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In this paper, we consider a mathematical model of a contact problem in thermo-electro-viscoelasticity with the normal
compliance conditions and Tresca’s friction law. We present a variational formulation of the problem, and we prove the existence
and uniqueness of the weak solution. We also study the numerical approach using spatially semidiscrete and fully discrete finite
element schemes with Euler’s backward scheme. Finally, we derive error estimates on the approximate solutions.

1. Introduction

In the recent years, piezoelectric contact problems have
been of great interest to modern engineering. General
models of electroelastic characteristics of piezoelectric
materials can be found in [1, 2]. The problems of piezo-
viscoelastic materials have been studied with different
contact conditions within linearized elasticity in [3-5] and
within nonlinear viscoelasticity in [6-8]. The modeling of
these problems does not take into account the thermic
effect. Mindlin [9] was the first to propose the thermo-
piezoelectric model. The mathematical model which de-
scribes the frictional contact between a thermo-piezo-
electric body and a conductive foundation is already
addressed in the static case in [10, 11].

Sofonea et al. considered in [12] the modeling of qua-
sistatic viscoelastic problem with normal compliance fric-
tion and damage; they proved the existence and uniqueness
of the weak solution, and they derived error estimates on the
approximate solutions.

In the article [13], we find the recent result of a new
quasistatic mathematical model which describes the chosen
thermo-electro-viscoelastic body behavior and the contact
by Signorini condition with nonfrictional and non-
conductive foundation; also, the variational formulation of

this problem is derived and its unique weak solvability is
established.

In this paper, we consider a quasi-static contact problem
with Tresca’s friction between a thermo-electro viscoelastic
body and an electrically and thermally conductive rigid
foundation. The novelty in this model, which can be con-
sidered as the generalization of the model presented in [13],
lies in the use of the penalized normal compliance contact
condition:

0,(,-9) = —[u,~g]", e>0 )

This means that we allow a weak interpenetration be-
tween the body and the foundation. On the contact zone, we
consider the following regularized electrical and thermal
conditions:

D-v=y(u,-g)¢ (¢ - ¢r),
(2)
0

£ =k (u, - g)p. (0 - 0p),

which describe both the thermal and electrical conductivities
of the foundation. This leads to nonlinear coupling between
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the mechanical displacement and thermal and electrical
fields and hence more complexities on the model.

Since the friction conditions are inequalities, we derive a
quasivariational formulation of this problem and we prove
the existence and uniqueness of the weak solution based on
arguments variational inequalities, Galerkin method, com-
pactness method, and Banach fixed point theorem. We
derive error estimates for the numerical approximations
based on discrete schemes.

The paper is structured as follows. In Section 2, we
present the model of equilibrium process of the thermo-
electro-viscoelastic body in frictional contact with a con-
ductive rigid foundation and we introduce the notations
and assumptions on the problem data. We also derive the
variational formulation of the problem. We state the main
results concerning the existence and the uniqueness of a
weak solution. We present a spatially semidiscrete scheme
and a fully discrete scheme to approximate the contact
problem. We then use the finite element method to dis-
cretize the domain Q and Euler’s forward scheme to dis-
cretize the time derivatives. Finally, the proofs are
established in Section 3.

2. Formulation and Main Results

2.1. Problem Setting. We consider a body of a piezoelectric
material which occupies the domain Q) ¢ R4 (d = 2,3)in the
reference configuration which will be supposedly bounded
with a smooth boundary 0Q) = I'. This boundary is divided
into three open disjoint parts I';;, 'y, and I'; on one hand
and a partition of I'; UT'y into two open parts I, and I, on
the other hand, such that meas(I',) >0 and meas(T,) > 0.
Let [0;T] be the time interval, where T > 0.

The body is submitted to the action of body forces of
density f, a volume electric charge of density g, and a heat
source of constant strength g;. It is also submitted to me-
chanical, electrical, and thermal constants on the boundary.
Indeed, the body is assumed to be clamped in I', and
therefore, the displacement field vanishes there. Moreover,
we assume that a density of traction forces, denoted by f,,
acts on the boundary part I'y. We also assume that the
electrical potential vanishes on I';, and a surface electrical
charge of density g, is prescribed on I',. We consider that the
temperature 0, is prescribed on the surface I', UTy.

In the reference configuration, the body may come in
contact over I with an electrically thermally conductive
foundation. Assume that its potential and temperature are
maintained at ¢ and 0. The contact is frictional, and there
may be electrical charges and heat transfer on the contact
surface. The normalized gap between I'c and the rigid
foundation is denoted by g.

In the following sections, we use S? to denote the space
of second-order symmetric tensors on R while “.” and |.|
will represent the inner product and the Euclidean norm on
s and RY, that is
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u-v=uy,
M= -0

Yu,v € R R

0T =0T (3)
l7l = (z- 0",

Vo,1 € S

We denote u: Q x [0;T] — R¥ as the displacement
field, 0: Q —> S% and 0 = (o ) the stress tensor, 0:Qx
[0;T] — R? the temperature, q:Q—R%and q= (g,
the heat flux vector, and D : Q — R? and D = (D;) the
electric displacement field. We also denote E (¢) = (E; (¢))
as the electric vector field, where ¢ : Q x [0; T] — R is the
electric potential. Moreover, let e(u) = (eij (u)) denote the
linearized strain tensor given by ¢;; (1) = 1/2(u; ; + u;;), and
“Div” and “div” denote the divergence operators for tensor
and vector valued functions, respectively, i.e., Divo = (oj; ;)
and divé = (f /). We shall adopt the usual notation for
normal and tangentlal components of displacement vector
and stress: v,=v-n,v,=v-v,n 0,= (on)-n, and
0, = on — o,n, where n denotes the outward normal vector
on .

Problem (P). Find a displacement field u: Q x]0,
T[ — RY, an electric potential ¢ : Q% ]0,T[ — R, and a
temperature field 8 : Q x [0, T[ — R such that

o=Se(u)—e"E(p)— 0.4

(4)
+Ce(u)in Q x (0,T),

D = &e(u) + BE(9) (5)

-(6-6")2inQx(0,T),
Divo + f, =0, inQ x (0,T), (6)
divD = g, in Q x (0, T), (7)
0+ divg = g, inQ x (0,T), (8)
u=0,onlyx(0,T), 9)
ov = f,, onTy x(0,T), (10)
¢=0,onT, x(0,T), (11)
D-v=g,onT, x (0,T), (12)
6=0,0on (T, UTy) x(0,T), (13)
(0, x) = uy, in Q, (14)
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6(0,x) = 6,, in Q, (15)

1

o,(u,-g) = _g[”v —-g]", e>0,0onTcx(0,T), (16)

|o]| =S, onT¢ x (0, T), (17)
lo.]| <S==1, =0, onT¢ x (0, T), (18)

lo | =S=3r#0

. (19)
suchthato, = —Au, onT x(0,T),

D-v=vy(u,~g)p. (¢~ ¢r), onTc x(0,T), (20)

90_ k. (4, ~ 9)91(6~ ), onTex (0.7). (21
Here, the equations (4) and (5) represent the thermo-
electro-viscoelastic constitutive law of the material in which
o= (aij) denotes the stress tensor, £(u) is the linearized
strain tensor, E(¢) is the electric field. = (f;),
& = (ejj), M= (my), p= (/31']')> P = (p;), and C = (1)
are, respectively, elastic, piezoelectric, thermal expansion,
electric permittivity, pyroelectric tensor, and (fourth-order)
viscosity tensor. & is the transpose of & given by

& = (ei*jk)’ ei*jk = €kij> (22)
&ov=0&"v,
Vo e S, (23)
veRY

The constant 0" represents the reference temperature.
Fourier’s law of heat conduction is given by

q=—-V6, inQx(0,T), (24)

where & = (k; i) denotes the thermal conductivity tensor.

Equations (6)-(8) represent the equilibrium equations
for the stress. Relations (9) and (10), (11) and (12), and (13)
represent the mechanical, the electrical, and the thermal
boundary conditions. The unilateral boundary condition
(16) represents the normal compliance condition and
(17)-(19) represent Tresca’s friction law in which § is the
coeflicient of friction.

Following [14], the contact conditions (20) and (21) on
I'c are obtained as follows:

When there is no contact at a point on the surface, there
is no free electrical charges on the surface and no thermal
transfer; that is

D-v=0,
u,<g=— (25)
q-v=0.

If the contact holds, i.e., u, > g, the normal component of
the electric displacement field or the free charge (resp.,
thermal transfer) is assumed to be proportional to the

difference between the potential of foundation and the
body’s surface potential (resp., to the difference between the
temperature of foundation and the body’s surface temper-
ature). Thus,

D-v=k,(¢-9p)
u,>g=— (26)
q-v=kqe(0-0g).

We combine (25) and (26) to obtain
D -7 = kyXjo.100) (s = 9) (9 = 9F),
a7 = kX [0,100) (4, = 9) (0 - Op),
where y(o ) 18 the characteristic function of the interval
[0, +00) defined by

0, if s<0,

s) = 28
Koo (9 {1, if s>0. (28)

Equation (27) represents the regularization electrical
contact condition and the heat flux condition on I,
where

( —L, ifs< —-1L,
¢r(s)=1s if —L<s<L,
L L, ifs>L,
'0, if1’<0, (29)
o if !
v(r) =1 cor, i OSrSS,
1
c ifr>—,
~ é

and where ¢ = k, kg, and L is a large positive constant, § >0
is a small parameter, k. : ¥ — k_(r) is supposed to be zero
for r < 0 and positive, otherwise nondecreasing and Lipschitz
continuous.

Remark 1. We note that when v = 0, equality (20) becomes
D-v=0onT;x(0,7T), (30)

which models the case when the foundation is a perfect
electric insulator.
Similarly, in equality (21), we have

q-v=00onT,x(0,T). (31)

2.2. Weak Formulation and Uniqueness Result. To obtain a
variational formulation of Problem (P), we need addi-
tional notations and need to recall some definitions in the
sequel.



We use the following functional Hilbert spaces:

L*(Q) = ()",

H'(Q) = H' (), (32)
X = {a €s?:o=0

_ 2
ip0ij=0; €L (Q)},

W ={D = (D); ¢ H'(Q) : D; € L*(Q), divD € L* ()},

(33)
endowed with the canonical inner product given by
(U, V)2 ) = Jﬂuividx,
(0,7)g = JQOiTidx’ (34)
(1, v)p Q= (1, v)p2 ot (e(u), e(v)g»
(D . E) = (D . E)L2 (Q) + (diVD . diVE)LZ (Q)>
and the associated norms .|,z o), -1 () [-ll%> and [I.ll5

respectively.
Let V, W, and Q be the closed subspaces of H! (Q2) given by

V:{veHl(Q) : v:OonFD},
W:{&eHl(Q):E:OOnFa}, (35)
Q:{q e H'(Q) : quonFDUFN},

and the set of admissible displacements

Va={veV:v,—g<0Oonlg} (36)

It is known that V, W, and Q are real Hilbert spaces with
the inner products (u,v), = (e(u),e(V)g, (9, )y =
(Vo,VE)12(q)> and (0,17)q = (VO, V)12 (), respectively.

Moreover, the associated norm ||v||y, = [le(v)||s is
equivalent on V to the usual norm |.[g ) and |||l =
||VE||L2(Q) and |[|9llq = 1IV7ll12 () are equivalent on W and
Q, respectively, with the usual norms .||z ().

By Sobolev’s trace theorem, there exists three positive
constants C,;, Cy,, and C; depending on Q, I',, I'y, I'p, T
and T

a’

Ml oy < Callvlly, W eV, (37)
€2 1) < Collily,  VE €W, (38)
Ills ry < Callglls V7 € Q (39)

Since meas(I';;) >0 and Korn’s inequality hold

lleWMllg = CillVllgi )y Vv eV, (40)

where Cy in a nonnegative constant depending only on Q
and I'j. Notice also that since meas(I',) >0, the following
Friedrichs-Poincaré inequalities hold:

V&l = Cpilllly,  VEeW, (41)

"V’YHLZ(Q) >Cp, ||”I||Q> Vi €Q, (42)
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where Cp, and Cp, are the positive constants which depend
only on Q, I';, I'p, and T'y.

For a real Banach space X and 1 < p < 0o, we consider the
Banach spaces C (0, T; X) and C! (0, T; X) of continuous and
continuously differentiable functions from [0, T] to X with
the norms

lullcorx) = sup llu(@®ly,
te[0,T]

lullcr o:x) = sup llu(®)llx (43)
te[0,T]

+ sup i (8)lx-
te[0,T]

To simplify the writing, we denote by a : VxV — R,
b WxW—D5R, ¢c:VxV—0R, and :QxQ — R
the following bilinear and symmetric applications:

a(u,v) = (Je(u), e(v) g,
b(‘P; &) = (ﬁV(P’ vf)LZ(Q))
c(u, V) = (CS(M),S(V))%,

D6, 1) = (HV, Vi1 s

(44)

and by e:VxW-—R, m:QxV—R, and
p: QxW — R, the following bilinear applications:
e(‘V, f) = (%S(V), VE)L2 Q) = (%*VE’S(V))V’
m(ea V) = (%H,S(V))Q, (45)
p(6,8) = (2V6, Vf)LZ(Q)-

In the study of mechanical Problem (P), we make the
following assumptions:

HP,. The elasticity operator J : Q x S? — S9, the
electric permittivity tensor B = (B;): — Qx R4
— RY, the viscosity tensor ¢ : O x S? — S9, and
the thermal conductivity tensor J# = (kij) SO xRY
— R? satisfy the usual properties of symmetry,
boundedness, and ellipticity:

Fij = fjim = frij € L7 (Q),
Bi; = Bji € L™ (Q),

o0
Cijkt = Cjikr = Ciij € L7 (),

(46)
ki =kj € L (Q),

and there exists that mg, mg, m ., mg >0 such that

Fin (&L = mgllEll’, VEes’, vxeq,

Ciji (X)§i&) > m||ElI°, VEeS?, vxeQ,

BiiCil; = mglldIP kGl = mylILIP, V¢ e RY
(47)
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HP,. The piezoelectric tensor E = (e;;): QX SH
— R, the thermal expansion tensor ./ = (m;;):
QxR — R, and the pyroelectric tensor P = (p;) :
Q — R? satisfy

eijk = eikj € LOO(Q),

pi € LOO (Q))
and  there  exist the  positive  constants

Mg, Mg, M, Mg, Mg, M 4, and Mg such that

la (u, V)| < Mgllully VIl

15 (g, O < Mgllpllyy N>

le (u, V)| < M Jlully lIvily,

[2(6, )l < M #1160l oll7llg (49)
le (v, ) < Mgllviiy Iy,
[m (60, V)| <M ,10llglvly

Ip (6, O < MolBllolIE Ny -

HP;.  The  surface  electrical  conductivity
¥ :To xR — R* and the thermal conductance k. :
[ xR — R" satisfy the following hypothesis for
(m=v,k.):3M_ >0 such that |z(x,u)|<M,, Vu
€R, ae., x eI and x — 7 (x,u) is measurable on
I'c for all u € R and is zero for all u<0.

The function u — 7 (x, u) is a Lipschitz function on R
for all x € I's.

|7 (%, uy) = 7w (X, uy)| S Ly — uy),
is a positive constant.

Yu,,u, € R, where L,

HP,. The forces, the traction, the volume, the surfaces
charge densities, and the strength of the heat source are
as follows:

foeC(0,T; L7 ()",

f2 € C(0,T; 1 (Ty)"),

a € L*(0,T; L*(T,)), (50)
€ L(0,T; 17 (),

qo € L*(0,T; L* ().

The potential and the temperature satisfy
or € L*(0,T; L (T¢)),

51
0p € L*(0,T; L* (T)). o

The initial conditions, the friction-bounded function,
and the gap function satisty

u, € K,

0, € Q,
SeL”(Ty),
§=0,
geL’(Ic),
g=0.

(52)

Using Riesz’s representation theorem, we define
f:[0,T] —V, q,: [0,T] — W, and qy: [0,T] — Q
by the following:

F@®),v)y = JQfO(t) cvdx + Jr fot)-vda, VveV,
(53)

(0 (£, E)yy = jﬂqom Edx - L (D -Eda, VEeV,
(54)

(aig(B11), = ngl (t)-ndx, VneQ. (55)

We define the mappings j: V — R, 0: VxV — R,
0:VxW? —R,and y: VxQ* — R, ae, t€]0,T[ by

j(v) = Jr S"vT"da, Vv eV, (56)

o(u,v) = J-r ([u,)" - g)v,da={u,]" - g V)t

C

Yu,veV,
(57)

£(u(),(£).8) = L W (uy (1) - 9)by (9 (1) — 9p)Eda,

C

YueV,Vp,Eew,
(58)

K@ (©.00.1) = | (0,6 - 9)90 (6(0) - 6,y da,

YueV,V0,n€Q,
(59)

respectively.
Now, by a standard variational technique, it is

straightforward to see that if (u, ¢, 0) satisfies the conditions
(4)-(21), a.e. t € ]0; T[, then

(o(t),e(v) —e(ui(t)g + l@(u(t), v—u(t) +i(v)
€ (60)

- @)= F@),v—u(t))y, YveV,,,

(D(8), V)12 (0 = € (1), 9(£),§) = (qe (1), &)

VEeW, (61)



(@0, V)2 ) = (B(0), g + x (u (£), 6(2), 1) = (g (8),77)
V€ Q.
(62)

We assume that the initial conditions u, and 6, satisty the
following compatibility condition: there exists ¢, € W such that

b(9o: &) —e(ug>§) = (60, €) + €(up 90, §) = (qeo’ f)w’
VEeW.
(63)

This nonlinear problem, has a unique solution ¢, by
using the fixed point theorem.

Using all of these assumptions, notations, and E = -V,
we obtain the following variational formulation of the
Problem (P).

Problem (PV): find a displacement field u :]0;
T[ — V4 an electric potential ¢ : ]J0;T[ — W, and a
temperature field 0 : ]0; T[ — Q, a.e., t € ]0, T[ such that

c@(),v—u@)+a(u(t),v—u(t)) +e(v—u(t),

@ () —m(0(t),v—u(t)) +é@(u(t), v—u(t))

FO) - @O 2 FEv-i(0)y, YveV,,

(64)

b(p(t),8) —e(u(t),8) —p(0(1),8) (65)
+0(u(t), 9(1),8 =(q. (1), &)y, VEeW,

DO, 1) + (B0 g+ x (w(®),6(8),m) =(agy (1. 7) ¥ €Q,
(66)

u (0, x) = uy(x),

6(0, _x) = 60 (x) (67)

We present now the existence and the uniqueness of
solution to Problem (PV).

Theorem 1. Assume that the assumptions (HP,) — (HP,),
(37)-(42), for €>0,and the conditions

mﬁ > chf,
(68)
c2(M kC2t kaLCO)
mL%/ < 2 >
hold. Then, Problem (PV) has a unique solution as follows:
ueC (0,T;V),
@€ L*(0,T; W), (69)
6 € L*(0,T;Q).
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2.3. Spatially Semidiscrete Approximation. In this para-
graph, we consider a semidiscrete approximation of the
Problem (PV) by discretizing the spatial domain, using
the finite element method. Let 7" be a regular finite el-
ement partition of the domain Q compatible with the
boundary partition I'=T.UT,UTy. We then define a
finite element space V" ¢ Vand V", =V, ,nV", for the
approximates of the displacement field u, W" ¢ W for the
electric potential ¢, and Q" c Q for the temperature 0
defined by

vh ={vh € [C(ﬁ)]d;vlhTr e [P, (Tr)]dVTr e gV = Oonfc},
wh :{Eh € C(ﬁ);f‘hn eP, (Tr)VTr € gh;fh = onfu},

Q' :{r/h € C(Q); ’7|hTr eP (Tr)VTr € T, qh =0onT) UTN}.

(70)

A spatially semidiscrete scheme can be formed as the
following problem:

Problem  (PV").Find u":]0;T[ — V", ¢":]0;

T[ — W" and " : 10;T[ — Q" a.e., t €]0,T] such that
for V' € VZd, fh e W, and #" € Q"

(" (), =" (1) + a(u (1), - i (1))

+e(V =" (), 9" (1)) - m(6" (1), - ")

(71)
+ ég(uh (0, — i () + (") - i ()
> (F,v" - 4" ),
b(¢" (1),&") - e(u" (1), &") - p(6" (1), ") o
+o(u" (0, 9" (1),8") =(a. (1), &"),
a(6" (£), ") +<9’“ (), 11’“) (@, O ") .
=(ay ®,1"),
u" (0) = ug,
9" (0) = g5, (74)
6" (0) = 4.

Here, ull € V, ¢t ¢ W", and Bg € Q" are appropriate
approximations of u,, ¢,, and 0, respectively.

Using the same argument presented in Section 2, it can
be shown that Problem (PV") has a unique solution
ul € C1(0,T; V"), ¢" € L2(0,T; W"), and 6" € L2 (0, T; Q").

In this paragraph, we are interested in obtaining esti-
mates for the errors (u — u"), (- (ph), and (0 - Gh).

Using the initial value condition, we have
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u(t) = Jt w(s)ds + uy,

(75)
o(t) = JO B(s)ds + 0,,
uh(t J i s)ds+u0,
0 (76)
6 (1) = Joeh (s)ds + 6.

Theorem 2. Assume that the assumptions stated in Theorem
1 are hold, for e>0. Then, under the conditions

[0 = s}, — 0.
Joo-ol, —o. )
ash — 0,

the semi-discrete solution of (PV") converges as follows:
h

"u “Uleory T 0,
H(P - g0h L2(0,T;W) —0 (78)
"9 -6 rorQ 0,

ash — 0.

2.4. Fully Discrete Approximation. In this paragraph, we
consider a fully discrete approximation of Problem (PV).
We use the finite element spaces V", W", and Q" introduced
in Section 2.3. We introduce a partition of the time interval
[0;T]:0=ty<t;< ... <ty =T. We denote the step size
At=k,=t,—t, ,forn=1,2,...,N and let k = max,k, be
the maximal step size. For a sequence {Vn}io’ we denote
ow = (w, —w, )/ (k,).

The fully discrete approximation method is based on the
backward Euler scheme, and it has the following form.

Problem (Pth) Find a displacement field
{uﬁk}n o C Vad, an elect}r\llc potential {gon }NO C Wh and a
temperature field {6 o © Q" for all Ve vh & e wh,
n"eQt, and n=1,...,N such that

(= 0l¥) + () 1o -

hk  hk
wy, » (pn—l)

hk) + I( h)

T AN S A
—”"(Gnqﬂ’ -w, )+EQ( S

)2 (o - ),

(79)

b(g7&") — o1, &") ~ p(6)€) + (" 01 &)
:(qe",fh)w,

(80)

o(0,5n") +(06,5 ") + x(, 0,5 1") = (aig, 1)y (8D)

hk h
Uy, = Uy,

hk h
Po = Po> (82)
ok = op.

Remark 2. 'The choice of 6" | and ¢!, instead of 8 and ¢
is motivated by the fixed point method in the proof of the
existence and uniqueness. Otherwise, we may get another
different condition for the uniqueness of the solution of fixed
iteration problem (79)-(82). In addition, this choice will be
helpful for the application of discrete Gronwall’s lemma in
the next.

To simplify again the notation, we introduce the
velocity

hk _ o hk

w, =0u,,

n=1,...,N,
ijw +u0,

(83)
ik S ik h
0, = k;00," + 6y,
j=1
nx1

This problem has a unique solution, and the proof is
similar to that used in Theorem 1.
We now derive the following convergence result.

Theorem 3. Assuming that the initial values ull € V",
ot e W, and Hh € Q" are chosen in such a way that

[0 = wi], — o

|90 - 95, — 0. -

|6, - 6], — o
ash — 0,

under the condition stated in Theorem 1 and for € > 0, the fully
discrete solution converges, i.e.,

ik hk
ma {li =+l -l +lon -0, e - f — o
ash,k — 0.
(85)

3. Proof of Main Results

In this section, we prove the theorems presented in the
previous section.



3.1. Proof of Theorem 1. The proof of Theorem 1 is based on
fixed point argument, Galerkin method, and compactness
method, similar to those used in [14, 15] but with a different
choice of the operators.

We turn now the following existence and uniqueness
result.

Let # € C(0,T;V) given by

(F (1), v =g (1), =e(v—1iig (1), 95 (1))

—m(0g (1), v —1g (1))

(86)

In the first step, we consider the intermediate Problem
PV;.

Problem PV,;. Find ug €V, for, ae., £ € ]0,T[ such
that

¢ (tg (), v —tig (1) + a(ug (1), v — g (1))

+(F (), v—ug (1)), + 1Q (ug (1), v—u(2))
€ (87)

+i(v) = (g () = (F(1), v —ug (1)),
ugz(0) =u;, VveV.

We have the following result for PV ;.

Lemma 1. For all veV,,; and for, ae., t €]0,T[, the
Problem PV ;; has a unique solution ug € CL(0,T; V).

Proof. Using Riesz’s representation theorem, we define the
operator o/ : V — V and the element {4 (t) € V by

(f# @), v)y = F@), )y = (F (1), v)y, (88)

o (e (D), ¥) = a (e (D)) + %Q(ug(t), . (89)

Then, Problem PV, can be written in the following
form:

(g (), v—tg (1) + A (ug (t),v —tig (1))
+i(V) = (g () 2 (f5 (), v = 1ig (1)), (90)
ug (0) = uy.

For all u, v € V, there exists a constant ¢>0 which

depends only on Mg, C,;, and € such that

| (u, V)| < cllully vl (91)

The assumption (HP,) and &% € C(0,T;V) imply that
f € C(0,T;V) and by (HP,) - (HP,), the operator ¢ is
continuous and coercive.

We use now the result presented in pp. 61-65 in [16], and
we conclude Problem PV,; has a unique solution
ug € C1(0,T; V).

Next, we use the displacement field ug obtained in the

first step and we consider the following lemma proved in
[15]. O

Lemma 2. (a) Forally € Qand, a.e,t € 10,T|, the problem
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D (05 (1), ) + (B (1), 1), + x (12 (), 052 (), 1)
=(a 1)y VneQ (92
95?(0)=90,

has a unique solution 04 € L*(0,T; Q).
(b) For all £ € W and for, a.e., t € 10, T, the problem

b(pz (1),8) —e(ug (1), ) = p(0 (), §) + £(ugz (1), 95 (1), §)
= (a4 (), &) s
95 (0) = 9o
(93)

has a unique solution ¢g € L?(0,T; W).

In the last step, for & € L*(0,T;V), ¢ and O are the
functions obtained in Lemma 2 and we consider the operator
Z :C(0,T;V) — C(0,T;V) defined by

(LF 1), v)y = (v, 05 (1) - m (05 (£),v),  (94)

for all v € V and for, a.e., t € ]0,T.
For the operator &, we have the following result ob-
tained in [15].

Lemma 3. There exists a unique F € C(0,T;V) such that
LF=F.

We now turn to a proof of Theorem 1.

Existence. Let F € C(0,T; V) be the fixed point of the operator
& and us denote X = (lig, Pg, 0 ) the solution of variational
Problem (PV), for F = &; the definition of & and Problem
(PVg) prove that X is a solution of Problem (PV).

Uniqueness. The uniqueness of the solution follows from
the uniqueness of the fixed point of the operator Z.

3.2. Proof of Theorem 2. To prove Theorem 2, we need the
following result

Lemma 4. Assume that (HP,) — (HP;). Then, we have the
estimate as follows:

0 10], 5, o0

+|'6(t) )

L2(0,T;W)

L2(0,T5,Q)
* . . h
<c inf {“u(t) -y
vieL? (0,T;V")
&el? (0T;wh)
n"el? (0,T;:Q")

+o® -

h
12(0,T:V) +||(p(t) =& L2 (0,T:W)

LZ(O,T;Q)}
(60 g+l - k], +]60 - €]

(95)

for a positive constant c*.
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Proof. Takev = 4" () in (64) and add the inequality to (71), where
we 1?‘”6 L St = (D)9 (1.8~ 9(1) -~ e(u(®), 9 (1.9 (1) — ¢ (1))
(s () — " (8),u () - 4" (1)) e(u (0,¢" (0.8 - 9 () + £ (0, 4" (.90 () - 9" (),
<c(" (0,v" =1 () + a(u(t),d" (1) - (1)) (102)
+a(u (), =" () + (i (1) - i (8), 9 (1)
(0 = ) + (s W09 ) Sy = x(u" ®,6" (O, 7" = 0(t)) + x(u" (1), 6" (1), 6() - 6" (1))
+e(V' =" (), 9" (1) - m(0(), " (1) - k(1))

—x(u(®),0(6), 1" = 0(8)) = x(u (1), 0(t), 0(8) - 6" (1)).
= (6" (0, = () + [o(u(o 4" (1)~ k(1)

(103)
We now add (87), (100), and (101); we obtain
("), =" 0)] +i(V") - i 0) + (" () (@@ =" @00 - d" ) + b (1) - 9" (1 9 (1) - 9" (1))
) ~( "~ i 0) ~ (i - ). + b(@h(t) 0" (1),0() - 0" (1)) < S(t, V"1 (1)) + cs’h +8+S,
(96) + c(u (t) — i (0), V" - u(t)) ( () - u(t), V" — " (t))
Then. +e(V =" (1),0" (1) - p(1)) - (9”(t (), V" - (1),
(5 (6) — " (1)1 (1) — " (1)) Bp®) = 9" (6= &) = e(u(t) ~ (t)’(P(th) %) .
<S(tV i (0) + Sl + e (1) - (0, - () e((b;((t) ;‘h Z) | (2 _ztz; . DEZEI;:Z;,EZ Z((:)) ) ,jhi
Al O G ) (a0
(7) (104)
where

From (HP,) and the previous inequality, it follows that
StV 0 (0) = e(i (), V" () + a(u(@®),v" - u (1))

mfis() =i @)}, + mgl|o (1) - 9" s, + mar o) - " O],

ho . h h h h
+o(V =), 9(8)) - m(0(), " - (1)) <S(LVLd0) + Sy 4 Sir Sy ST
(105)
+i(v") - e @) (1" - i), where
O8) g = (i (1) - (0, — w®) + a(u (6) — (), i (1)
h -h h h h -h
= [o(w@ i (1)~ (0) + o (0, ~ i (1) re(V - ¢ e Z’(ﬂ) - m(6 (=007 1)
¢ . (99) b(p (1) - ¢" (O, (1) — &) = e(u(t) - u" (1), 9 (1) - &)
“e(u@. )] —e(u®) - (0,9 (1) - 9 (1)) - p(6(1) - 6" (.0 (1) - &)
We take & = Eh in (65) and 7 = nh in (66) and by sub- ( t) - 6" (1), ¢ "(p) - ) ( () - 6" (1), 0(t) - )
tracting to (72) and to (73), respectively, we deduce that
~(bw -8 . —6<t>)—(e<t)—e 0,606 ).
B(p() - ¢" (1,91 - ¢" (V) = 85+ b(p(1) - ¢" (), 9 (1) - &) (106
- e(u(t) u’“(t) sv(t) &) _ .
e(u(t t) o' (1) - (p(t)) andLet us estimate each of the terms in (105), (HP,) — (HP5),
(G(t) () - &) , 1,
Xy<px"+—y°, V>0, 107
—p(00)- 0" (1).9" (1) - (1), ysbeeigs W (107
(100) allowing us to obtain
. . 2 2 2
b(0() - 6" (1),0(1) - 6" (1)) = S* + 0(6(1) - " (1), 0(1) - ") "< "‘h{””(f) - @, +|u - @[, +Jow - 0,
<6(t) —" ),y - 0(t)> +How -e" @, +‘|9(t) - (t)”2Q it -V
A
(G(t o(t) -6 (t)) +|I(Ph(t)_£h“zv+”9(t)_rlhu(22}'
(101)

(108)
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Using the assumptions (HP,), (38), and (58), we find
[stl<|- e(ur9 0.8 -9 ) - e, o (9
=" (1) + e(u" (1), 9" (1), 8" - 9 (1))
(" (09" (0.9 - 9" )|

= LC‘/’(“(t)v - 9)b.(9(1) = 9p) (€ — 9 (t))da
! Jrc"’(”(t)v - 9)$.(9(t) — 9r) (9 - 9" (1))da
= J (0, = 9)9u (9 () = 91) (€~ ()
J (w(®), - )9 (9 () - 9s)(9 — 9" (0))da
[ ¥ 0, e 0 e )(E - o)
J ("), ~ 9)o1(¢" ()~ 95)(9 - ¢" (1))da
SMwJFC'¢(t)—¢ (0] da
+LLWLC
<M, Callo() ~ " D[}, + LL,CaCalu) " 1),

o -9" @),

+MColp-¢" 0|, [o®) - ¢

12 (Tc)
+LLyco|u ) - @] o - €] . (re)

<aflo-o" O], +luw - @l for- €], §
(109)

Similarly, we find

53] aflow -0 @f, - Of o[}

(110)
By combining the inequality
[(x]" =[] <1x = yl, (111)

with (107), we observe that

e cg{”u(t) —d O] +a ) i O]+ - a(t)ﬂf,}.

(112)

Thus, by (106) and (108)-(110), we have the inequality
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Jisty =i @l oo ¢ O, +Jow -6 @,

< {||u(t) —d @, +|ow - (t)||2Q +[R(5 0 (0)]

s

() =) = [ (109 = (9)ds + o~

it0 ot -, -

(113)
Then, by (75) and (76), we have

; (114)
o) - 6" (1) = J (é(s) _ (s))ds 6, 6
0

and so

ot -t 0, < i [ o - ol s+ - ).

66" 0], < c;‘H; o) - (s)“;ds +]6o - 93‘||Z}
(115)

Consequently, from the previous inequalities and
Gronwall’s inequality in (113), we find (95). O

Proof of Theorem 2. To estimate the error provided by the
approximation of the finite element space V', W",
and Q", weuse IT"u, "¢, and I1"6, the standard finite ele-
ment interpolation operator of u, ¢ and 6, respectively. We
then have the interpolation error estimate [16]

. :
"u -II u"v < chlluill 2 o1:v)»

"(P - 1_[hq)"w < chlol orw)» (116)

|o-11"6), < chifl.z o

We bound now the term &(.;v"(.) u(.)).Using the
properties of ¢, a, e, m, f, and (98), there exists positive
constant ¢ depending on M, Mg, Mg, M 4, fr2(01:v)
el 12 o.7:v)> 102 0.7:v)> and {1611 12 (o 71 such that

|s(t /" u )| <]V () - a0, +[i(+ ®©) - @ ®)].
(117)
Taking (116) in (95), we have
”u ~u' L2(0.T3V) +||¢ B (ph L2(0.T5W) +"6 " zorne

h
Iy

12(0,T3V) “(P B L2(0,T;W)

. h.
Sc+<["u—1'l u
172

+ "6 ~11'6 12(0,TV)

+“u ~1

L2(0.T:Q)

SR IR Y L

(118)

i) i)
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From (116), the constant c is independent of 4, u, ¢, and
0. This implies

-

lo -], —o

(119)
Jo-me]
Q
ash — 0.
From (HP,) and (53), it follows that,
h . L.

||1<H u) —j(u) oy 0. (120)
Finally, we find the result (78). O

3.3. Proof of Theorem 3. Add (80) with v/ = v and (64) with
v=w*att=t,, we find

hk _h

hk hk hk b hk
c(wn sV, — W, ) + c(wn, w, — wn) + a(un )

»Vy — Wy
+ a(un,wzk - wn) + e(vﬁ -
(Hﬁkl v, — W, )

+— [Q( ik vh - w’:lk) + Q(un,wﬁk - wn)] + j(vﬁ) - j(wﬁk)

() = 1(000) 2 (1~ ) (o ] - ).

hk  hk hk
w, ’¢n—1) + e(w - w, gon)

(an —w)

This equality,

hk Wk _ (o Bk hk _h h
c(wn —w, ,w, —w, ) = c(wn W, — vn) + c(wn,wn - vn)

hk h h_ kh
- c(wn W, — vn) + c(wn, v, — W, )

(122)
allows us to obtain
¢(w, —wiw, - w)) <R(vpw,) + "
+ (W)~ w,, vy - w,)
a(ul% ! - )
+e(vh - w0k, - )
—m(0)F, - 0,7 - W)
(123)
where
S (Vo w,) = (W vy —w,) + (¥~ w,)
+e(vy —wp9,) = m(6, v —w,) +1(vh)
—j(w,) = (F Vi - w,,),
(124)

11

514 = Lol vl wl¥) + ot ) o, - )]
(125)

For all n>1, we subtract (65) from (81) at t =t,; we
obtain that

B(q)n - (szk’ Eh) - e(un - ”Zk> fh) - p(e‘n - ezk’ gh) (126)
+ E(un, O fh) - E(uﬁk, (pﬁk, Eh) =0.

We replace fh by (¢, — (pﬁk) and (¢, - fh) in (126); we

find that
6(¢, — ¢ 0, — 01 ) < S + (9, - 91 0, — &)
+e(u, —up & -glf)  (127)
+p(6, - 6,5.8" - 9,

where
S = (e 90— &) = 0(ul’, 91 0, - &)
hk hk hk
Pn = Py )

- e(un’ P> P — (pn ) ( > P>
(128)

For all n>1 and similar to (127) and (128), we have
a(6, - 6,",6, - 6,°) <" + (6, - 6,6, -1")
+(86,,6, - ") -(86,,6, — 01F)
— (06,6, — ") +(06)", 6, - 6,°),
(129)

where 86, = 1/k, (0, -6, ,) and 86" = 1/k, (8"% - 6" )),

and
oS’;k = X(u 0,0, -

h)_X( nk gk g _ﬂh)

.0, = 00%) - x(u,, 6,6, — 1),

n Yn>¥n

(130)

Adding (124), (128), and (130), we find

o(w, —w) w, — W) + 6(9, — 91 9, = )
(6,,—9’1" 9’”‘)<5 (vpw,) + Sy + S+ S
+ c(w - ) + a(uhk — U, VZ - wﬁk)
+e(v whk q)Zkl q)n) (th -0, VZ —wﬁk)

+b(p,— @) 0, — &) +0(6,- 60,50, -1")
+€<Mn —§0n )+p(6n_eﬁk’£ —S"Zk)
+(86,,6, - )—(59n,9n—9’;k)

( n>Yn
— (06,6, — ") +(06.", 6, - 6)°).
(131)

The ellipticity of operators ¢, b, d, and the previous
inequality follows that
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k|| 2
Mo Wy = Wy ||, T Mp||Pn — ‘Pn w T Mk|On

n)+é’g +eS’g +<§’Xk+<§’hk,

nflv
h

sé’n(vn,

(132)

where
s = c(whk -w, vh -w, ) + a( ik - U, vﬁ - ka)

(ol uf gl g,) ~ m(d, 6,0 ul)
+5(g, —9i 9, — &) +e(u, - u) & - g1
+9(6,-6,5¢" ~9,") + (6, - 6.6, 1")
+(86,,0, - 1") - (66,6, — 0,°) — (06", 0, — ")
+(06iF, 6, - 0)F).

(133)
Now, we estimate each of the terms in (132).
Thanks to (HP,) — (HP;), (107), (117), (111),and
“vﬁ -w, +|w,, (134)
we get
'Shk|3(xhk wn—wﬁk‘z/+u —u (pn (pn
2
+(Pn — (pn 1 6 -
2
+ 6n—l " Yn-1 Q+ ||§ _q)n
h 2
+o, - ||Q},
(135)
hk h 2
|°S) |<C{ n v Vn_w”v}’
(136)
hk hic||?
'(SZ'S‘XL’{ Pn = Pu W+un_u T Pn — E”W}
(137)
hk Ak || 2 h||?
'Sx ' < “x{ =0, o tln — ||, + 0,-14 ||Q}.
(138)

Combining (132) and (135)-(138), we have the following
estimate:

{ = |+ en—oh ], + Q}SC{ T
n-1 Q Sn(VZ>wn) "
n ™ Wy V+|'£h_¢n W+"’7h_0n Q}'

(139)
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We estimate now the terms ||, — <phk 1,16, — Hhk 1|I; and
16, th LI, for the first term; we have

Oy = = Zk 09" + gy - J 3¢ (s)ds - ¢,

n—-1
=2 ki(39]" ~ 30;) + 95 a0
j:
tn
8(/)(5)(15) - J
[

1
n-1 t
" (&pjkj - J
j=1 ‘
where 8¢; = 1/k;(¢; - ¢;-,) and 8¢ = 1/k; (¢ - o)),

and
_ f
Sk~ |
CE)

j-1

S (s)ds,

(140)

o (s)ds)

w

JZ(J (39, - 5¢(s))ds>
i

J 7

(141)

w

8(pj - 8¢ (s)”wds =1, (8¢),

ty
j 8¢ (s)ds
)

t,
< j 100 (S)lyds < KIS@legorm-
(142)
Thus,

n-1
Py = P, < j:zlij@sv’}h =09, + et - o0,

(143)
+ I, (69) + kll@llco.1:w)-

Similar to (143), we deduce that

ok -0, < 2@”6@?’1 - 549]-||Q +[6} - 9(,||Q +1,(66)
=
+kll6llcr 0,r:0)>
(144)
0% ~6, Zk]Haekh 80,1, +166 = 6o|l,, + 1 (80).

(145)

To proceed, we need the following discrete version of the
Gronwall’s inequality presented in [12].

Lemma 5. Assuming that {g,}, and {e,}Y | are the two
sequences of nonnegative numbers satisfying

e, < cgn+cijej. (146)

J=1
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Then,
n-1
e, <c gn+ijgj , n=1...,N. (147)
=1
Therefore,
e < © D2 O (149
Also, the following result.
Lemma 6. Let us define the map by
n—1 t],
L= I v, = v()xds. (149)
=1t

Then, I, (v) converges to zero as k — 0, for all
veC(0,T; X).

Proof. Since v € C(0,T; X), t— v(t) is uniformly con-
tinuous on [0, T]. Thus, for any &> 0, there exists a k, >0
such that if k < k,, we have

V() - v(s)y <%v5, te 0T lt-sl<k.  (150)
Then, we have
Nt
KwsY | pds-e (151)
j=17 i T
Hence, I, (v) converges to zero as k — 0. O

We now combine the inequalities (139) and (143)-(145)
and applying the Lemma 5, we obtain the following estimate:

hk hk hk m
12}2’,5,“’*""_% e v+“/’n_‘/’n w 6,-0, Q}
. h 172 h h
< — _
< max i€ cf|s,(ow,)|" + [ - wn, +¢ - o],
Erewh
r]hEQh
h h "
-{_"}7 - 9" Q} + C{N(PO - (/)0||W +|'60 - 60||Q} + C{Ik (5(/))

+1,(89) + kllpllc: o.ram) + KBl (O,T;Q)}.
(152)

Proof of Theorem 3. We take v = M'w,, fﬁ =T11"¢,, and
nt =110, in (152).

The convergence result follows from Lemma 6 together
with an argument similar to the proof of Theorem 2. O

4. Conclusion

The paper presents a numerical analysis of the contact process
between a thermo-electro-viscoelastic body and a conductive
foundation. A spatially semidiscrete scheme and a fully
discrete scheme to approximate the contact problem were
derived. We can also study this problem with more general
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friction laws. The numerical simulation with the same al-
gorithm is an interesting direction for future research.
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