ON *B*-INJECTORS OF THE COVERING GROUPS OF A_N

M. ALALI, CH. HERING, AND A. NEUMANN

ABSTRACT. A *B*-injector in an arbitrary finite group *G* is defined as a maximal nilpotent subgroup of *G*, containing a subgroup *A* of *G* of maximal order satisfying $class(A) \leq 2$. The aim of this paper is to determine the *B*-injector of the covering groups of A_n .

1. Introduction

Let G be a finite group. A subgroup $U \leq G$ is an N-injector of G, if for every subnormal subgroup S of G, $U \cap S$ is a maximal nilpotent subgroup of S. N-injectors for nonsolvable groups have been introduced first by Mann [8]. He extended Fischer's results to N-constrained groups, that is, to groups G, such that $C_G(F(G)) \subseteq F(G)$, where F(G) denotes the Fitting subgroup of G. It is well known that a solvable group is always N-constrained. In [5], Fischer, Gaschutz, and Hartley proved that if G is solvable, then N-injectors exist and any two of them are conjugate. It was (Förster [6], Iranso and Perez-Monasor [7]) who proved that N-injectors exist in all finite groups. Arad and Chillag [2] proved that if G is an N-constrained group, then A is an N-injector of G if and only if A is a maximal nilpotent subgroup of G containing an element of $a_2(G)$ where $a_2(G)$ is the set of all nilpotent subgroups of G of class at most 2 and having order $d_2(G)$ where $d_2(G)$ denotes the maximum of the orders of all nilpotent subgroups of class at most 2. A subgroup A of G is called a B-injector of G if A is a maximal nilpotent subgroup of G containing an element of $a_2(G)$. This definition has been used here and in [1]. In N-constrained groups the definition of N-injectors and the definition of B-injectors yield the same class of subgroups. If U is a B-injector of G, then U contains every nilpotent subgroup of G which is normalized by U [2]. In [9], Neumann proved that in any finite group G, B-injectors are N-injectors. The motivation behind this work is that *B*-injectors will lead to theorems similar

©2009 University of Illinois

Received February 16, 2006; received in final form February 27, 2008. 2000 Mathematics Subject Classification. 20E28.

to Glauberman's ZJ-theorem and it is hoped that they provide tools and arguments for a modified and shortened the proof of the classification theorem of finite simple groups, in particular where the Thompson factorization theorem might fail [11]. The *B*-injectors of S_n and A_n have been determined in [3] and [4]. In [10], it is proved that the *B*-injectors of S_n and A_n are conjugate apart from some trivial cases which can be enumerated.

2. Preliminaries and notations

Our notation is fairly standard: throughout all groups are finite. If G is a group, Z(G) denotes the center of G. If H and X are subsets of G, $C_H(X)$ and $N_H(X)$ denote respectively the centralizer and normalizer of X in H.

The generalized Fitting group $F^*(G)$ is defined by $F^*(G) = F(G)E(G)$ where $E(G) = \langle L \mid L \lhd \lhd G$ and L is quasisimple \rangle is a subgroup of G, A group L is called quasisimple if and only if L' = L where L' is the derived group of L, and L'/Z(L) is non-Abelian simple. $O_p(G)$ denotes the unique maximal normal p-subgroup of G, it is the Sylow p-subgroup of F(G)and $O_{p'}(G) = \prod O_q(G), q \neq p$ and q is prime. If $\Omega = \{1, 2, \ldots, n\}, S_\Omega$ will denote the symmetric group of degree n. Sometimes we write S_n for S_Ω . As is customary, we shall denote the alternating group on n points by A_n . Let $\Phi(G)$ denotes the Frattini subgroup of G, the intersection of all maximal subgroups of G. The integer part of the real number x is denoted by [x]. We denoted by $a_{2,p}(G)$ the set of p-subgroups, of class at most two and of largest possible order, of G.

We introduce the following definition.

DEFINITION 1. Let G be a finite group, a nilpotent subgroup U of G is called a BG-injector of G if it contains every nilpotent subgroup it normalizes.

It is clear that BG-injector is maximal nilpotent and containing F(G). Also, if U is a BG-injector of G and if $U \leq H \leq G$, then U is a BG-injector of H. Also, B-injectors are BG-injectors [9]. Schur [12] showed that if G is a non-Abelian simple group, then there exists a unique quasisimple group \hat{G} such that $\hat{G}/Z(\hat{G}) \cong G$, and given any quasisimple group H with $H/Z(H) \cong G$, then H is isomorphic to \hat{G}/Z for some subgroup $Z \subseteq Z(\hat{G}), Z(\hat{G})$ is called the Schur multiplier of G and denotes by M(G) and $H \cong \hat{G}/Z$ is called a universal covering group of G. The Schur multipliers $M(A_n)$ for alternating groups A_n , have been determined in [12] and they are

$$M(A_n) = \begin{cases} Z_6, & n = 6, 7, \\ Z_2, & n \ge 5, n \ne 6, 7. \end{cases}$$

Hence, the universal covering groups of A_n , are $6A_6, 6A_7$, and $2A_n$ where $n \neq 6, 7$. Schur showed that there are two types of groups of shape $2S_n$ which denoted by $2S_n, 2\overline{S}_n$, and $2A_n$ is then the commutator group of any of these.

So, $2A_n = (2\ddot{S}_n)' = (2\ddot{S}_n)'$ where G' denotes the commutator group of G. $2\ddot{S}_n$ can be easily described by defining relations.

So, let $H = 2\overset{+}{S}_n$ and denote $Z(H) = \langle -1 \rangle$, then we have the following. If $t \in S_n$ is a transposition and T is its preimage in $H = 2\overset{+}{S}_n$, then $T^2 = -1$ and if s, t are two transpositions in S_n and disjoint support with preimages S, T in H, then [s,T] = -1. So, $H = 2\overset{+}{S}_n$ is uniquely determined by these two relations. Also, if s, t are two pairwise commuting transpositions with preimages T_1, T_2, \ldots, T_m , then

$$(T_1, T_2, \dots, T_m)^2 = (-1)^{\binom{m+1}{2}}$$

Let Ω be a finite set, and let $\pi = (A_1, A_2, \dots, A_m)$ be a partition of Ω into pairwise disjoint nonempty subsets of Ω , we denote its stabilizer by Y_{π} , Y_{π} is also called the Young subgroup of π , that is,

$$Y_{\pi} = \{ g \in S_{\Omega} \mid A_i^g = A_i \text{ for all } i \}.$$

It is obvious that

$$Y_{\pi} = Y_{A_1} \times Y_{A_2} \times \dots \times Y_{A_m} \le S_{\Omega}$$

where $Y_{A_i} = \{g \in S_\Omega \mid g \text{ fixes all points not in } A_i\}$ and $Y_{A_i} \equiv S_{A_i}$.

Furthermore, we define $Y_{A_i}^* \equiv Y_{A_i} \cap A_{\Omega}$, where A_{Ω} is the alternating group of Ω and we have

$$Y_{\pi}^{*} = \langle Y_{A_{1}}^{*}, Y_{A_{2}}^{*}, \dots, Y_{A_{m}}^{*} \rangle = Y_{A_{1}}^{*} \times Y_{A_{2}}^{*} \times \dots \times Y_{A_{m}}^{*} \le A_{\Omega}.$$

NOTE 1. If $\sigma: K \longrightarrow A_{\Omega}$ be a surjective homomorphism, where $K = (2\overset{+}{S}_{n})'$, then ker $\sigma = \langle -1 \rangle$ and for any subgroup $X \leq A_{\Omega}$ we have the preimage $\hat{X} = \{x \in K \mid x^{\sigma} \in X\}.$

We prove the following lemma.

LEMMA 1. $\hat{Y}_{\pi}^* = \hat{Y}_{A_1}^* \circ \hat{Y}_{A_2}^* \circ \cdots \circ \hat{Y}_{A_m}^*$, is the central product of $\hat{Y}_{A_1}^*, \hat{Y}_{A_2}^*, \ldots, \hat{Y}_{A_m}^*$, where \hat{Y}_{π}^* is the preimage of Y_{π}^* and $\hat{Y}_{A_i}^*$ is the preimage of $Y_{A_i}^*$, $i = 1, 2, \ldots, m, A_i, \Omega$ and $Y_{A_i}^*$ are defined above.

Proof. Let $\sigma: K \longrightarrow A_{\Omega}$ be a surjective homomorphism and let $x \in \hat{Y}_{\pi}^*$, then $x^{\sigma} \in Y_{\pi}^*$, so $x^{\sigma} = y_1 y_2 \cdots y_m$ for $y_i \in Y_{A_i}^*$. Choose $x_i \in \hat{Y}_{A_i}^*$ such that $x_i^{\sigma} = y_i$. Thus, $(x_1, x_2, \ldots, x_m) \in K$ and

$$(x_1, x_2, \dots, x_m)^{\sigma} = x_1^{\sigma} x_2^{\sigma} \cdots x_m^{\sigma} = y_1 y_2 \cdots y_m = x^{\sigma},$$

so $x^{\sigma} = (x_1 x_2 \cdots x_m)^{\sigma}$, it follows that $[(x_1 x_2 \cdots x_m) x^{-1}]^{\sigma} = 1$. This implies that $(x_1 x_2 \cdots x_m) x^{-1} \in \ker \sigma = \langle -1 \rangle$, thus $x_1 x_2 \cdots x_m = x$ or -x. It remains to prove that $[\hat{Y}^*_{A_i}, \hat{Y}^*_{A_i}] = 1$, for $i \neq j$.

Let $g \in Y_{A_i}$, $h \in Y_{A_j}$, then $g = t_1 t_2 \cdots t_k$ where t_i 's are transpositions in Y_{A_i} and $h = s_1 s_2 \cdots s_m$ where s_i 's are transpositions in Y_{A_j} . If T_i , S_i are the corresponding preimages of t_i, s_i respectively, then $[T_i, S_i] = -1$ and $\hat{g} = T_1 T_2 \cdots T_k, \ \hat{h} = S_1 S_2 \cdots S_m$ are the preimages of g, h, respectively. So, $[\hat{g}, \hat{h}] = \hat{g}^{-1}(\hat{g})^{\hat{h}} = (T_1 T_2 \cdots T_k)^{S_1 S_2 \cdots S_m} = (-1)^{mk} (T_1 T_2 \cdots T_k)^{-1} T_1 T_2 \cdots T_k = (-1)^{mk}$ as

$$T_i^{S_1 S_2 \cdots S_m} = (-1)^m T_i.$$

So,

$$[\hat{g}, \hat{h}] = \begin{cases} -1, & \text{if } g, h \in S_{\Omega} \setminus A_{\Omega}, \\ 1, & \text{otherwise} \end{cases}$$

and it follows that $[\hat{Y}_{A_i}^*, \hat{Y}_{A_j}^*] = 1$ for $i \neq j$. This completes the proof of the lemma.

NOTE 2. If Ω is a set of size n, and $\pi = (A_1, A_2, \dots, A_m)$ is a partition of Ω , then the preimage $\hat{Y}^*_{A_i}$ of the Young subgroup $Y^*_{A_i}$ is isomorphic to:

- (i) $2A_{n_i}$, if $|A_i| = n_i \ge 5$.
- (ii) Z_2 , if $n_i = 1, 2$.

(iii)
$$Z_6$$
, if $n_i = 3$ or SL(2,3) if $|A_i| = 4$.

LEMMA 2. Let G be a finite group and U be a BG-injector of it.

- (i) If $Z \leq Z(G)$, then $Z \leq U$ and U/Z is a BG-injector of G/Z.
- (ii) If $F^*(G) = O_p(G)$, for some prime p, then U is a Sylow p-subgroup of G.
- (iii) If G is a central product of two subgroups G_1, G_2 of G, that is, $G = G_1G_2, [G_1, G_2] = 1$, then $U = (U \cap G_1)(U \cap G_2)$ and $U \cap G_i$ is a BG-injector of G_i , for i = 1, 2.

Proof. The proof is easy and is omitted.

REMARK 1 ([6]). Let H be a finite group such that $H \cong Z_p \wr S_k$; the Wreath product of the cyclic group Z_p, p a prime, with S_k , then $F^*(H) = O_p(H)$.

REMARK 2. If Ω is a finite set, we denote by S_{Ω}, A_{Ω} the corresponding symmetric and alternating group of Ω . For a partition $\Sigma = (A_1, A_2, \ldots, A_m)$ of Ω into pairwise disjoint nonempty subsets of Ω ,

$$Y_{\Sigma} = \{ g \in S_{\Omega} \mid A_i^g = A_i, 1 \le i \le m \}$$

denotes the Young subgroup of Ω . It is obvious that

$$Y_{\Sigma} = Y_{A_1} \times Y_{A_2} \times \cdots \times Y_{A_m} \le S_{\Omega},$$

where $Y_{A_i} = \{g \in S_\Omega \mid g \text{ fixes all points not in } A_i\}$ and $Y_{A_i} \cong S_{A_i}$. We define $Y_{A_i}^* \cap A_\Omega$ and $Y_{\Sigma}^* = \langle Y_{A_1}^*, Y_{A_2}^*, \dots, Y_{A_m}^* \rangle = Y_{A_1}^* \times Y_{A_2}^* \times \dots \times Y_{A_m}^* \leq A_\Omega$. Consider an element $g \in S_\Omega$ of prime order $p \neq 2$. Let $A = \{\alpha \in \Omega \mid \alpha^g \neq \alpha\}$, $\Gamma = \{\alpha \in \Omega \mid \alpha^g = \alpha\}$. So $\Sigma = (A, \Gamma)$ is a partition of Ω . If |A| = pk, then g is a product of k pairwise commuting p-cycles t_1, t_2, \dots, t_k and $t_i \in Y_A$ corresponding to the orbits of g in A. Since $C_{S_\Omega}(g)$ permutes these t_i 's, and in particular normalizes $V = \langle t_1, t_2, \dots, t_k \rangle \cong Z_p^{-k}$.

We infer that $V \subseteq O_p(C_{S_{\Omega}}(g))$, and $C_{S_{\Omega}}(g) \leq Y_z = Y_A \times \Gamma$, hence: $C_{S_{\Omega}}(g) = C_{Y_A}(g) \times Y_{\Gamma}.$

As $C_{Y_A}(g) \cong Z_p \wr S_k$, by Remark 1, it follows that

$$F^*(C_{Y_A}(g)) = O_p(C_{Y_A}(g))$$

and

$$C(V) = V \times Y_{\Gamma}.$$

LEMMA 3. Let U be a BG-injector in A_{Ω} and let $g \in Z(U)$ with $o(g) = p \neq 2$, p prime, where o(g) denotes the order of g. Then

$$U = \left(U \cap C_{Y_A^*}(g)\right) \times \left(U \cap Y_{\Gamma}^*\right)$$

Proof. Since $g \in Z(U)$, $U \leq C_{A_{\Omega}}(g) \leq C_{S_{\Omega}}(g) = C_{Y_A}(g) \times Y_{\Gamma} \leq Y_A \times Y_{\Gamma}$. If V is as defined above, it follows that

$$V \subseteq O_p(C_{S_\Omega}(g)) = O_p(C_{A_\Omega}(g)) = F^*(C_{A_\Omega}(g)),$$

as p is odd.

As U is a BG-injector of $C_{A_{\Omega}}(g)$, this implies that $V \subseteq O_p(C_{A_{\Omega}}(g)) \subseteq U$, but U is nilpotent, so

$$U = O_p(U) \times O_{p'}(U).$$

Also, $V \subseteq O_p(U)$ and $O_{p'}(U) \subseteq C(O_p(U))$, thus
 $O_{p'}(U) \subseteq C_{A_{\Omega}}(V).$

So,

$$O_{p'}(U) \leq C_{S_{\Omega}}(V) = V \times Y_{\Gamma}.$$

As $U \leq A_{\Omega}$ and $V \leq A_{\Omega}$ $(p \neq 2)$, we obtain

$$O_{p'}(U) = O_{p'}(U) \cap A_{\Omega} \le (V \times Y_{\Gamma}) \cap A_{\Omega} = V \times (Y_{\Gamma} \cap A_{\Omega}) = V \times Y_{\Gamma}^*.$$

Thus, $O_{p'} \leq Y_{\Gamma}^*$ as $p \mid |V|$ and, therefore,

$$U = O_p(U) \times O_{p'}(U) \le C_{Y_A}(g) \times Y_{\Gamma}^*,$$

this implies that $U \leq C_{Y_A^*}(g) \times Y_{\Gamma}^* \leq Y_A^* \times Y_{\Gamma}^*$, as $p \neq 2$. Hence, by Lemma 2 we have

$$U = (U \cap C_{Y_A^*}(g)) \times (U \cap Y_{\Gamma}^*) = (U \cap Y_A^*) \times (U \cap Y_{\Gamma}^*).$$

LEMMA 4. Let Ω be a finite set and let U be a BG-injector of A_{Ω} , then there exists a partition $\Sigma = (A_1, A_2, \ldots, A_m)$ of Ω such that $U \leq Y_{A_1}^* \times Y_{A_2}^* \times \cdots \times Y_{A_m}^*$ and $U = (U \cap Y_{A_1}^*) \times \cdots \times (U \cap Y_{A_m}^*)$. Also, for $i = 1, 2, \ldots, m$, there exists a prime p_i such that $(U \cap Y_{A_i}^*)$ is a Sylow p_i -subgroup of $Y_{A_i}^*$.

Proof. We consider two cases:

CASE 1. U is a 2-group. Let Σ be the partition consisting of Ω alone, that is, $\Sigma = (\Omega)$. So, $Y_{\Sigma}^* = A_{\Omega}$ and $U = U \cap Y_{\Sigma}^*$. As U is a BG-injector of A_{Ω} , it is maximal nilpotent, and thus U is a Sylow 2-subgroup of A_{Ω} . CASE 2. U is not a 2-group, so there exists a prime $p \neq 2$ such that $p \mid |U|$.

As U is nilpotent, it follows that there exists $z \in Z(U)$, o(z) = p. Let A_1 be the set of nonfixed points of Z = Z(U) and Γ be the set of fixed points of Z. By Lemma 3, we get

$$U \le C_{A_{\Omega}}(z) = C_{Y_{A_{1}}^{*}}(z) \times Y_{\Gamma}^{*} \le Y_{A_{1}}^{*} \times Y_{\Gamma}^{*}.$$

Also, by Lemma 3, we obtain

$$U = U \cap C_{Y_{A_1}^*}(z) \times (U \cap Y_{\Gamma}^*) = (U \cap Y_{A_1}^*) \times (U \cap Y_{\Gamma}^*),$$

 $U \cap C_{Y_{A_1}^*}(z)$ is a *BG*-injector of $Y_{A_1}^*$, and $U \cap Y_{\Gamma}^*$ is a *BG*-injector of Y_{Γ} . As $U \cap C_{Y_{A_1}^*}(z)$ is a *BG*-injector of $C_{Y_{A_1}^*}(z)$ and $\Gamma^*(C_{Y_{A_1}^*}(z)) = O_p(C_{Y_{A_1}^*}(z))$, we get that $U \cap C_{Y_{A_1}^*}(z)$ is a Sylow *p*-subgroup of $Y_{A_1}^* \cong A_{A_1}$ and $U \cap Y_{\Gamma}^*$ is a *BG*-injector of $Y_{\Gamma}^* \cong A_{\Gamma}$. Repeating the argument for $U \cap Y_{\Gamma}$ and $Y_{\Gamma}^* \cong A_{\Gamma}$, the claim follows.

THEOREM 1. Let K be a group isomorphic to $2A_{\Omega}$, where Ω is a finite set of size n. If B is a B-injector of K, then there exists a partition $\pi = (A_1, A_2, \ldots, A_m)$ of Ω such that:

- (i) For each $i, B \cap \hat{Y}_{A_i}^*$ is a B-injector of $\hat{Y}_{A_i}^*$.
- (ii) Let Z = Z(K) and $B_i = B \cap \hat{Y}^*_{A_i}$, then $B_i \cong Z \times O_{p_i}(B_i)$, for some prime $p_i \neq 2$.
- (iii) $d_2(2A_{A_i}) = 2p_i^{n_i/p_i}$ and for any odd prime $p, p^{[n_i/p]} \le p_i^{n_i/p_i}$.
- (iv) There is at most one i with $p_i = 5$ and the union of the A_i 's with $p_i = 3$ has size at most 6, and there are no i, j such that $p_i = 3$ and $p_j = 5$.

Proof. (i) As B/Z is a *B*-injector of $K/Z \cong A_{\Omega}$, there exists by Lemma 4, a partition $\pi = (A_1, A_2, \ldots, A_m)$ of Ω such that

$$\hat{Y}_{\pi}^* = \hat{Y}_{A_1}^* \times \dots \times \hat{Y}_{A_m}^*.$$

Let B/Z = U, then $U \leq Y_{\pi}^*$ and $U = (U \cap Y_{A_1}^*) \times \cdots \times (U \cap Y_{A_m}^*)$. Thus,

$$B \le \hat{Y}_{\pi}^{*} = \hat{Y}_{A_{1}}^{*} \circ \hat{Y}_{A_{2}}^{*} \circ \dots \circ \hat{Y}_{A_{m}}^{*},$$

the central product of $\hat{Y}^*_{A_i}$, by Lemma 1. Hence,

$$B = (B \cap \hat{Y}_{A_1}^*) \times \dots \times (B \cap \hat{Y}_{A_m}^*)$$

and $B \cap \hat{Y}_{A_i}^*$ is a *B*-injector of $B \cap \hat{Y}_{A_i}^*$.

(ii) As $Z \leq B \cap \hat{Y}^*_{A_i} = B_i$ and $B_i/Z \cong U \cap Y^*_{A_i}$, then for any prime $p_i \neq 2$, we have $B_i = \prod_{p \text{-prime}} O_p(B_i)$ and $Z \leq O_2(B_i)$. So,

$$B_i/Z \cong O_2(B_i)/Z \times \prod_{p \neq 2} O_p(B_i).$$

As $B_i/Z \cong U \cap Y_{A_i}^*$ is a Sylow p_i -subgroup of $Y_{A_i}^*$ by Lemma 4, it follows that $B_i = Z \times O_{p_i}(B_i)$ and $U \cap Y_{A_i}^* \cong O_{p_i}(B_i)$, which is a Sylow p_i -subgroup of $Y_{A_i}^* \cong A_{A_i} = A_{n_i}$ where $|A_i| = n_i$.

(iii)

$$d_2(2A_{A_i}) = d_2(\hat{Y}^*_{A_i}) = d_2(B_i) = d_2(Z)d_2(O_{p_i}(B_i))$$

= $2d_{2,p}(A_{A_i}) = 2p_i^{n_i/p}.$

Also, if p is a prime $\neq 2$, we have $d_{2,p}(2A_n) = 2d_{2,p}(A_n)$, because $2A_n$ and A_n have isomorphic Sylow p-subgroups. As $d_{2,p}(2A_n) \leq d_2(2A_n)$, we get

$$2p^{[n_i/p]} = 2d_{2,p}(A_{n_i}) = d_{2,p}(2A_{n_i}) \le d_2(2A_{n_i}) = 2p_i^{n_i/p_i}$$

or $p^{[n_i/p]} \leq p_i^{n_i/p_i}$ for all odd primes.

(iv) Let $I \subseteq \{1, 2, ..., n\}$, so that p_i is an odd prime for all $i \in I$. Then for $A = \bigcup_{i \in I} A_i$, it follows that the central product

$$\prod_{\circ} \hat{Y}^*_{A_i} \le \hat{Y}^*_{A_i}$$

 $B \cap \hat{Y}_A^* = \prod_{\circ} (B \cap \hat{Y}_{A_i}^*)$ and $(B \cap \hat{Y}_A^*)$ is a *B*-injector in $\hat{Y}_A^* \cong 2A_A$. Consider the following cases.

CASE 1. Assume that there are disjoint A_i, A_j such that $p_i = p_j = 5$. So, $|A_i| = |A_j| = 5$. Set $A = A_i \cup A_j$. It follows that

$$B \cap \hat{Y}_A^* = (B \cap \hat{Y}_{A_i}^*)(B \cap \hat{Y}_{A_i}^*)$$

is a *B*-injector in \hat{Y}_A^* of order $2 \cdot 5^2$: this is a contradiction, as $d_2(2A_{10}) \ge d_2(2A_8) \ge 2^6$.

CASE 2. Let J be the set of numbers j such that $p_j = 3$ and let $A = \bigcup_{j \in J} A_j$, then $(B \cap \hat{Y}_A^*)$ is a *B*-injector of \hat{Y}_A^* and it is of the form $Z \times P$ for some Sylow 3-subgroup P of \hat{Y}_A^* . Hence, if |A| = 3k, then

$$d_2(2A_A) = d_2(Y_A^*) = 2 \cdot 3^6.$$

So, $d_{2,2}(2A_A) \leq 2 \cdot 3^k$. By Corollary 3, we have 3k < 8 or 3k = 15, but $d_2(2A_{15}) \geq 2 \cdot \frac{d_{2,2}(2A_8)}{2} \cdot \frac{d_{2,2}(2A_4)}{2} \cdot \frac{d_{2,2}(2A_3)}{2} \geq 2 \cdot \frac{64}{2} \cdot \frac{8}{2} \cdot \frac{6}{2}$. Hence, $64 \cdot 24 \leq d_2(2A_{15}) = d_2(\hat{Y}_A^*) = 2 \cdot 3^5$ is a contradiction.

CASE 3. Assume that there exist i, j such that $p_i = 5$ and $p_j = 3$, then $|A_i| = 5$ and $|A_j| = 3$ or 6. Set $A = A_i \cup A_j$, it follows that $(B \cap \hat{Y}_A^*)$ is a *B*-injector of $\hat{Y}_A^* \cong 2A_A$, and hence $|A_j| = 3$, thus |A| = 8 and $d_2(2A_8) = d_2(\hat{Y}_A^*) = 2 \cdot 3 \cdot 5 = 30$, a contradiction, as $64 \leq d_{2,2}(2A_8) \leq d_2(2A_8)$.

If $|A_j| = 6$, then |A| = 11 and $d_2(2A_{11}) = d_2(\hat{Y}_A^*) = 2 \cdot 5 \cdot 3^2 = 90$, a contradiction, as $d_2(2A_{11}) \ge 2 \cdot \frac{d_{2,2}(2A_3)}{2} \cdot d_{2,2}(2A_3) \ge 2 \cdot \frac{64}{2} \cdot \frac{6}{2} > 90$.

LEMMA 5. Let Ω be a finite set of size n, and let P be a transitive p-subgroup of S_{Ω} of class ≤ 2 . Then there exist integers $a \geq 0, b \geq 0$ such that $n = p^{a+b}$ and $|P| \leq p^{a+b+ab}$.

Proof. As P is transitive on Ω , Z = Z(P) acts semiregularly on Ω that $Z_{\alpha} = 1 \quad \forall \alpha \in \Omega$, because let $z \in Z_{\alpha}$, so $z \in Z(P)$, it follows that P leaves invariant the set of fixed points of Z, so fix $(z) = \Omega$, and thus z = 1. As class $P \leq 2$, it follows that $P' \leq Z(P)$, and hence

$$(P_{\alpha})' \le (P')_{\alpha} \le Z_{\alpha} = 1.$$

So, P_{α} is Abelian, and $M = \langle Z, P_{\alpha} \rangle = Z \times P_{\alpha}$ is an Abelian normal subgroup of P, as $P' \leq Z \leq M$ and $Z \cap Z_{\alpha} = Z_{\alpha} = 1$. Set $|P/M| = P^{\alpha}$ and $|Z| = p^{b}$, then there exist $t_{1}, t_{2}, \ldots, t_{a} \in P$ such that $P/M = \langle Mt_{1}, Mt_{2}, \ldots, Mt_{a} \rangle$. Next, consider the map $\sigma : P_{\alpha} \longrightarrow (P')^{a}$ defined by $\sigma(x) = ([x, t_{1}], \ldots, [x, t_{a}])$. As class $(P) \leq 2$, it follows that σ is a homomorphism. This can be seen as follows. In groups of class, at most two, we have the following relation:

$$[xy,t] = y^{-1}[x,t]y^{t} = [x,t]y^{-1}y^{t}$$

as $[x,t] \in P' \subseteq Z(P)$. So, [xy,t] = [x,t][y,t], where $y^t = t^{-1}yt$ and ker $\sigma = 1$, because let $x \in \ker \sigma$, it follows that $[x,t_i] = 1, i = 1, \ldots, a$, thus t_1, \ldots, t_a are in $C_p(x)$. Furthermore, $x \in P_\alpha \subseteq M = Z \times P_\alpha$ and $M \subseteq C_p(x)$, as M is Abelian. Thus, $\langle M, t_1, \ldots, t_a \rangle \subseteq C_p(x)$. As $P/M = \langle Mt_1, \ldots, Mt_a \rangle$, it follows that $P = \langle M, t_1, \ldots, t_a \rangle \subseteq C_p(x)$, thus $x \in Z(P) \cap P_\alpha = (Z(P))_\alpha = 1$. Hence, x = 1. So, σ is injective. Therefore, $|P_\alpha| \leq |P'|^a \leq |Z(P)|^a = p^{ba}$ and n = $[P : P_\alpha] = [P : M][M : P_\alpha]$ as $P_\alpha \leq M \leq P$, it follows that

$$[P:P_{\alpha}] = p^{a} \frac{|M|}{|P_{\alpha}|} = p^{a} \frac{|Z||P_{\alpha}|}{|P_{\alpha}|} = p^{a} p^{b} = p^{a+b}$$

and $|P| = n|P_{\alpha}| \le np^{ab} = p^{a+b+ab}$. This completes the proof.

COROLLARY 1. Let Ω be a finite set of size n and let P be a transitive p-subgroup of Ω of class ≤ 2 , if $p \neq 2$, then $|P| \leq p^{[n/p]}$, where equality holds if and only if for n = p or n = 9 and p = 3.

Proof. Since $p \neq 2$, by Lemma 4, there exist two integers $a \ge 0$, $b \ge 0$ such that $n = p^{a+b}$, $|P| \le p^{a+b+ab}$. As $p \ne 2$, it follows that $p^{a+b+ab} \le p^{n/p}$ if and only if $a + b + ab \le n/p = p^{a+b-1}$, where equality occurs if and only if n = p or n = 9 and p = 3.

LEMMA 6. Let Ω be a finite set of size n and let P be a transitive p-subgroup of Ω of class ≤ 2 , then

 $\begin{array}{ll} \text{(i)} & \textit{If } p \neq 2, d_{2,p}(S_n) = d_{2,p}(A_n) = p^{[n/p]}.\\ \text{(ii)} & \textit{If } p = 2, \ d_{2,2}(S_n) = \varepsilon_n 8^{[n/4]} \ \textit{where} \\ & \varepsilon_n = \begin{cases} 1, & n \equiv 0,1 \ (mod \ 4), \\ 2, & n \equiv 2,3 \ (mod \ 4). \end{cases} \end{array}$

and if
$$n > 1$$
, $d_{2,2}(A_n) = \frac{1}{2}d_{2,2}(S_n) = \frac{1}{2}\varepsilon_n 8^{[n/4]}$

Proof. S_n contains subgroups of order $p^{[n/p]}$ for any prime p. These groups are generated by [n/p] cycles with disjoint support and $p^{[n/p]} \leq d_{2,p}(S_n)$. This can be explained as follows. Let n = mp + r, $0 \leq r < p$, m = [n/p], and let $\pi = (A_1, A_2, \ldots, A_m, A)$ be a partition of Ω where $|A_i| = p, i = 1, 2, \ldots, m$, and |A| = r. Let $t_i = (a_1 a_2 \cdots a_p)$ be a p-cycle in $A_i, i = 1, 2, \ldots, m$. It follows that $\langle t_1, t_2, \ldots, t_m \rangle$ is an elementary Abelian group of order $p^{[n/p]}$ and of class at most two. Also, S_n contains 2-subgroups of order $\varepsilon_n 8^{[n/4]} \leq d_{2,2}(S_n)$. This can be explained as follows.

Let $\pi = (A_1, A_2, \dots, A_m, A)$ be a partition of Ω where $|A_i| = 4$, i = 1, $2, \dots, m$ and |A| = r. Let n = 4m + r, $0 \le r < 4$. It follows that

$$H = Y_{A_1} \times Y_{A_2} \times \dots \times Y_{A_m} \times Y_r \le S_n$$

where $Y_{A_i} \cong S_4$ and $Y_r \cong Z_{\varepsilon_n}$.

Hence, $H \cong S_4^m \times S_r$ contains $D_8^m \times Z_{\varepsilon_n}$ of class ≤ 2 . It remains to show that for $p \neq 3$, these groups are exactly all possible *p*-subgroups of class ≤ 2 and order $d_{2,p}(S_n)$. Let $P \in a_{2,p}(S_n)$. Assume that *P* has orbits A_1, A_2, \ldots, A_m , it follows that

$$P \le Y_{\Sigma} = Y_{A_1} \times \dots \times Y_{A_m},$$

where Y_{A_i} are the Young subgroups corresponding to the partition $\Sigma = (A_1, A_2, \ldots, A_m)$.

Furthermore, by Lemma 2, we have that

$$P = (P \cap Y_{A_1}) \times \cdots \times (P \cap Y_{A_m})$$

and $P \cap Y_{A_i} \in a_{2,p}(Y_{A_i})$. As A_i is an orbit of $P, P \cap Y_{A_i}$ is a transitive subgroup of $Y_{A_i} \cong S_{A_i}$ of class ≤ 2 .

Now we consider two cases.

CASE 1.
$$p = 2$$
. Let $|A_i| = n_i$, if $p \neq 2$, it follows that

$$p^{[n_i/p]} = p^{n_i/p} \le d_{2,p}(S_{A_i}) = |P \cap Y_{A_i}|.$$

By Corollary 1, $|P \cap Y_{A_i}| \leq p^{n_i/p}$. Therefore,

$$p^{n_i/p} = d_{2,p}(S_{A_i}) = |P \cap Y_{A_i}|.$$

Also, by Corollary 1, it follows that $n_i = p$ or $n_i = 9$ and p = 3. If $p \neq 3$, then all orbits of P have lengths 1 or p. Thus, P is conjugate to the subgroup constructed above, and hence $d_{2,p}(S_n) = p^{[n/p]}$. As $p \neq 2$, it follows that

$$d_{2,p}(S_n) = d_{2,p}(A_n).$$

CASE 2. p = 2. Let $P \in a_{2,2}(S_n)$ and let $P \leq Y_{\Sigma} = Y_{A_1} \times \cdots \times Y_{A_m}$ where Y_{A_i} , $i = 1, 2, \ldots, m$, be the Young subgroups corresponding to the partition $\Sigma = (A_1, A_2, \ldots, A_m)$.

As above $P = (P \cap Y_{A_1}) \times \cdots \times (P \cap Y_{A_m})$ where $P \cap Y_{A_i} \in a_{2,2}(Y_{A_i})$ and $P \cap Y_{A_i}$ is a transitive subgroup of Y_{A_i} . By Lemma 6, $|A_i| = 1$ or 2 and $8^{n_i/4} \leq 1$

 $d_2(S_{A_i}) = |P \cap Y_{A_i}| \le 8^{n_i/4}$. This implies that $|P \cap Y_{A_i}| = 8^{n_i/4}$ and this occurs if and only if $n_i = 4$. Hence again, P is a group conjugate to the group constructed above. As $P \not\le A_n$, this implies that $d_{2,2}(A_n) = \frac{1}{2}d_{2,2}(S_n)$. \Box

Lemma 7.

(i) If p is a prime at least 7, then p^k ≤ 3^[pk/3] for all k ≥ 1.
(ii) 5^k ≤ 3^[5k/3] for k ≥ 2.

Proof. Easy.

REMARK 3. By Theorem 1 and Lemma 7, we have $3^{[n_i/3]} \leq p_i^{n_i/p_i}$ and $5^{[n_i/5]} \leq p_i^{n_i/p_i}$ which implies that $p_i = 3$ or 5 and if $p_i = 5$, then $|A_i| = n_i = 5$. We need some information about $d_{2,2}(2A_n)$. This is a bit more complicated, as we cannot use our information about A_n directly, because if $X \leq 2A_n$, $Z \leq X$, then $X/Z \leq A_n$ and class $(X/Z) \leq$ class(X), but if $Y \leq A_n$ and it is a 2-group of class ≤ 2 , then \hat{Y} might have class equal to 3.

First, we know that in S_n , n = 4m + r, $0 \le r < 4$, $D_8^m \le S_n$ and in $2A_n$, n = 8m + r, $0 \le r < 7$, we have the central product

$$X_1 \circ X_2 \circ \dots \circ X_m \circ Y \le 2A_m$$

where $X_i \cong 2A_8$ and $Y \cong 2A_r$. In each X_i , we take a 2-group P_i of class ≤ 2 and in Y a 2-group Q of class ≤ 2 , with $Z \leq P_i, Z \leq Q$, then it follows that

$$\langle P_1, \ldots, P_m, Q \rangle = P_1 \circ \cdots \circ P_m \circ Q$$

has class ≤ 2 and $|P_1 \circ \cdots \circ P_m \circ Q| = 2|P_1/Z||P_2/Z|\cdots |P_m/Z||Q/Z|$.

REMARK 4. Let $\pi = (A_1, \ldots, A_m)$ is a partition of Ω and $Y^*_{\pi} = Y^*_{A_1} \times \cdots \times Y^*_{A_m}$. Assume that in each $Y^*_{A_1}$, a nilpotent subgroup X_i of class ≤ 2 such that its preimage \hat{X}_i has also class ≤ 2 , then the group $\langle \hat{X}_1, \ldots, \hat{X}_m \rangle$ is a central product of the \hat{X}_i 's of class ≤ 2 and of order

$$2|\hat{X}_1/Z||\hat{X}_2/Z|\cdots|\hat{X}_m/Z| = 2|X_1||X_2|\cdots|X_m|$$

To get an estimation for $d_{2,2}(2A_n)$, we prove the following lemma.

LEMMA 8. $d_{2,2}(2A_8) = 2^6$.

Proof. As $d_{2,2}(A_8) = \frac{1}{2}d_{2,2}(S_8) = \frac{1}{2}8^2 = 2^5$ (use Lemma 6), it follows that $d_{2,2}(2A_8) \le 2d_{2,2}(A_8) = 2^6$.

Furthermore,

$$d_{2,2}(2A_n) \le 2d_{2,2}(A_n),$$

because, if $P \leq 2A_n$ a 2-group of class ≤ 2 with $Z \leq P$, then we have class $(P/Z) \leq 2$, and this implies that $|P/Z| \leq d_{2,2}(A_n)$, and hence

$$\frac{|P|}{2} \le d_{2,2}(A_n).$$

LEMMA 9. Let $H \cong 2^{1+4}$ be the extra special group of $A_8 \cong GL(4,2)$, then the preimage \hat{H} of H has class at most 2.

Proof. Let

$$H_1 = \left\{ \begin{bmatrix} 1 & & \\ * & 1 & \\ * & 0 & 1 \\ * & 0 & 0 & 1 \end{bmatrix} \right\} \text{ and } H_2 = \left\{ \begin{bmatrix} 1 & & \\ 0 & 1 & \\ 0 & 0 & 1 \\ * & * & * & 1 \end{bmatrix} \right\}.$$

It is clear that $H = H_1H_2$ where $H_1 \cong H_2 \cong Z_2^3$ and $\hat{H} = Z_2$. Also, $[H_1, H_2] = H_1 \cap H_2 = Z(H) \cong Z_2$, where

$$H_1 \cap H_2 = \left\langle \begin{bmatrix} 1 & & \\ 0 & 1 & \\ 0 & 0 & 1 & \\ 1 & 0 & 0 & 1 \end{bmatrix} \right\rangle.$$

All nonidentity elements of $H_1 \cup H_2$ are transfection, and in particular are conjugate elements in $H_1 \cup H_2 \setminus \{1\}$. From this, it follows that the preimages \hat{H}_1, \hat{H}_2 are elementary Abelian. This can be proved as follows.

Let $x, y \in \hat{H}_1 \setminus Z(K), K = 2A_8$, such that $x, y \notin Z(k)$, then we have

$$xZ(K) \sim yZ(K) \sim xyZ(K)$$

and hence

$$x^{2} = y^{2} = (xy)^{2} = z \in Z(K).$$

So,

$$z = xyxy = xy^2y^{-1}xy = xy^2x^y = xzx^y$$

This implies $x = zx^{-1}$ and $x^y = xz$. As $|H_1| = 8$, there exists $a, b, c \in \hat{H_1}$, where $a, b, c, ab, ac, bc \notin Z(K)$. So,

$$z = (abc)^2 = zb^a c^a bc = z^3 (bc)^2 = z^4 = 1.$$

Hence, o(z) = 1 or 2, so z = 1 and $a^2 = b^2 = c^2 = 1 = [a, b]$. Therefore, $\hat{H_1}, \hat{H_2}$ are elementary Abelian groups. So,

$$\begin{aligned} \hat{H} &= \hat{H}_1 \hat{H}_2, \hat{H}_1 \leq \hat{H}, \hat{H}' = (\hat{H}_1 \hat{H}_2)' \\ &= (\hat{H}_1)' [\hat{H}_1, \hat{H}_2] (\hat{H}_2)' = [\hat{H}_1, \hat{H}_2] \subseteq \hat{H}_1 \cap \hat{H}_2. \end{aligned}$$

As $\hat{H_1}, \hat{H_2}$ are elementary Abelian, it follows that $\hat{H_1} \cap \hat{H_2} \subseteq Z(\hat{H})$. Hence, $\hat{H'} \subseteq Z(\hat{H})$ and class $\hat{H} \leq 2$.

THEOREM 2. If Ω is a set of size n, and $\pi = (A_1, A_2, \dots, A_m)$ is a partition of Ω with $|A_i| = n_i$, then

$$d_{2,2}(2A_{\Omega}) \ge 2 \cdot \frac{d_{2,2}(2A_{A_1})}{2} \cdot \frac{d_{2,2}(2A_{A_2})}{2} \cdot \dots \cdot \frac{d_{2,2}(2A_{A_m})}{2}.$$

Proof. Consider the Young subgroup $Y_{\pi}^* = Y_{A_1}^* \times \cdots \times Y_{A_m}^*$. The preimage

$$\hat{Y}^*_{\pi} = \hat{Y}^*_{A_1} \circ \hat{Y}^*_{A_2} \circ \cdots \circ \hat{Y}^*_{A_m},$$

is the central product of $\hat{Y}_{A_i}^* \cong 2A_{A_i}, i = 1, 2, ..., m$. By Lemma 8 and Remark 4, we have in each $\hat{Y}_{A_i}^*$, there exists a 2-group of class ≤ 2 and of order $d_{2,2}(2A_{A_i})$. These groups generate a subgroup of $2A_{\Omega}$ of class at most 2 and of order $2 \cdot \frac{d_{2,2}(2A_{A_1})}{2} \cdot \frac{d_{2,2}(2A_{A_2})}{2} \cdot \dots \cdot \frac{d_{2,2}(2A_{A_m})}{2}$.

COROLLARY 2. Let $n = 8.k + r, 0 \le r < 8$, then

$$d_{2,2}(2A_n) \ge 2 \cdot (32)^k \frac{d_{2,2}(2A_r)}{2}.$$

COROLLARY 3. If $n \ge 8, n \ne 15$, then

$$d_{2,2}(2A_n) \geqq 2.d_{2,3}(2A_n).$$

Proof. Use the inequality

$$d_{2,2}(2A_n) \ge 2 \cdot (32)^k \frac{d_{2,2}(2A_r)}{2}$$

if $n = 8.k + r, 0 \le r < 8$, and Table 1.

COROLLARY 4. Let $8 \mid |\Omega|$, then

$$d_{2,2}(2A_{\Omega}) \ge 2 \cdot 32^{n/8}$$

Proof. As $8 | |\Omega|$, there exists a partition $\pi = (A_1, A_2, \ldots, A_m)$ of Ω such that $|A_i| = 8$. By Theorem 2, it follows that

$$d_{2,2}(2A_8) \ge 2 \cdot \frac{d_{2,2}(\hat{Y}^*_{A_1})}{2} \cdots \frac{d_{2,2}(\hat{Y}^*_{A_m})}{2} \ge 2 \cdot (32)^m$$

as $d_{2,2}(\hat{Y}^*_{A_i}) = d_{2,2}(2A_8) \ge 64.$

TABLE 1.

\overline{n}	$d_{2,2}(2A_n)$
0	1
1	1
2	2
3	2
4	8 $2A_4 \cong SL(2,3)$
5	$8 2A_5 \cong SL(2,5)$
6	$8\ 2A_6 \cong SL(2,9)$
7	$8 2A_6$ and $2A_7$ have isomorphic Sylow 2-groups

COROLLARY 5. If $X \in a_{22}(2A_{\Omega})$, then $Z = Z(2A_{\Omega}) \subseteq X$, and any orbit of X/Z in Ω has length ≤ 8 , or $|\Omega| \leq 7$; also if A is an orbit of length 8, then

$$C_X(A) \in a_{22}(Y^*_{\Omega \setminus A}).$$

Proof. Let A be an orbit of X/Z of length ≥ 8 , and let $\Gamma = \Omega \setminus A$. The partition $\pi = (A, \Gamma)$ implies $2d_{2,2}(\hat{Y}_A^*)d_{2,2}(\hat{Y}_{\Gamma}^*) \leq d_{2,2}(2A_{\Omega}) = |X|$. So,

 $C_X(A) = \{x \in X, x \text{ fixes all points in } A \le \hat{Y}_{\Gamma}^* \text{ and it is of class} \le 2\}.$

So, $|C_X(A)| \leq d_{2,2}(\hat{Y}_{\Gamma}^*)$, also $X/C_X(A)$ is a transitive subgroup of S_A of class ≤ 2 . Furthermore,

$$2\frac{d_{2,2}(Y_A^*)}{2}\frac{d_{2,2}(Y_\Gamma^*)}{2} \le |X| = |X/C_X(A)| \cdot |C_X(x)| \le |X/C_X(A)| \cdot d_{2,2}(\hat{Y}_\Gamma^*).$$

This implies that $|X/C_X(A)| \ge 32^{|A|/8}$. By Lemma 5, there exist integers a, b such that $|A| = 2^{a+b}$ and $|X/C_A(A)| \le 2^{a+b+ab}$. So,

$$2^{a+b+ab} \ge |X/C_X(A)| \ge 32^{|A|/8},$$

then it follows that $a + b + ab \ge 5|A|/8 = 5.2^{a+b-3}$. Hence, |A| = 8. We also see that in all estimations equality must hold. Thus, $C_X(A) \in a_{22}(\hat{Y}^*_{\Omega \setminus A})$. \Box

COROLLARY 6. If $|\Omega|$ is even, then

$$d_{2,2}(2A_{\Omega}) = \begin{cases} 2 \cdot 32^{[n/8]}, & \text{if } |\Omega| \equiv 0,2 \mod 8, \\ 2 \cdot 4 \cdot 32^{[32/8]}, & \text{if } |\Omega| \equiv 4,6 \mod 8. \end{cases}$$

COROLLARY 7. Let $|\Omega| = n$. The B-injectors in $2A_{\Omega}$ are as follows:

- $n \equiv 0, 1, 4 \mod 8$, the *B*-injectors are Sylow 2-subgroups.
- $n \equiv 3,7 \mod 8$, the B-injectors correspond to the partition $\pi = (A, \Gamma)$, |A| = 3. So, the B-injectors are $Z_3 \times T_2$, where T_2 is a Sylow 2-subgroup in \hat{Y}^*_{Γ} .
- $n \equiv 6,2 \mod 8$, the *B*-injectors correspond to the partition $\pi = (A, \Gamma)$, |A| = 6. So, the *B*-injectors are $Z_3 \times Z_3 \times T_2$, where T_2 is a Sylow 2-subgroup in \hat{Y}_{Γ}^* .
- n ≡ 5 mod 8, the B-injectors correspond to the partition π = (A, Γ), |A| = 5. Hence, the B-injectors are Z₅ × T₂, where T₂ is a Sylow 2-subgroup in Ŷ^{*}_Γ.

THEOREM 3. B-injectors in $3A_6$ are the Sylow 3-subgroups.

Proof. As 3-subgroups of $3A_6$ have order 3^3 , and hence have class ≤ 2 . It suffices to show that there are no nilpotent subgroups of class at most 2 and of order > 27. So, let X be a nilpotent subgroup of $3A_6$. If $5 \mid \mid X \mid$, it follows that $X \leq C(z)$ for some element z of order 5. As elements of order 5 in A_6 are self centralizing, it follows that $\mid X \mid \leq 3 \cdot 5 = 15$. If $2 \mid \mid X \mid$, then $X \leq C(z)$ for some involution $z \in 3A_6$. As centralizers of involutions in A_6 have order 8, it follows that $\mid X \mid \leq 3 \cdot 8 = 24 < 27$. So, the claim follows.

THEOREM 4. B-injectors in $3A_7$ are the groups of order 36, and are the preimages in $3A_7$ of subgroups $Z_2^2 \times Z_3$ of Young subgroups $A_4 \times A_3 \leq A_7$.

Proof. As elements of order 5 or 7 are self-centralizing in A_7 , it follows that nilpotent subgroups of $3A_7$ which are divisible by 5 or 7 can have orders at most 15 or 21, respectively. As Sylow 3-subgroups of $3A_7$ have order 27 < 36, then any nilpotent subgroup of $3A_7$ of class ≤ 2 and order ≥ 36 must be contained in a centralizer of an involution. As centralizers of involutions in A_7 have order 24 and are not nilpotent, the claim follows.

THEOREM 5. *B*-injectors in $6A_6$ are the groups $Z.T_3$, where Z is the center and T_3 is a Sylow 3-subgroup of order 54.

Proof. As element of order 5 in A_6 are self-centralizing, it follows that nilpotent subgroups in $6A_6$, whose order is divisible by 5 can have at most order 30 < 54. As centralizers of involutions in A_6 have order 8. It follows that nilpotent subgroups of whose Sylow 2-subgroups are not contained in the center of $6A_6$ can have order at most 48 < 54. So, the claim follows.

THEOREM 6. B-injectors in $6A_7$ are groups of order 72 corresponding to subgroups $Z_2^2 \times Z_3$ in Young subgroups $A_4 \times A_3 \leq A_7$.

Proof. Similar as above.

Acknowledgments. The authors' thanks are due to Mr. H. Jorg for his discussion, and to the referee for his remarks.

References

- M. I. AlAli, Ch. Hering and A. Neumann, On B-injectors of sporadic groups, Comm. Algebra 27 (1999), 2853–2863. MR 1687277
- [2] Z. Arad and D. Chillag, Injectors of finite solvable groups, Comm. Algebra 7 (1979), 115–138. MR 0515451
- [3] A. Bialostocki, Nilpotent injectors in alternating groups, Israel J. Math. 44 (1983), 335–344. MR 0710238
- [4] A. Bialostocki, Nilpotent injectors in symmetric groups, Israel J. Math. 41 (1982), 261–273. MR 0657860
- B. Fischer, W. Gaschutz and B. Hartley, *Injektoren Endlicher Auflosbarer Grouppen*, Math. Z. **102** (1967), 337–339. MR 0223456
- [6] P. Förster, Nilpotent injectors in finite groups, Bull. Austral. Math. Soc. 32 (1985), 293–297. MR 0815370
- [7] M. Iranzo and F. Perez-Monasor, Fitting classes F such that all finite groups have F-injectors, Israel J. Math. 56 (1986), 97–101. MR 0879917
- [8] A. Mann, Injectors and normal subgroups of finite groups, Israel J. Math. 9 (1971), 554–558. MR 0280582
- [9] A. Neumman, Nilpotent injectors in finite groups, Archiv der Mathematik 71 (1998), 337–340. MR 1649387
- [10] A. Neumann, Ph.D. Thesis, Tübingen University, in preparation.
- [11] H. J. Schaeffer, Personal communication.

[12] I. Schur, Über die Darstellungen der symmetrischen und alternierenden Grupen durch gebrochenen lineare Substitutionen, Crelle J. 139 (1911), 155–250.

M. ALALI, MU'TAH UNIVERSITY, DEPARTMENT OF MATHEMATICS (AL-KARAK, JORDAN) *E-mail address*: mashhour_ibrahim@yahoo.com

Ch. Hering, Tuebingen University, Institute of Mathematics, Auf der Morgen Stelle 10, 72076 Tuebingen-Germany

E-mail address: christoph.hering@uni-tuebinggen.de

A. NEUMANN, TUEBINGEN UNIVERSITY, INSTITUTE OF MATHEMATICS, AUF DER MORGEN STELLE 10, 72076 TUEBINGEN-GERMANY