P^{\prime} \subseteq Z(P)$. So, $[x y, t]=[x, t][y, t]$, where $y^{t}=t^{-1} y t$ and ker $\sigma=1$, because let $x \in \operatorname{ker} \sigma$, it follows that $\left[x, t_{i}\right]=1, i=1, \ldots, a$, thus t_{1}, \ldots, t_{a} are in $C_{p}(x)$. Furthermore, $x \in P_{\alpha} \subseteq M=Z \times P_{\alpha}$ and $M \subseteq C_{p}(x)$, as M is Abelian. Thus, $\left\langle M, t_{1}, \ldots, t_{a}\right\rangle \subseteq C_{p}(x)$. As $P / M=\left\langle M t_{1}, \ldots, M t_{a}\right\rangle$, it follows that $P=\left\langle M, t_{1}, \ldots, t_{a}\right\rangle \subseteq C_{p}(x)$, thus $x \in Z(P) \cap P_{\alpha}=(Z(P))_{\alpha}=1$. Hence, $x=1$. So, σ is injective. Therefore, $\left|P_{\alpha}\right| \leq\left|P^{\prime}\right|^{a} \leq|Z(P)|^{a}=p^{b a}$ and $n=$ $\left[P: P_{\alpha}\right]=[P: M]\left[M: P_{\alpha}\right]$ as $P_{\alpha} \leq M \leq P$, it follows that

$$
\left[P: P_{\alpha}\right]=p^{a} \frac{|M|}{\left|P_{\alpha}\right|}=p^{a} \frac{|Z|\left|P_{\alpha}\right|}{\left|P_{\alpha}\right|}=p^{a} p^{b}=p^{a+b}
$$

and $|P|=n\left|P_{\alpha}\right| \leq n p^{a b}=p^{a+b+a b}$. This completes the proof.
Corollary 1. Let Ω be a finite set of size n and let P be a transitive p-subgroup of Ω of class ≤ 2, if $p \neq 2$, then $|P| \leq p^{[n / p]}$, where equality holds if and only if for $n=p$ or $n=9$ and $p=3$.

Proof. Since $p \neq 2$, by Lemma 4, there exist two integers $a \geq 0, b \geq 0$ such that $n=p^{a+b},|P| \leq p^{a+b+a b}$. As $p \neq 2$, it follows that $p^{a+b+a b} \leq p^{n / p}$ if and only if $a+b+a b \leq n / p=p^{a+b-1}$, where equality occurs if and only if $n=p$ or $n=9$ and $p=3$.

Lemma 6. Let Ω be a finite set of size n and let P be a transitive p-subgroup of Ω of class ≤ 2, then
(i) If $p \neq 2, d_{2, p}\left(S_{n}\right)=d_{2, p}\left(A_{n}\right)=p^{[n / p]}$.
(ii) If $p=2, d_{2,2}\left(S_{n}\right)=\varepsilon_{n} 8^{[n / 4]}$ where

$$
\varepsilon_{n}= \begin{cases}1, & n \equiv 0,1(\bmod 4) \\ 2, & n \equiv 2,3(\bmod 4)\end{cases}
$$

and if $n>1, d_{2,2}\left(A_{n}\right)=\frac{1}{2} d_{2,2}\left(S_{n}\right)=\frac{1}{2} \varepsilon_{n} 8^{[n / 4]}$.
Proof. S_{n} contains subgroups of order $p^{[n / p]}$ for any prime p. These groups are generated by $[n / p]$ cycles with disjoint support and $p^{[n / p]} \leq d_{2, p}\left(S_{n}\right)$. This can be explained as follows. Let $n=m p+r, 0 \leq r<p, m=[n / p]$, and let $\pi=\left(A_{1}, A_{2}, \ldots, A_{m}, A\right)$ be a partition of Ω where $\left|A_{i}\right|=p, i=1,2, \ldots, m$, and $|A|=r$. Let $t_{i}=\left(a_{1} a_{2} \cdots a_{p}\right)$ be a p-cycle in $A_{i}, i=1,2, \ldots, m$. It follows that $\left\langle t_{1}, t_{2}, \ldots, t_{m}\right\rangle$ is an elementary Abelian group of order $p^{[n / p]}$ and of class at most two. Also, S_{n} contains 2 -subgroups of order $\varepsilon_{n} 8^{[n / 4]} \leq d_{2,2}\left(S_{n}\right)$. This can be explained as follows.

Let $\pi=\left(A_{1}, A_{2}, \ldots, A_{m}, A\right)$ be a partition of Ω where $\left|A_{i}\right|=4, i=1$, $2, \ldots, m$ and $|A|=r$. Let $n=4 m+r, 0 \leq r<4$. It follows that

$$
H=Y_{A_{1}} \times Y_{A_{2}} \times \cdots \times Y_{A_{m}} \times Y_{r} \leq S_{n}
$$

where $Y_{A_{i}} \cong S_{4}$ and $Y_{r} \cong Z_{\varepsilon_{n}}$.
Hence, $H \cong S_{4}^{m} \times S_{r}$ contains $D_{8}^{m} \times Z_{\varepsilon_{n}}$ of class ≤ 2. It remains to show that for $p \neq 3$, these groups are exactly all possible p-subgroups of class ≤ 2 and order $d_{2, p}\left(S_{n}\right)$. Let $P \in a_{2, p}\left(S_{n}\right)$. Assume that P has orbits $A_{1}, A_{2}, \ldots, A_{m}$, it follows that

$$
P \leq Y_{\Sigma}=Y_{A_{1}} \times \cdots \times Y_{A_{m}},
$$

where $Y_{A_{i}}$ are the Young subgroups corresponding to the partition $\Sigma=\left(A_{1}\right.$, $\left.A_{2}, \ldots, A_{m}\right)$.

Furthermore, by Lemma 2, we have that

$$
P=\left(P \cap Y_{A_{1}}\right) \times \cdots \times\left(P \cap Y_{A_{m}}\right)
$$

and $P \cap Y_{A_{i}} \in a_{2, p}\left(Y_{A_{i}}\right)$. As A_{i} is an orbit of $P, P \cap Y_{A_{i}}$ is a transitive subgroup of $Y_{A_{i}} \cong S_{A_{i}}$ of class ≤ 2.

Now we consider two cases.
Case 1. $p=2$. Let $\left|A_{i}\right|=n_{i}$, if $p \neq 2$, it follows that

$$
p^{\left[n_{i} / p\right]}=p^{n_{i} / p} \leq d_{2, p}\left(S_{A_{i}}\right)=\left|P \cap Y_{A_{i}}\right| .
$$

By Corollary 1, $\left|P \cap Y_{A_{i}}\right| \leq p^{n_{i} / p}$. Therefore,

$$
p^{n_{i} / p}=d_{2, p}\left(S_{A_{i}}\right)=\left|P \cap Y_{A_{i}}\right| .
$$

Also, by Corollary 1 , it follows that $n_{i}=p$ or $n_{i}=9$ and $p=3$. If $p \neq 3$, then all orbits of P have lengths 1 or p. Thus, P is conjugate to the subgroup constructed above, and hence $d_{2, p}\left(S_{n}\right)=p^{[n / p]}$. As $p \neq 2$, it follows that

$$
d_{2, p}\left(S_{n}\right)=d_{2, p}\left(A_{n}\right)
$$

CASE 2. $p=2$. Let $P \in a_{2,2}\left(S_{n}\right)$ and let $P \leq Y_{\Sigma}=Y_{A_{1}} \times \cdots \times Y_{A_{m}}$ where $Y_{A_{i}}, i=1,2, \ldots, m$, be the Young subgroups corresponding to the partition $\Sigma=\left(A_{1}, A_{2}, \ldots, A_{m}\right)$.

As above $P=\left(P \cap Y_{A_{1}}\right) \times \cdots \times\left(P \cap Y_{A_{m}}\right)$ where $P \cap Y_{A_{i}} \in a_{2,2}\left(Y_{A_{i}}\right)$ and $P \cap Y_{A_{i}}$ is a transitive subgroup of $Y_{A_{i}}$. By Lemma $6,\left|A_{i}\right|=1$ or 2 and $8^{n_{i} / 4} \leq$
$d_{2}\left(S_{A_{i}}\right)=\left|P \cap Y_{A_{i}}\right| \leq 8^{n_{i} / 4}$. This implies that $\left|P \cap Y_{A_{i}}\right|=8^{n_{i} / 4}$ and this occurs if and only if $n_{i}=4$. Hence again, P is a group conjugate to the group constructed above. As $P \not \leq A_{n}$, this implies that $d_{2,2}\left(A_{n}\right)=\frac{1}{2} d_{2,2}\left(S_{n}\right)$.

Lemma 7.
(i) If p is a prime at least 7 , then $p^{k} \ngtr 3^{[p k / 3]}$ for all $k \geq 1$.
(ii) $5^{k} \nsupseteq 3^{[5 k / 3]}$ for $k \geq 2$.

Proof. Easy.
REmARK 3. By Theorem 1 and Lemma 7, we have $3^{\left[n_{i} / 3\right]} \leq p_{i}^{n_{i} / p_{i}}$ and $5^{\left[n_{i} / 5\right]} \leq p_{i}^{n_{i} / p_{i}}$ which implies that $p_{i}=3$ or 5 and if $p_{i}=5$, then $\left|A_{i}\right|=n_{i}=5$. We need some information about $d_{2,2}\left(2 A_{n}\right)$. This is a bit more complicated, as we cannot use our information about A_{n} directly, because if $X \leq 2 A_{n}$, $Z \leq X$, then $X / Z \leq A_{n}$ and $\operatorname{class}(X / Z) \leq \operatorname{class}(X)$, but if $Y \leq A_{n}$ and it is a 2-group of class ≤ 2, then \hat{Y} might have class equal to 3 .

First, we know that in $S_{n}, n=4 m+r, 0 \leq r<4, D_{8}^{m} \leq S_{n}$ and in $2 A_{n}, n=$ $8 m+r, 0 \leq r<7$, we have the central product

$$
X_{1} \circ X_{2} \circ \cdots \circ X_{m} \circ Y \leq 2 A_{m}
$$

where $X_{i} \cong 2 A_{8}$ and $Y \cong 2 A_{r}$. In each X_{i}, we take a 2 -group P_{i} of class ≤ 2 and in Y a 2-group Q of class ≤ 2, with $Z \leq P_{i}, Z \leq Q$, then it follows that

$$
\left\langle P_{1}, \ldots, P_{m}, Q\right\rangle=P_{1} \circ \cdots \circ P_{m} \circ Q
$$

has class ≤ 2 and $\left|P_{1} \circ \cdots \circ P_{m} \circ Q\right|=2\left|P_{1} / Z\right|\left|P_{2} / Z\right| \cdots\left|P_{m} / Z\right||Q / Z|$.
REmARK 4. Let $\pi=\left(A_{1}, \ldots, A_{m}\right)$ is a partition of Ω and $Y_{\pi}^{*}=Y_{A_{1}}^{*} \times \cdots \times$ $Y_{A_{m}}^{*}$. Assume that in each $Y_{A_{1}}^{*}$, a nilpotent subgroup X_{i} of class ≤ 2 such that its preimage \hat{X}_{i} has also class ≤ 2, then the group $\left\langle\hat{X}_{1}, \ldots, \hat{X_{m}}\right\rangle$ is a central product of the \hat{X}_{i} 's of class ≤ 2 and of order

$$
2\left|\hat{X}_{1} / Z\right|\left|\hat{X}_{2} / Z\right| \cdots\left|\hat{X_{m}} / Z\right|=2\left|X_{1}\right|\left|X_{2}\right| \cdots\left|X_{m}\right|
$$

To get an estimation for $d_{2,2}\left(2 A_{n}\right)$, we prove the following lemma.
Lemma 8. $d_{2,2}\left(2 A_{8}\right)=2^{6}$.
Proof. As $d_{2,2}\left(A_{8}\right)=\frac{1}{2} d_{2,2}\left(S_{8}\right)=\frac{1}{2} 8^{2}=2^{5}$ (use Lemma 6), it follows that

$$
d_{2,2}\left(2 A_{8}\right) \leq 2 d_{2,2}\left(A_{8}\right)=2^{6}
$$

Furthermore,

$$
d_{2,2}\left(2 A_{n}\right) \leq 2 d_{2,2}\left(A_{n}\right)
$$

because, if $P \leq 2 A_{n}$ a 2-group of class ≤ 2 with $Z \leq P$, then we have class $(P / Z) \leq 2$, and this implies that $|P / Z| \leq d_{2,2}\left(A_{n}\right)$, and hence

$$
\frac{|P|}{2} \leq d_{2,2}\left(A_{n}\right)
$$

Lemma 9. Let $H \cong 2^{1+4}$ be the extra special group of $A_{8} \cong G L(4,2)$, then the preimage \hat{H} of H has class at most 2 .

Proof. Let

$$
\left.H_{1}=\left\{\left[\begin{array}{llll}
1 & & & \\
* & 1 & & \\
* & 0 & 1 & \\
* & 0 & 0 & 1
\end{array}\right]\right\} \quad \text { and } \quad H_{2}=\left\{\begin{array}{llll}
1 & & & \\
0 & 1 & & \\
0 & 0 & 1 & \\
* & * & * & 1
\end{array}\right]\right\}
$$

It is clear that $H=H_{1} H_{2}$ where $H_{1} \cong H_{2} \cong Z_{2}{ }^{3}$ and $\hat{H}=Z_{2}$.
Also, $\left[H_{1}, H_{2}\right]=H_{1} \cap H_{2}=Z(H) \cong Z_{2}$, where

$$
H_{1} \cap H_{2}=\left\langle\left[\begin{array}{llll}
1 & & & \\
0 & 1 & & \\
0 & 0 & 1 & \\
1 & 0 & 0 & 1
\end{array}\right]\right\rangle
$$

All nonidentity elements of $H_{1} \cup H_{2}$ are transfection, and in particular are conjugate elements in $H_{1} \cup H_{2} \backslash\{1\}$. From this, it follows that the preimages \hat{H}_{1}, \hat{H}_{2} are elementary Abelian. This can be proved as follows.

Let $x, y \in \hat{H}_{1} \backslash Z(K), K=2 A_{8}$, such that $x, y \notin Z(k)$, then we have

$$
x Z(K) \sim y Z(K) \sim x y Z(K)
$$

and hence

$$
x^{2}=y^{2}=(x y)^{2}=z \in Z(K) .
$$

So,

$$
z=x y x y=x y^{2} y^{-1} x y=x y^{2} x^{y}=x z x^{y} .
$$

This implies $x=z x^{-1}$ and $x^{y}=x z$. As $\left|H_{1}\right|=8$, there exists $a, b, c \in \hat{H}_{1}$, where $a, b, c, a b, a c, b c \notin Z(K)$. So,

$$
z=(a b c)^{2}=z b^{a} c^{a} b c=z^{3}(b c)^{2}=z^{4}=1 .
$$

Hence, $o(z)=1$ or 2 , so $z=1$ and $a^{2}=b^{2}=c^{2}=1=[a, b]$. Therefore, \hat{H}_{1}, \hat{H}_{2} are elementary Abelian groups. So,

$$
\begin{aligned}
\hat{H} & =\hat{H}_{1} \hat{H}_{2}, \hat{H}_{1} \leq \hat{H}, \hat{H}^{\prime}=\left(\hat{H}_{1} \hat{H}_{2}\right)^{\prime} \\
& =\left(\hat{H}_{1}\right)^{\prime}\left[\hat{H}_{1}, \hat{H}_{2}\right]\left(\hat{H}_{2}\right)^{\prime}=\left[\hat{H}_{1}, \hat{H}_{2}\right] \subseteq \hat{H}_{1} \cap \hat{H}_{2}
\end{aligned}
$$

As \hat{H}_{1}, \hat{H}_{2} are elementary Abelian, it follows that $\hat{H}_{1} \cap \hat{H}_{2} \subseteq Z(\hat{H})$. Hence, $\hat{H}^{\prime} \subseteq Z(\hat{H})$ and class $\hat{H} \leq 2$.

THEOREM 2. If Ω is a set of size n, and $\pi=\left(A_{1}, A_{2}, \ldots, A_{m}\right)$ is a partition of Ω with $\left|A_{i}\right|=n_{i}$, then

$$
d_{2,2}\left(2 A_{\Omega}\right) \geq 2 \cdot \frac{d_{2,2}\left(2 A_{A_{1}}\right)}{2} \cdot \frac{d_{2,2}\left(2 A_{A_{2}}\right)}{2} \ldots \cdot \frac{d_{2,2}\left(2 A_{A_{m}}\right)}{2} .
$$

Proof. Consider the Young subgroup $Y_{\pi}^{*}=Y_{A_{1}}^{*} \times \cdots \times Y_{A_{m}}^{*}$. The preimage

$$
\hat{Y}_{\pi}^{*}=\hat{Y}_{A_{1}}^{*} \circ \hat{Y}_{A_{2}}^{*} \circ \cdots \circ \hat{Y}_{A_{m}}^{*}
$$

is the central product of $\hat{Y}_{A_{i}}^{*} \cong 2 A_{A_{i}}, i=1,2, \ldots, m$. By Lemma 8 and Remark 4 , we have in each $\hat{Y}_{A_{i}}^{*}$, there exists a 2 -group of class ≤ 2 and of order $d_{2,2}\left(2 A_{A_{i}}\right)$. These groups generate a subgroup of $2 A_{\Omega}$ of class at most 2 and of order $2 \cdot \frac{d_{2,2}\left(2 A_{A_{1}}\right)}{2} \cdot \frac{d_{2,2}\left(2 A_{A_{2}}\right)}{2} \cdots \cdots \frac{d_{2,2}\left(2 A_{A_{m}}\right)}{2}$.

Corollary 2. Let $n=8 . k+r, 0 \leq r<8$, then

$$
d_{2,2}\left(2 A_{n}\right) \geq 2 \cdot(32)^{k} \frac{d_{2,2}\left(2 A_{r}\right)}{2}
$$

Corollary 3. If $n \geq 8, n \neq 15$, then

$$
d_{2,2}\left(2 A_{n}\right) \supsetneqq 2 . d_{2,3}\left(2 A_{n}\right) .
$$

Proof. Use the inequality

$$
d_{2,2}\left(2 A_{n}\right) \geq 2 \cdot(32)^{k} \frac{d_{2,2}\left(2 A_{r}\right)}{2}
$$

if $n=8 . k+r, 0 \leq r<8$, and Table 1 .

Corollary 4. Let $8||\Omega|$, then

$$
d_{2,2}\left(2 A_{\Omega}\right) \geq 2 \cdot 32^{n / 8}
$$

Proof. As $8\left||\Omega|\right.$, there exists a partition $\pi=\left(A_{1}, A_{2}, \ldots, A_{m}\right)$ of Ω such that $\left|A_{i}\right|=8$. By Theorem 2, it follows that

$$
d_{2,2}\left(2 A_{8}\right) \geq 2 \cdot \frac{d_{2,2}\left(\hat{Y}_{A_{1}}^{*}\right)}{2} \cdots \frac{d_{2,2}\left(\hat{Y}_{A_{m}}^{*}\right)}{2} \geq 2 \cdot(32)^{m}
$$

as $d_{2,2}\left(\hat{Y}_{A_{i}}^{*}\right)=d_{2,2}\left(2 A_{8}\right) \geq 64$.

Table 1.

\boldsymbol{n}	$\boldsymbol{d}_{\mathbf{2 , \mathbf { 2 }}} \mathbf{(2 \boldsymbol { A } _ { \boldsymbol { n } })}$
0	1
1	1
2	2
3	2
4	$82 A_{4} \cong S L(2,3)$
5	$82 A_{5} \cong S L(2,5)$
6	$82 A_{6} \cong S L(2,9)$
7	$82 A_{6}$ and $2 A_{7}$ have isomorphic Sylow 2-groups

Corollary 5. If $X \in a_{22}\left(2 A_{\Omega}\right)$, then $Z=Z\left(2 A_{\Omega}\right) \subseteq X$, and any orbit of X / Z in Ω has length ≤ 8, or $|\Omega| \leq 7$; also if A is an orbit of length 8 , then

$$
C_{X}(A) \in a_{22}\left(\hat{Y}_{\Omega \backslash A}^{*}\right) .
$$

Proof. Let A be an orbit of X / Z of length ≥ 8, and let $\Gamma=\Omega \backslash A$.
The partition $\pi=(A, \Gamma)$ implies $2 d_{2,2}\left(\hat{Y}_{A}^{*}\right) d_{2,2}\left(\hat{Y}_{\Gamma}^{*}\right) \leq d_{2,2}\left(2 A_{\Omega}\right)=|X|$. So,

$$
C_{X}(A)=\left\{x \in X, x \text { fixes all points in } A \leq \hat{Y}_{\Gamma}^{*} \text { and it is of class } \leq 2\right\}
$$

So, $\left|C_{X}(A)\right| \leq d_{2,2}\left(\hat{Y}_{\Gamma}^{*}\right)$, also $X / C_{X}(A)$ is a transitive subgroup of S_{A} of class ≤ 2. Furthermore,

$$
2 \frac{d_{2,2}\left(\hat{Y}_{A}^{*}\right)}{2} \frac{d_{2,2}\left(\hat{Y}_{\Gamma}^{*}\right)}{2} \leq|X|=\left|X / C_{X}(A)\right| \cdot\left|C_{X}(x)\right| \leq\left|X / C_{X}(A)\right| \cdot d_{2,2}\left(\hat{Y}_{\Gamma}^{*}\right)
$$

This implies that $\left|X / C_{X}(A)\right| \geq 32^{|A| / 8}$. By Lemma 5 , there exist integers a, b such that $|A|=2^{a+b}$ and $\left|X / C_{A}(A)\right| \leq 2^{a+b+a b}$. So,

$$
2^{a+b+a b} \geq\left|X / C_{X}(A)\right| \geq 32^{|A| / 8},
$$

then it follows that $a+b+a b \geq 5|A| / 8=5.2^{a+b-3}$. Hence, $|A|=8$. We also see that in all estimations equality must hold. Thus, $C_{X}(A) \in a_{22}\left(\hat{Y}_{\Omega \backslash A}^{*}\right)$.

Corollary 6. If $|\Omega|$ is even, then

$$
d_{2,2}\left(2 A_{\Omega}\right)= \begin{cases}2 \cdot 32^{[n / 8]}, & \text { if }|\Omega| \equiv 0,2 \bmod 8 \\ 2 \cdot 4 \cdot 32^{[32 / 8]}, & \text { if }|\Omega| \equiv 4,6 \bmod 8\end{cases}
$$

Corollary 7. Let $|\Omega|=n$. The B-injectors in $2 A_{\Omega}$ are as follows:

- $n \equiv 0,1,4 \bmod 8$, the B-injectors are Sylow 2-subgroups.
- $n \equiv 3,7 \bmod 8$, the B-injectors correspond to the partition $\pi=(A, \Gamma)$, $|A|=3$. So, the B-injectors are $Z_{3} \times T_{2}$, where T_{2} is a Sylow 2-subgroup in \hat{Y}_{Γ}^{*}.
- $n \equiv 6,2$ mod 8 , the B-injectors correspond to the partition $\pi=(A, \Gamma)$, $|A|=6$. So, the B-injectors are $Z_{3} \times Z_{3} \times T_{2}$, where T_{2} is a Sylow 2subgroup in \hat{Y}_{Γ}^{*}.
- $n \equiv 5 \bmod 8$, the B-injectors correspond to the partition $\pi=(A, \Gamma),|A|=5$. Hence, the B-injectors are $Z_{5} \times T_{2}$, where T_{2} is a Sylow 2-subgroup in \hat{Y}_{Γ}^{*}.

Theorem 3. B-injectors in $3 A_{6}$ are the Sylow 3-subgroups.
Proof. As 3 -subgroups of $3 A_{6}$ have order 3^{3}, and hence have class ≤ 2. It suffices to show that there are no nilpotent subgroups of class at most 2 and of order >27. So, let X be a nilpotent subgroup of $3 A_{6}$. If $5||X|$, it follows that $X \leq C(z)$ for some element z of order 5 . As elements of order 5 in A_{6} are self centralizing, it follows that $|X| \leq 3 \cdot 5=15$. If $2||X|$, then $X \leq C(z)$ for some involution $z \in 3 A_{6}$. As centralizers of involutions in A_{6} have order 8 , it follows that $|X| \leq 3 \cdot 8=24<27$. So, the claim follows.

THEOREM 4. B-injectors in $3 A_{7}$ are the groups of order 36 , and are the preimages in $3 A_{7}$ of subgroups $Z_{2}^{2} \times Z_{3}$ of Young subgroups $A_{4} \times A_{3} \leq A_{7}$.

Proof. As elements of order 5 or 7 are self-centralizing in A_{7}, it follows that nilpotent subgroups of $3 A_{7}$ which are divisible by 5 or 7 can have orders at most 15 or 21 , respectively. As Sylow 3 -subgroups of $3 A_{7}$ have order $27<36$, then any nilpotent subgroup of $3 A_{7}$ of class ≤ 2 and order ≥ 36 must be contained in a centralizer of an involution. As centralizers of involutions in A_{7} have order 24 and are not nilpotent, the claim follows.

Theorem 5. B-injectors in $6 A_{6}$ are the groups $Z . T_{3}$, where Z is the center and T_{3} is a Sylow 3-subgroup of order 54.

Proof. As element of order 5 in A_{6} are self-centralizing, it follows that nilpotent subgroups in $6 A_{6}$, whose order is divisible by 5 can have at most order $30<54$. As centralizers of involutions in A_{6} have order 8. It follows that nilpotent subgroups of whose Sylow 2 -subgroups are not contained in the center of $6 A_{6}$ can have order at most $48<54$. So, the claim follows.

Theorem 6. B-injectors in $6 A_{7}$ are groups of order 72 corresponding to subgroups $Z_{2}^{2} \times Z_{3}$ in Young subgroups $A_{4} \times A_{3} \leq A_{7}$.

Proof. Similar as above.
Acknowledgments. The authors' thanks are due to Mr. H. Jorg for his discussion, and to the referee for his remarks.

References

[1] M. I. AlAli, Ch. Hering and A. Neumann, On B-injectors of sporadic groups, Comm. Algebra 27 (1999), 2853-2863. MR 1687277
[2] Z. Arad and D. Chillag, Injectors of finite solvable groups, Comm. Algebra 7 (1979), 115-138. MR 0515451
[3] A. Bialostocki, Nilpotent injectors in alternating groups, Israel J. Math. 44 (1983), 335-344. MR 0710238
[4] A. Bialostocki, Nilpotent injectors in symmetric groups, Israel J. Math. 41 (1982), 261-273. MR 0657860
[5] B. Fischer, W. Gaschutz and B. Hartley, Injektoren Endlicher Auflosbarer Grouppen, Math. Z. 102 (1967), 337-339. MR 0223456
[6] P. Förster, Nilpotent injectors in finite groups, Bull. Austral. Math. Soc. 32 (1985), 293-297. MR 0815370
[7] M. Iranzo and F. Perez-Monasor, Fitting classes F such that all finite groups have F-injectors, Israel J. Math. 56 (1986), 97-101. MR 0879917
[8] A. Mann, Injectors and normal subgroups of finite groups, Israel J. Math. 9 (1971), 554-558. MR 0280582
[9] A. Neumman, Nilpotent injectors in finite groups, Archiv der Mathematik 71 (1998), 337-340. MR 1649387
[10] A. Neumann, Ph.D. Thesis, Tübingen University, in preparation.
[11] H. J. Schaeffer, Personal communication.
[12] I. Schur, Über die Darstellungen der symmetrischen und alternierenden Grupen durch gebrochenen lineare Substitutionen, Crelle J. 139 (1911), 155-250.
M. AlAli, Mu’tah University, Department of Mathematics (Al-Karak, Jordan)

E-mail address: mashhour_ibrahim@yahoo.com
Ch. Hering, Tuebingen University, Institute of Mathematics, Auf der Morgen Stelle 10, 72076 Tuebingen-Germany

E-mail address: christoph.hering@uni-tuebinggen.de
A. Neumann, Tuebingen University, Institute of Mathematics, Auf der Morgen Stelle 10, 72076 Tuebingen-Germany

