Rigidity of the canonical isometric imbedding of the symplectic group Sp(n) Yoshio Agaoka and Eiji Kaneda (Received August 5, 2005) **Abstract.** In this paper, we discuss the rigidity of Sp(n) as a Riemannian submanifold of $M(n, n; \mathbb{H})$. We prove that the inclusion map \mathbf{f}_0 , which is called the canonical isometric imbedding of Sp(n), is rigid in the following strongest sense: Any isometric immersion \mathbf{f}_1 of a connected open set $U(\subset Sp(n))$ into $\mathbf{R}^{4n^2} (\cong M(n, n; \mathbb{H}))$ coincides with \mathbf{f}_0 up to a euclidean transformation of \mathbf{R}^{4n^2} , i.e., there is a euclidean transformation a of \mathbf{R}^{4n^2} satisfying $\mathbf{f}_1 = a\mathbf{f}_0$ on U. Key words: curvature invariant, isometric imbedding, rigidity, symplectic group. #### Introduction The subject of this paper is to prove the rigidity of the symplectic group Sp(n) as a Riemannian submanifold of the space of matrices over the field of quaternion numbers. Let $M(n, n; \mathbb{H})$ be the space of $n \times n$ -matrices over the field \mathbb{H} of quaternion numbers. Considering $M(n, n; \mathbb{H})$ as a real vector space, we define a bilinear form ν on $M(n, n; \mathbb{H})$ by setting $$\nu(X, Y) = \text{Re}(\text{Trace}({}^t \bar{X} Y)), \quad X, Y \in M(n, n; \mathbb{H}).$$ It is easily seen that ν defines an inner product on $M(n, n; \mathbb{H})$. With this inner product ν we can regard $M(n, n; \mathbb{H})$ as the euclidean space \mathbb{R}^{4n^2} . The symplectic group Sp(n) is given by a submanifold of $M(n, n; \mathbb{H})$ consisting of all matrices $g \in M(n, n; \mathbb{H})$ satisfying $g^t \bar{g} = {}^t \bar{g}g = I_n$, where I_n is the identity matrix of degree n. The induced metric on Sp(n), which is denoted by the same symbol ν , is bi-invariant on Sp(n). The inclusion map $f_0 \colon Sp(n) \longrightarrow M(n, n; \mathbb{H}) \cong \mathbb{R}^{4n^2}$ gives an isometric imbedding of the Riemannian manifold $(Sp(n), \nu)$ into \mathbb{R}^{4n^2} and is called the canonical isometric imbedding of Sp(n) into \mathbb{R}^{4n^2} (cf. Kobayashi [17]). In this paper we will discuss the rigidity of the canonical isometric imbedding f_0 . Let M be a Riemannian manifold and let f be an isometric imbedding of M into the euclidean space \mathbb{R}^N . By definition \mathbf{f} is called *strongly rigid* when \mathbf{f} is rigid even if we restrict \mathbf{f} to any connected open set of M, i.e., for any isometric immersion \mathbf{f}' of a connected open set $U(\subset M)$ into \mathbb{R}^N there exists a euclidean transformation a of \mathbb{R}^N satisfying $\mathbf{f}' = a\mathbf{f}$ on U. In [8] and [9] we showed that the canonical isometric imbeddings of the quaternion projective plane $P^2(\mathbb{H})$ and the Cayley projective plane $P^2(\mathbb{CAY})$ are strongly rigid. Concerning the canonical isometric imbedding \mathbf{f}_0 of Sp(n) into \mathbb{R}^{4n^2} , the following results are known: - (1) In the case where n = 1, \mathbf{f}_0 is just the standard isometric imbedding of $S^3 (\cong Sp(1))$ into \mathbb{R}^4 with radius 1, which is a typical example of isometric imbeddings with type number 3. Accordingly, by Allendoerfer [12] \mathbf{f}_0 is known to be strongly rigid. - (2) By investigating the Gauss equation of Sp(2) in codimension 6 (for the definition, see §2 below), Agaoka [1] showed that the set of solutions of the Gauss equation is composed of essentially one solution, i.e., any solution is equivalent to the second fundamental form of \mathbf{f}_0 . Utilizing this fact, Agaoka proved that \mathbf{f}_0 is strongly rigid when n=2. - (3) Kaneda [15] proved that $\mathbf{f}_0(n \geq 1)$ is globally rigid in the sense of Tanaka [19], i.e., if two differentiable maps $\mathbf{f}_i(i=1,2)$ of Sp(n) into \mathbb{R}^{4n^2} lie both near to \mathbf{f}_0 with respect to C^3 -topology, and if they induce the same Riemannian metric on Sp(n), then there is a euclidean transformation a of \mathbb{R}^{4n^2} such that $\mathbf{f}_2 = a\mathbf{f}_1$. - (4) By determining the pseudo-nullity of $Sp(n)(n \ge 1)$, Agaoka-Kaneda [4] proved that \mathbb{R}^{4n^2} is the least dimensional euclidean space into which Sp(n) can be locally isometrically immersed. (For the definition of the pseudo-nullity, see §1.) In other words, $Sp(n)(n \ge 1)$ cannot be isometrically immersed into \mathbb{R}^{4n^2-1} even locally. In this paper, we will extend these results (1) \sim (4) in the following strongest sense: **Theorem 1** Let \mathbf{f}_0 be the canonical isometric imbedding of the symplectic group Sp(n) into the euclidean space \mathbb{R}^{4n^2} . Then \mathbf{f}_0 is strongly rigid, i.e., for any isometric immersion \mathbf{f} of a connected open set $U(\subset Sp(n))$ into \mathbb{R}^{4n^2} there is a euclidean transformation a of \mathbb{R}^{4n^2} satisfying $\mathbf{f} = a\mathbf{f}_0$ on U. It should be noted that $Sp(n)(n \ge 1)$ are the first examples such that the canonical isometric imbeddings of a series of Riemannian symmetric spaces parametrized by rank are strongly rigid. We note that Theorem 1 for the cases $n \geq 2$ cannot be proved by applying the theory of type number in [12]. In fact, the type number of the canonical isometric imbedding \mathbf{f}_0 of Sp(n) is less than 2 in case $n \geq 2$ (precisely, see Remark 11 in §2). The method of our proof is quite similar to the methods adopted in [8] and [9]. We first make a preparatory study on pseudo-abelian subspaces of $\mathfrak{sp}(n)$, which is the Lie algebra of Sp(n). Utilizing the knowledge about the pseudo-abelian subspaces of maximum dimension, we determine the set of all solutions of the Gauss equation of Sp(n) in codimension $2n^2 - n(=4n^2 - \dim Sp(n))$. Under this situation, it will be shown that the set of solutions is composed of essentially one solution, i.e., any solution is equivalent to the second fundamental form of \mathbf{f}_0 . Therefore by the theorem of coincidence (Theorem 5 of [8, pp. 335–336]) we can establish our rigidity theorem of Sp(n) (Theorem 1). Throughout this paper we will assume the differentiability of class C^{∞} . For the notations of Lie algebras and Riemannian symmetric spaces, see Helgason [14]. For the quaternion numbers and the symplectic group Sp(n), see Chevalley [13]. # 1. The pseudo-nullity of Sp(n) In this section we study the pseudo-nullity of Sp(n). We first recall the notion of a pseudo-abelian subspace (precisely, see [3]). Let G be a compact simple Lie group. Let $\mathfrak g$ be the Lie algebra of G and $\mathfrak h$ be a Cartan subalgebra of $\mathfrak g$. A subspace $W \subset \mathfrak g$ is called pseudo-abelian with respect to $\mathfrak h$ (or simply, pseudo-abelian) if it satisfies $[W,W] \subset \mathfrak h$. The maximum dimension of pseudo-abelian subspaces, which does not depend on the choice of a Cartan subalgebra $\mathfrak h$, is called the pseudo-nullity of G and is denoted by p_G . The pseudo-nullity of the symplectic group Sp(n) has been already determined: **Theorem 2** (see [4]) For the symplectic group $G = Sp(n)(n \ge 1)$, the pseudo-nullity is equal to 2n, i.e., $p_{Sp(n)} = 2n$. In what follows we determine the pseudo-abelian subspace W of $\mathfrak{sp}(n)$ which attains the maximum dimension, i.e., $\dim W = p_{Sp(n)} = 2n$. First recall the field of quaternion numbers: Let \mathbb{R} be the field of real numbers. The field \mathbb{H} of quaternion numbers is an algebra over \mathbb{R} generated by the elements e^0 , e^1 , e^2 and e^3 satisfying - (1) $e^0e^i = e^ie^0 = e^i \ (i = 0, 1, 2, 3);$ - (2) $(e^i)^2 = -e^0 \ (i = 1, 2, 3);$ - (3) For each permutation $\{i, j, k\}$ of $\{1, 2, 3\}$ it holds $e^i e^j = \varepsilon(ijk) e^k$, where $\varepsilon(ijk) = 1$ (resp. $\varepsilon(ijk) = -1$) if $\{i, j, k\}$ is an even (resp. odd) permutation. From (1) we can see that e^0 is a unit element of \mathbb{H} . Let us simply express the element ae^0 ($a \in \mathbb{R}$) as a. In this meaning \mathbb{R} is contained in \mathbb{H} and forms a subfield of \mathbb{H} . Let $f \in \mathbb{H}$. Then f may be written in the form $f = f_0 + \sum_{i=1}^3 f_i e^i$, where $f_0, f_1, f_2, f_3 \in \mathbb{R}$. As usual we define the real part and the conjugate of f as follows: $\text{Re}(f) = f_0$; $\bar{f} = f_0 - \sum_{i=1}^3 f_i e^i$. Then we have $\text{Re}(f) = \text{Re}(\bar{f})$, $f\bar{f} = \bar{f}f = \sum_{i=0}^3 f_i^2$. Moreover: $$Re(fh) = Re(hf), \quad \overline{fh} = \overline{h}\overline{f}, \quad f, h \in \mathbb{H}.$$ Let i=1, 2 or 3. Define a subset \mathbb{C}^i of \mathbb{H} by $\mathbb{C}^i=\mathbb{R}+\mathbb{R}e^i$. It is easily seen that \mathbb{C}^i forms a subfield of \mathbb{H} and is isomorphic to the field \mathbb{C} of complex numbers. We also define a subset \mathbb{D}^i of \mathbb{H} by $\mathbb{D}^i=\mathbb{R}e^j+\mathbb{R}e^k$, where j and k are so chosen that $\{i,j,k\}$ is a permutation of $\{1,2,3\}$. Then it is clear that $$\mathbb{C}^i \mathbb{D}^i = \mathbb{D}^i \mathbb{C}^i = \mathbb{D}^i; \quad \mathbb{D}^i \mathbb{D}^i = \mathbb{C}^i.$$ In the following we denote by $M(p, q; \mathbb{H})$ the space of $p \times q$ -matrices over \mathbb{H} . As stated in Introduction, the symplectic group Sp(n) is considered as a submanifold of $M(n, n; \mathbb{H}) \cong \mathbb{R}^{4n^2}$. As usual, we identify the tangent space of Sp(n) at the identity $I_n \in Sp(n)$ with the Lie algebra $\mathfrak{sp}(n)$, which is consisting of all matrices $X \in M(n, n; \mathbb{H})$ satisfying ${}^t\bar{X} = -X$. Let us denote by E_{st} $(1 \leq s, t \leq n)$ the matrix of $M(n, n; \mathbb{H})$ such that the (s, t)-component is 1 and the others are 0. We define subspaces $\mathfrak{h}(n)^i$ and $\mathfrak{p}(n)^i$ of $\mathfrak{sp}(n)$ by $$\mathfrak{h}(n)^i =
\sum_{s=1}^n \mathbb{R}e^i E_{ss}; \quad \mathfrak{p}(n)^i = \sum_{s=1}^n \mathbb{D}^i E_{ss}.$$ As is well-known, $\mathfrak{h}(n)^i$ is a Cartan subalgebra of $\mathfrak{sp}(n)$. Moreover: **Proposition 3** Let i = 1, 2 or 3. Then, $\mathfrak{p}(n)^i$ is pseudo-abelian with respect to $\mathfrak{h}(n)^i$ with $\dim \mathfrak{p}(n)^i = p_{Sp(n)}$. Proof. It is clear that $\dim \mathfrak{p}(n)^i = 2n$. Let $X = \sum_s u_s E_{ss}$, $Y = \sum_s v_s E_{ss} \in \mathfrak{p}(n)^i$, where u_s , $v_s \in \mathbb{D}^i$. Then, since $E_{ss}E_{ss} = E_{ss}$ and $E_{ss}E_{s's'} = 0$ ($s \neq s'$), we have $[X, Y] = \sum_s (u_s v_s - v_s u_s) E_{ss}$. Since u_s , $v_s \in \mathbb{D}^i$, it follows that $u_s v_s$, $v_s u_s \in \mathbb{C}^i$ and $u_s v_s - v_s u_s \in \mathbb{R}^i$. Hence $[X, Y] \in \mathfrak{h}(n)^i$, proving $[\mathfrak{p}(n)^i, \mathfrak{p}(n)^i] \subset \mathfrak{h}(n)^i$. Further, the space $\mathfrak{p}(n)^i$ is the only pseudo-abelian subspace with respect to $\mathfrak{h}(n)^i$ of dimension $p_{Sp(n)}$. In fact, we have **Theorem 4** Let i = 1, 2 or 3. Let W be a pseudo-abelian subspace with respect to $\mathfrak{h}(n)^i$ satisfying dim $W = p_{Sp(n)}$. Then $W = \mathfrak{p}(n)^i$. In the rest of this section we prove this theorem. Let $X = \sum_{st} \xi_{st} E_{st} \in M(n, n; \mathbb{H})$. We denote by $x_p = (\xi_{p1}, \ldots, \xi_{pn}) \in M(1, n; \mathbb{H})$ the *p*-th row of X and by $x^q = {}^t(\xi_{1q}, \ldots, \xi_{nq}) \in M(n, 1; \mathbb{H})$ the *q*-th column of X. Then we may write $$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = (x^1, \dots, x^n).$$ As is easily seen, $X \in \mathfrak{sp}(n)$ if and only if $${}^{t}\bar{x}_{p} + x^{p} = 0 \quad (1 \le p \le n).$$ (1.1) Let $X = (x^1, \ldots, x^n)$, $Y = (y^1, \ldots, y^n) \in \mathfrak{sp}(n)$. Then $[X, Y] \in \mathfrak{h}(n)^i$ if and only if the following conditions are satisfied: $$(x^p, y^q) = (y^p, x^q) \quad (1 \le p < q \le n),$$ (1.2) $$(x^r, y^r) \in \mathbb{C}^i \quad (1 \le r \le n),$$ (1.3) where (,) denotes the inner product of $M(n, 1; \mathbb{H})$ defined by $(\xi, \eta) = {}^t \bar{\xi} \eta$ for $\xi, \eta \in M(n, 1; \mathbb{H})$. Then we note the following formula: $$\overline{(\xi,\eta)} = (\eta,\xi), \quad (\xi f,\eta) = \overline{f}(\xi,\eta), \quad (\xi,\eta f) = (\xi,\eta)f, \quad f \in \mathbb{H}.$$ (1.4) Now we start the proof of Theorem 4 by induction on n. First consider the case n=1. In a natural way we identify $M(1, 1; \mathbb{H})$ with \mathbb{H} . Then by (1.1) we know that $w=a_0+\sum_{j=1}^3 a_j e^j\in \mathbb{H}$ belongs to $\mathfrak{sp}(1)$ if and only if $a_0=0$. Let W be a pseudo-abelian subspace of $\mathfrak{sp}(1)$ with respect to $\mathfrak{h}(1)^i$ with dim W=2. Suppose that $W\neq \mathbb{D}^i$. Take a basis $\{w,w'\}$ of W such that $w \notin \mathbb{D}^i$, i.e., w is an element written in the form $w = \sum_{j=1}^3 a_j e^j$, where $a_i \neq 0$. By subtracting a scalar multiple of w from w' if necessary, we may assume that $w' \in \mathbb{D}^i$. Then we have $ww' = (\sum_{j \neq i} a_j e^j)w' + a_i e^i w'$, $(\sum_{j \neq i} a_j e^j)w' \in \mathbb{C}^i$ and $a_i e^i w' \in \mathbb{D}^i$. On the other hand, by (1.3) we have $ww' = -\bar{w}w' \in \mathbb{C}^i$. This is impossible because $a_i e^i w' \neq 0$. Hence we have $W = \mathbb{D}^i = \mathfrak{p}(1)^i$, showing that Theorem 4 is true when n = 1. We now assume that $n \geq 2$ and Theorem 4 is true for any n' $(1 \leq n' < n)$. For simplicity, we regard $\mathfrak{sp}(s)$ $(1 \leq s < n)$ as a subalgebra of $\mathfrak{sp}(n)$ in the following manner: $$\mathfrak{sp}(s) \ni X \longmapsto \begin{pmatrix} X & 0 \\ 0 & 0 \end{pmatrix} \in \mathfrak{sp}(n).$$ Let W be a pseudo-abelian subspace of $\mathfrak{sp}(n)$ with respect to $\mathfrak{h}(n)^i$. As in [4] we define an ascending chain of subspaces $$0 = W_0 \subset W_1 \subset W_2 \subset \cdots \subset W_n = W$$ by setting $W_r = \mathfrak{sp}(r) \cap W$ $(1 \leq r \leq n)$. (Note that the numbering of the above chain is the reverse order of that in [4, p. 79].) It is obvious that W_r is a pseudo-abelian subspace of $\mathfrak{sp}(r)$ with respect to $\mathfrak{h}(r)^i$. Put $$C_r = \{x^r \in M(n, 1; \mathbb{H}) \mid (x^1, \dots, x^r, \overbrace{0, \dots, 0}^{n-r}) \in W_r\}$$ $$(r = 1, \dots, n).$$ Then it is clear that $C_r \cong W_r/W_{r-1}$ $(1 \leq r \leq n)$ and dim $W = c_1 + \cdots + c_n$, where we set $c_r = \dim C_r$ $(1 \leq r \leq n)$. Moreover, by (1.2) and (1.3) we have $$(C_p, C_q) = 0 \quad (1 \le p < q \le n),$$ (1.5) $$(C_r, C_r) \subset \mathbb{C}^i \quad (1 \le r \le n).$$ (1.6) The above equalities (1.5) and (1.6) will play decisive roles in the proof of Theorem 4. By $C_r^{\mathbb{H}}$ $(1 \leq r \leq n)$ we denote the right \mathbb{H} -subspace of $M(n, 1; \mathbb{H})$ generated by C_r . Set $k_r = \dim_{\mathbb{H}} C_r^{\mathbb{H}}$ $(1 \leq r \leq n)$. Then, in view of (1.5) and (1.4) we have $$\left(C_p^{\mathbb{H}}, C_q^{\mathbb{H}}\right) = 0 \quad (1 \le p < q \le n). \tag{1.7}$$ Utilizing (1.6) and (1.7), we have proved in [4] the following **Lemma 5** (see [4]) Under the setting stated above the following (1) and (2) hold: - $(1) \quad k_1 + \dots + k_n \le n.$ - $(2) \quad c_r \le 2k_r \quad (1 \le r \le n).$ In particular, if dim $W = p_{Sp(n)}$ (= 2n), then $k_1 + \cdots + k_n = n$ and $c_r = 2k_r$ (1 \le r \le n). In what follows we assume that W is a pseudo-abelian subspace with respect to $\mathfrak{h}(n)^i$ satisfying $\dim W = p_{Sp(n)}$. Let us define an \mathbb{R} -linear endomorphism $\xi \longmapsto \widetilde{\xi}$ of $M(n, 1; \mathbb{H})$ by setting $\widetilde{\xi} = {}^t(\xi_1, \ldots, \xi_{n-1}, 0)$ for $\xi = {}^t(\xi_1, \ldots, \xi_n) \in M(n, 1; \mathbb{H})$. Let $\widetilde{C_n}$ be the image of C_n by this endomorphism. We first prove **Lemma 6** $k_n \ge 1$ and $\dim_{\mathbb{H}} \widetilde{C}_n^{\mathbb{H}} \le k_n - 1$. Proof. Suppose that $k_n=0$. Then we have $C_n=0$ and hence $W=W_{n-1}$. Therefore, in a natural way W may be regarded as a pseudo-abelian subspace of $\mathfrak{sp}(n-1)$ with respect to $\mathfrak{h}(n-1)^i$. This implies $\dim W \leq p_{Sp(n-1)}=2(n-1)$, contradicting the assumption $\dim W=2n$. Consequently, we have $k_n\geq 1$. Let $\xi\in C_n$ and $\eta\in C_1+\cdots+C_{n-1}$. Since η is written as $\eta=t(\eta_1,\ldots,\eta_{n-1},0)$, we have $(\widetilde{\xi},\eta)=(\xi,\eta)=0$ (see (1.5)). Hence we have $(\widetilde{C}_n,C_1+\cdots+C_{n-1})=0$. Viewing (1.4), we have $(\widetilde{C}_n,C_1^{\mathbb{H}}+\cdots+C_{n-1}^{\mathbb{H}})=0$. Since both $\widetilde{C}_n^{\mathbb{H}}$ and $C_1^{\mathbb{H}}+\cdots+C_{n-1}^{\mathbb{H}}$ may be regarded as subspaces of $M(n-1,1;\mathbb{H})$, we have $\dim_{\mathbb{H}}\widetilde{C}_n^{\mathbb{H}}\leq n-1-(k_1+\cdots+k_{n-1})$ (see (1.7)). Therefore by Lemma 5 we obtain $\dim_{\mathbb{H}}\widetilde{C}_n^{\mathbb{H}}\leq k_n-1$. Let C'_n be the subset of C_n consisting of all $^t(\xi_1, \ldots, \xi_n) \in C_n$ such that the n-th component $\xi_n \in \mathbb{D}^i$, i.e., $C'_n = \{^t(\xi_1, \ldots, \xi_n) \in C_n \mid \xi_n \in \mathbb{D}^i\}$. Clearly, C'_n is a subspace of C_n . We denote by $\widetilde{C'_n}$ the image of C'_n by the endomorphism $\xi \longmapsto \widetilde{\xi}$. Then we can show **Lemma 7** dim $C'_n \ge 2k_n - 1$ and dim $\widetilde{C'_n} \le 2(k_n - 1)$. *Proof.* First we note that $\xi_n \in \mathbb{R}e^i + \mathbb{D}^i$ holds for any $\xi = {}^t(\xi_1, \ldots, \xi_n) \in C_n$. Indeed, ξ_n is the (n, n)-component of a certain matrix $X \in \mathfrak{sp}(n)$ (recall the definition of C_n). Consequently, we have $\dim C'_n \geq \dim C_n - 1 = c_n - 1 = 2k_n - 1$. We next prove the second inequality. Let $\xi = {}^t(\xi_1, \ldots, \xi_n) \in C'_n$ and $\eta = {}^t(\eta_1, \ldots, \eta_n) \in C'_n$. Then we easily have $(\widetilde{\xi}, \widetilde{\eta}) = (\xi, \eta) - \overline{\xi_n} \eta_n$. Since $(\xi, \eta) \in \mathbb{C}^i$ (see (1.6)) and $\overline{\xi_n} \eta_n \in \mathbb{D}^i \mathbb{D}^i = \mathbb{C}^i$, it follows that $(\widetilde{\xi}, \widetilde{\eta}) \in \mathbb{C}^i$. This proves $(\widetilde{C'_n}, \widetilde{C'_n}) \subset \mathbb{C}^i$. By this fact we can deduce that $\widetilde{C'_n} \cap \widetilde{C'_n} e^j = 0$ for any j (= 1, 2, 3) such that $j \neq i$. In fact, if there is an element $\widetilde{\xi} \in \widetilde{C'_n}$ such that $\widetilde{\xi} e^j \in \widetilde{C'_n}$, then we have $\mathbb{C}^i \ni (\widetilde{\xi}, \widetilde{\xi} e^j) = (\widetilde{\xi}, \widetilde{\xi}) e^j \in \mathbb{C}^i e^j = \mathbb{D}^i$. Since $\mathbb{C}^i \cap \mathbb{D}^i = 0$, it follows that $(\widetilde{\xi}, \widetilde{\xi}) = 0$, i.e., $\widetilde{\xi} = 0$. Thus, we know that $\widetilde{C'_n} + \widetilde{C'_n} e^j \subset \widetilde{C'_n}$ is a direct sum if $j \neq i$. Consequently, we have $2 \dim \widetilde{C'_n} \le 4 \dim_{\mathbb{H}} \widetilde{C_n}^{\mathbb{H}} \le 4(k_n - 1)$, i.e., $\dim \widetilde{C'_n} \le 2(k_n - 1)$ (see Lemma 6). This completes the proof of the lemma. With the basis of Lemma 7 we can show **Lemma 8** Let D_n be the kernel of the linear mapping $C_n \ni \xi \longmapsto \widetilde{\xi} \in \widetilde{C}_n$. Then: - (1) $D_n = \{t(0, \ldots, 0, w) \in M(n, 1; \mathbb{H}) \mid w \in \mathbb{D}^i\}.$ - (2) $\widetilde{C_n} \subset C_n$. - (3) $C_n = D_n + \widetilde{C_n}$ (direct sum); dim $\widetilde{C_n} = c_n 2$. Proof. By Lemma 7 we have $\dim C'_n - \dim \widetilde{C'_n} \geq 2k_n - 1 - 2(k_n - 1) > 0$. This implies that $D_n \cap C'_n \neq 0$. Let ξ be a non-trivial element of $D_n \cap C'_n$. Then, by the definitions of D_n and C'_n , we know that ξ may be written as $\xi = {}^t(0, \ldots, 0, w)$, where $w \in \mathbb{D}^i$ $(w \neq 0)$. Let $\eta = {}^t(\eta_1, \ldots, \eta_n)$ be an arbitrary element of C_n . Then by (1.6) we have $(\xi,
\eta) = \bar{w}\eta_n \in \mathbb{C}^i$. Hence we can easily show that $\eta_n \in \mathbb{D}^i$ (see the proof for the case n = 1). Accordingly, $\eta \in C'_n$ and hence $C'_n = C_n$. Therefore, we have $$\dim D_n = \dim C_n - \dim \widetilde{C_n} = \dim C_n - \dim \widetilde{C_n'} \ge c_n - 2(k_n - 1) = 2.$$ On the other hand, since $D_n \subset C_n = C'_n$, we have $D_n \subset \{^t(0, \ldots, 0, w) \mid w \in \mathbb{D}^i\}$ and hence $\dim D_n \leq \dim \mathbb{D}^i = 2$. This, together with the above inequality, proves $\dim D_n = 2$ and $D_n = \{^t(0, \ldots, 0, w) \mid w \in \mathbb{D}^i\}$. Thus we obtain (1). Let $\zeta = {}^t(\zeta_1, \ldots, \zeta_n) \in M(n, 1; \mathbb{H})$ be an arbitrary element of C_n . Since $C_n = C'_n$, we have $\zeta_n \in \mathbb{D}^i$ and hence $\zeta' = {}^t(0, \ldots, 0, \zeta_n) \in D_n \subset C_n$. Consequently, $\widetilde{\zeta} = {}^t(\zeta_1, \ldots, \zeta_{n-1}, 0) = \zeta - \zeta' \in C_n$, showing (2). The assertion (3) immediately follows from (1) and (2). With these preparations we can show **Lemma 9** $\widetilde{C_n} = 0$. Accordingly, $C_n = D_n$. *Proof.* We first prove $$\widetilde{C}_n \cap \widetilde{C}_n e^i = 0. ag{1.8}$$ Suppose that there is an element $\widetilde{\xi} = {}^t(\xi_1, \ldots, \xi_{n-1}, 0) \in \widetilde{C_n}$ such that $\widetilde{\xi}e^i \in \widetilde{C_n}$. Note that $\widetilde{C_n} \subset C_n$ (see Lemma 8 (2)). By the definition of C_n we know that there are matrices X and $Y \in W$ written in the form $$X = \begin{pmatrix} X' & \xi' \\ -^t \bar{\xi'} & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} Y' & \xi' e^i \\ e^{i\,t} \bar{\xi'} & 0 \end{pmatrix},$$ where X', $Y' \in \mathfrak{sp}(n-1)$ and $\xi' = {}^t(\xi_1, \ldots, \xi_{n-1}) \in M(n-1, 1; \mathbb{H})$. Take an integer j = 1, 2, 3 such that $j \neq i$. Since ${}^t(0, \ldots, 0, e^j) \in D_n \subset C_n$, we know that there is an element $Z \in W$ of the form $$Z = \begin{pmatrix} Z' & 0 \\ 0 & e^j \end{pmatrix},$$ where $Z' \in \mathfrak{sp}(n-1)$. Since W is a pseudo-abelian with respect to $\mathfrak{h}(n)^i$, we have $[X, Z] \in \mathfrak{h}(n)^i$ and $[Y, Z] \in \mathfrak{h}(n)^i$. Hence by a direct calculation we can show $$Z'\xi' = \xi'e^j; \quad Z'(\xi'e^i) = (\xi'e^i)e^j.$$ (1.9) By the second equality of (1.9) we have $(Z'\xi')e^i = \xi'(e^ie^j) = -\xi'(e^je^i) = -(\xi'e^j)e^i$ and hence $Z'\xi' = -\xi'e^j$. This, together with the first equality of (1.9), proves $Z'\xi' = \xi'e^j = 0$. Hence we have $\xi' = 0$, i.e., $\widetilde{\xi} = 0$. This implies (1.8). As a result of (1.8), the subspace $\widetilde{C}_n + \widetilde{C}_n e^i \ (\subset \widetilde{C}_n^{\mathbb{H}})$ is a direct sum. Since $\dim \widetilde{C}_n = c_n - 2 = 2(k_n - 1)$ (see Lemma 8 (3) and Lemma 5), it follows that $\dim_{\mathbb{R}} \widetilde{C}_n^{\mathbb{H}} \geq 2 \dim \widetilde{C}_n = 4(k_n - 1)$. Hence we have $\dim_{\mathbb{H}} \widetilde{C}_n^{\mathbb{H}} = (1/4) \dim_{\mathbb{R}} \widetilde{C}_n^{\mathbb{H}} \geq k_n - 1$. On the other hand, we have $\dim_{\mathbb{H}} \widetilde{C}_n^{\mathbb{H}} \leq k_n - 1$ (see Lemma 6). Therefore, we obtain $\dim_{\mathbb{H}} \widetilde{C}_n^{\mathbb{H}} = k_n - 1$ and $\widetilde{C}_n^{\mathbb{H}} = \widetilde{C}_n + \widetilde{C}_n e^i$. More strongly, we can prove $\widetilde{C}_n = 0$. In fact, since $\widetilde{C}_n^{\mathbb{H}} = \widetilde{C}_n + \widetilde{C}_n e^i$, it follows that $$(\widetilde{C_n}^{\mathbb{H}}, \widetilde{C_n}^{\mathbb{H}}) \subset (\widetilde{C_n}, \widetilde{C_n}) + (\widetilde{C_n}e^i, \widetilde{C_n}) + (\widetilde{C_n}, \widetilde{C_n}e^i) + (\widetilde{C_n}e^i, \widetilde{C_n}e^i).$$ If $\widetilde{C_n} \neq 0$, then it is easy to see that $(\widetilde{C_n}^{\mathbb{H}}, \widetilde{C_n}^{\mathbb{H}}) = \mathbb{H}$. However, the right side of the above inclusion is contained in \mathbb{C}^i , because $(\widetilde{C}_n, \widetilde{C}_n) \subset (C_n, C_n) \subset \mathbb{C}^i$ (see Lemma 8 (2) and (1.6)), $(\widetilde{C}_n e^i, \widetilde{C}_n) \subset e^i \mathbb{C}^i = \mathbb{C}^i$, $(\widetilde{C}_n, \widetilde{C}_n e^i) \subset \mathbb{C}^i e^i = \mathbb{C}^i$ and $(\widetilde{C}_n e^i, \widetilde{C}_n e^i) \subset e^i \mathbb{C}^i e^i = \mathbb{C}^i$ (see (1.4)). This is a contradiction. Hence we have $\widetilde{C}_n = 0$. The equality $C_n = D_n$ now follows immediately. Proof of Theorem 4. By Lemma 9 and Lemma 8 (3) we have $c_n = 2k_n = 2$. Hence, W_{n-1} , which is a pseudo-abelian subspace of $\mathfrak{sp}(n-1)$ with respect to $\mathfrak{h}(n-1)^i$, satisfies $\dim W_{n-1} = c_1 + \cdots + c_{n-1} = 2(n-1) = p_{Sp(n-1)}$. Therefore, by the hypothesis of our induction we know that $W_{n-1} = \mathfrak{p}(n-1)^i$. From this fact we can deduce $W = \mathfrak{p}(n)^i$. In fact, let X be an arbitrary element of W. Then X may be written as $X = \begin{pmatrix} X' & 0 \\ 0 & W \end{pmatrix}$, where $X' \in \mathfrak{sp}(n-1)^i$, $w \in \mathbb{D}^i$ (see Lemma 9 and Lemma 8 (1)). Since $[X, W_{n-1}] \subset \mathfrak{h}(n)^i$, it follows that $[X', \mathfrak{p}(n-1)^i] \subset \mathfrak{h}(n-1)^i$. Hence we have $X' \in \mathfrak{p}(n-1)^i$, because $\mathfrak{p}(n-1)^i$ is a maximal pseudo-abelian subspace of $\mathfrak{sp}(n-1)$ with respect to $\mathfrak{h}(n-1)^i$. Consequently, we have $X \in \mathfrak{p}(n)^i$ and $W = \mathfrak{p}(n)^i$, which completes the proof of Theorem 4. # 2. The Gauss equation of Sp(n) Let M be a Riemannian manifold. We denote by g the Riemannian metric of M and by R the Riemannian curvature tensor of type (1, 3) with respect to g. Let $x \in M$ and let $T_x(M)$ (resp. $T_x^*(M)$) be the tangent (resp. cotangent) vector space of M at x. Let r be a non-negative integer. We define a quadratic equation with respect to an unknown $\Psi \in S^2T_x^*(M) \otimes \mathbb{R}^r$ by $$-g(R(X, Y)Z, W)$$ $$= \langle \mathbf{\Psi}(X, Z), \mathbf{\Psi}(Y, W) \rangle - \langle \mathbf{\Psi}(X, W), \mathbf{\Psi}(Y, Z) \rangle, \quad (2.1)$$ where $X, Y, Z, W \in T_x(M)$ and \langle , \rangle is the standard inner product of \mathbb{R}^r . We call (2.1) the *Gauss equation* in codimension r at x. The set of solutions of (2.1) is called the *Gaussian variety* in codimension r at x and is denoted by $\mathcal{G}_x(M, \mathbb{R}^r)$. Let O(r) be the orthogonal group of \mathbb{R}^r . We define an action of O(r) on $S^2T_x^*(M)\otimes\mathbb{R}^r$ by $$(\rho \Psi)(X, Y) = \rho(\Psi(X, Y)), \quad X, Y \in T_x(M), \ \rho \in O(r). \tag{2.2}$$ As is easily seen, if Ψ is a solution of (2.1), then $\rho \Psi$ is also a solution of (2.1) for any $\rho \in O(r)$. We say that $\mathcal{G}_x(M, \mathbb{R}^r)$ is EOS if $\mathcal{G}_x(M, \mathbb{R}^r) \neq \emptyset$ and if $\mathcal{G}_x(M, \mathbb{R}^r)$ is composed of essentially one solution, i.e., for any solutions Ψ_1 and $\Psi_2 \in \mathcal{G}_x(M, \mathbb{R}^r)$ there is an element $\rho \in O(r)$ such that $\Psi_2 = \rho \Psi_1$. In the following we consider the case where M is the symplectic group Sp(n) endowed with the bi-invariant metric ν , which is induced from the inclusion $Sp(n) \subset M(n, n; \mathbb{H})$. As usual we identify the tangent space of Sp(n) at the identity I_n with the Lie algebra $\mathfrak{sp}(n)$. We denote by $(\ ,\)$ the inner product of $\mathfrak{sp}(n)$ induced from ν at I_n . The curvature transformation $R_0(X,Y)$ $(X,Y\in\mathfrak{sp}(n))$ of Sp(n) at I_n is given by $R_0(X,Y)=-(1/4)$ ad([X,Y]) (see [14]). Hence at I_n the Gauss equation (2.1) is written as $$\frac{1}{4}([[X, Y], Z], W)$$ $$= \langle \mathbf{\Psi}(X, Z), \mathbf{\Psi}(Y, W) \rangle - \langle \mathbf{\Psi}(X, W), \mathbf{\Psi}(Y, Z) \rangle, \quad (2.3)$$ where $\Psi \in S^2(\mathfrak{sp}(n)^*) \otimes \mathbb{R}^r$ and $X, Y, Z, W \in \mathfrak{sp}(n)$. We simply denote by $\mathcal{G}(Sp(n), \mathbb{R}^r)$ the Gaussian variety in codimension r at I_n . The main aim of this and the subsequent sections is to prove **Theorem 10** For any positive integer n the Gaussian variety $\mathcal{G}(Sp(n), \mathbb{R}^{2n^2-n})$ in codimension $2n^2 - n$ is EOS. By homogeneity, we know that the Gaussian variety $\mathcal{G}_x(Sp(n), \mathbb{R}^{2n^2-n})$ in codimension $2n^2-n$ is EOS at each $x \in Sp(n)$. By this result we conclude that Sp(n) is formally rigid in codimension $2n^2-n$. (For the definition of formal rigidness, see [8].) Accordingly, by Theorem 5 of [8] we can establish the rigidity theorem of Sp(n) (Theorem 1). In the following we will prove Theorem 10 by induction on n. As we have stated in the introduction, if n=1, then $Sp(1)\cong S^3$ and the canonical isometric imbedding \boldsymbol{f}_0 is the inclusion map of the standard sphere S^3 with radius 1 into \mathbb{R}^4 . The second fundamental form $\boldsymbol{\Psi}_0$ of \boldsymbol{f}_0 at $\boldsymbol{x}\in S^3$ is given by $\boldsymbol{\Psi}_0=-\nu\boldsymbol{x}$. Hence \boldsymbol{f}_0 is a typical example of an isometric imbedding with type number 3. By applying the theory of type number in [12] or by a direct calculation we know that any solution $\boldsymbol{\Psi}$ of the Gauss equation of S^3 in codimension 1 can be represented by $\boldsymbol{\Psi}=\pm\boldsymbol{\Psi}_0$. Therefore we get Theorem 10 for the case n=1. For this reason we may assume $n\geq 2$ in the following discussion. Remark 11 It should be noted that in case $n \geq 2$ the theory of type number in [12] is not applicable to the canonical isometric imbedding \mathbf{f}_0 of Sp(n). In fact, for an isometric imbedding \mathbf{f} of a Riemannian manifold M into the euclidean space \mathbb{R}^m , the type number k of \mathbf{f} must satisfy the inequality $k \leq \dim M/(m - \dim M)$ (see [18] or [16]). Consequently, in the case of \mathbf{f}_0 we can easily show that k < 2 when $n \geq 2$. Now let $\mathfrak{N}(n)$ be the subspace of $M(n, n; \mathbb{H})$ composed of all $X \in M(n, n;
\mathbb{H})$ satisfying ${}^t\bar{X} = X$. Clearly, we have dim $\mathfrak{N}(n) = 2n^2 - n$ and $$M(n, n; \mathbb{H}) = \mathfrak{sp}(n) + \mathfrak{N}(n)$$ (orthogonal direct sum). As is easily seen, $\mathfrak{N}(n)$ is the normal vector space of the canonical isometric imbedding \mathbf{f}_0 at I_n . The second fundamental form $\mathbf{\Psi}_0$ of \mathbf{f}_0 at I_n is an element of $S^2(\mathfrak{sp}(n)^*) \otimes \mathfrak{N}(n)$ given by $$\Psi_0(X, Y) = \frac{1}{2} (XY + YX), \quad X, Y \in \mathfrak{sp}(n)$$ (2.4) (see [15, p. 370]). Under a natural identification $(\mathfrak{N}(n), \nu) \cong (\mathbb{R}^{2n^2-n}, \langle , \rangle)$ as euclidean vector spaces we can regard the unknown Ψ in the Gauss equation (2.3) in codimension $2n^2 - n$ as an element of $S^2(\mathfrak{sp}(n)^*) \otimes \mathfrak{N}(n)$. (In what follows, the inner product ν of $\mathfrak{N}(n)$ will be denoted by \langle , \rangle .) Therefore the Gaussian variety $\mathcal{G}(Sp(n), \mathbb{R}^{2n^2-n})$ may be considered as a subset of $S^2(\mathfrak{sp}(n)^*) \otimes \mathfrak{N}(n)$. In this meaning we write $\mathcal{G}(Sp(n), \mathbb{R}^{2n^2-n})$ as $\mathcal{G}(Sp(n),\mathfrak{N}(n))$. Then Ψ_0 may be considered as an element of $\mathcal{G}(Sp(n),\mathfrak{N}(n))$, which is called the *canonical solution* of the Gauss equation (2.3) in codimension $2n^2 - n$. Now Theorem 10 may be stated in the following way: Any solution $\Psi \in \mathcal{G}(Sp(n),\mathfrak{N}(n))$ of the Gauss equation (2.3) is equivalent to Ψ_0 , i.e., there is an element $\rho \in O(\mathfrak{N}(n))$ such that $\Psi = \rho \Psi_0$, where $O(\mathfrak{N}(n))$ stands for the orthogonal group of $\mathfrak{N}(n)$. # 3. The space $K_{\Psi}(X)$ In this section we assume that $n \geq 2$. Let $\Psi \in S^2(\mathfrak{sp}(n)^*) \otimes \mathfrak{N}(n)$ and let $X \in \mathfrak{sp}(n)$. We define a linear mapping $\Psi_X \colon \mathfrak{sp}(n) \longrightarrow \mathfrak{N}(n)$ by setting $\Psi_X(Y) = \Psi(X, Y)$ $(Y \in \mathfrak{sp}(n))$. By $K_{\Psi}(X)$ $(\subset \mathfrak{sp}(n))$ we denote the kernel of Ψ_X . In this section we investigate the kernel $K_{\Psi}(X)$ for a solution Ψ of the Gauss equation (2.3), i.e., $\Psi \in \mathcal{G}(Sp(n), \mathfrak{N}(n))$. As in the case of $P^2(\mathbb{H})$ or $P^2(\mathbb{CAY})$, the knowledge about $K_{\Psi}(X)$ will play an important role to determine the solutions of the Gauss equation (2.3) (cf. [8] and [9]). Let $X \in \mathfrak{sp}(n)$. By C(X) we denote the centralizer of X in $\mathfrak{sp}(n)$. Then we have **Lemma 12** Let $\Psi \in S^2(\mathfrak{sp}(n)^*) \otimes \mathfrak{N}(n)$ and $X \in \mathfrak{sp}(n)$. Then: - (1) $\dim \mathbf{K}_{\Psi}(X) \geq 2n$. - (2) If $\Psi \in \mathcal{G}(Sp(n), \mathfrak{N}(n))$, then $[\mathbf{K}_{\Psi}(X), \mathbf{K}_{\Psi}(X)] \subset C(X)$. Proof. Since $$\dim K_{\Psi}(X) \ge \dim Sp(n) - \dim \mathfrak{N}(n) = (2n^2 + n) - (2n^2 - n) = 2n,$$ we get (1). Assume that $\Psi \in \mathcal{G}(Sp(n), \mathfrak{N}(n))$. Then by (2.3) for each $Y \in \mathfrak{sp}(n)$ we have $$([[\mathbf{K}_{\Psi}(X), \mathbf{K}_{\Psi}(X)], X], Y]) \subset \langle \mathbf{\Psi}(\mathbf{K}_{\Psi}(X), X), \mathbf{\Psi}(\mathbf{K}_{\Psi}(X), Y) \rangle$$ = 0. Consequently, we have $[[\mathbf{K}_{\Psi}(X), \mathbf{K}_{\Psi}(X)], X] = 0$. The assertion (2) immediately follows from this equality (cf. [10, Lemma 3]). Let $X \in \mathfrak{sp}(n)$. Since $\mathfrak{sp}(n)$ is a compact simple Lie algebra, we know that $\dim C(X) \ge \operatorname{rank}(\mathfrak{sp}(n)) = n$. We recall that an element $X \in \mathfrak{sp}(n)$ is called regular (resp. singular) if $\dim C(X) = n$ (resp. $\dim C(X) > n$). **Lemma 13** Let $\Psi \in \mathcal{G}(Sp(n), \mathfrak{N}(n))$ and $H \in \mathfrak{h}(n)^i$ (i = 1, 2, 3). Then $K_{\Psi}(H) \supset \mathfrak{p}(n)^i$. If H is regular, then the equality $K_{\Psi}(H) = \mathfrak{p}(n)^i$ holds. Proof. Let $H \in \mathfrak{h}(n)^i$. Then by Lemma 12 (2) we have $[K_{\Psi}(H), K_{\Psi}(H)] \subset C(H)$. Assume that H is regular. Then, since $C(H) = \mathfrak{h}(n)^i$, we have $[K_{\Psi}(H), K_{\Psi}(H)] \subset \mathfrak{h}(n)^i$. This implies that $K_{\Psi}(H)$ is a pseudo-abelian subspace with respect to $\mathfrak{h}(n)^i$. Therefore we have $\dim K_{\Psi}(H) \leq p_{Sp(n)} = 2n$ (see Theorem 2). On the other hand, since $\dim K_{\Psi}(H) \geq 2n$ (see Lemma 12 (1)), it follows that $\dim K_{\Psi}(H) = 2n$. Hence $K_{\Psi}(H) = \mathfrak{p}(n)^i$ (see Theorem 4). Let $H' \in \mathfrak{h}(n)^i$ be an arbitrary element. Note that regular elements are dense in $\mathfrak{h}(n)^i$ and, as we have shown, $\Psi(H, \mathfrak{p}(n)^i) = 0$ holds for any regular element $H \in \mathfrak{h}(n)^i$. Because of the continuity of Ψ we have $\Psi(H', \mathfrak{p}(n)^i) = 0$. This shows that $K_{\Psi}(H') \supset \mathfrak{p}(n)^i$. Let $\Psi \in S^2(\mathfrak{sp}(n)^*) \otimes \mathfrak{N}(n)$ and let $g \in Sp(n)$. We define an element $\Psi^g \in S^2(\mathfrak{sp}(n)^*) \otimes \mathfrak{N}(n)$ by $$(\Psi^g)(X, Y) = \Psi(\text{Ad}(g^{-1})X, \text{Ad}(g^{-1})Y), \quad X, Y \in \mathfrak{sp}(n).$$ (3.1) Then we can easily see the following **Lemma 14** Let $\Psi \in S^2(\mathfrak{sp}(n)^*) \otimes \mathfrak{N}(n)$ and let $g \in Sp(n)$. Then: - (1) $K_{\Psi^g}(X) = \operatorname{Ad}(g)K_{\Psi}(\operatorname{Ad}(g^{-1})X), \quad X \in \mathfrak{sp}(n).$ - (2) $\Psi^g \in \mathcal{G}(Sp(n), \mathfrak{N}(n))$ if and only if $\Psi \in \mathcal{G}(Sp(n), \mathfrak{N}(n))$. Combining Lemma 13 with Lemma 14, we have **Proposition 15** Let $\Psi \in \mathcal{G}(Sp(n), \mathfrak{N}(n))$, $X \in \mathfrak{sp}(n)$ and $g \in Sp(n)$. Assume that $Ad(g)X \in \mathfrak{h}(n)^i$ for some i = 1, 2, 3. Then $\mathbf{K}_{\Psi}(X) \supset Ad(g^{-1})\mathfrak{p}(n)^i$. Further, if X is regular, then $\mathbf{K}_{\Psi}(X) = Ad(g^{-1})\mathfrak{p}(n)^i$. Proof. Note that $\Psi^g \in \mathcal{G}(Sp(n), \mathfrak{N}(n))$ (see Lemma 14 (2)). Applying Lemma 13 to Ψ^g , we have $K_{\Psi^g}(\mathrm{Ad}(g)X) \supset \mathfrak{p}(n)^i$. Therefore by Lemma 14 (1) we have $\mathfrak{p}(n)^i \subset K_{\Psi^g}(\mathrm{Ad}(g)X) = \mathrm{Ad}(g)K_{\Psi}(X)$. Consequently, $K_{\Psi}(X) \supset \mathrm{Ad}(g^{-1})\mathfrak{p}(n)^i$. If X is regular, then $\mathrm{Ad}(g)X$ is also regular. Accordingly, we have $K_{\Psi^g}(\mathrm{Ad}(g)X) = \mathfrak{p}(n)^i$ and hence $K_{\Psi}(X) = \mathrm{Ad}(g^{-1})\mathfrak{p}(n)^i$. Remark 16 Let $\Psi \in \mathcal{G}(Sp(n), \mathfrak{N}(n))$. It is well-known that any element of $\mathfrak{sp}(n)$ is conjugate to an element of a Cartan subalgebra $\mathfrak{h}(n)^i$. Therefore, for a regular element $X \in \mathfrak{sp}(n)$ the space $K_{\Psi}(X)$ is determined by Proposition 15. Here we note that if X is regular, then $K_{\Psi}(X)$ does not depend on the choice of the solution $\Psi \in \mathcal{G}(Sp(n), \mathfrak{N}(n))$, i.e., $K_{\Psi}(X) = K_{\Psi'}(X)$ holds for any Ψ , $\Psi' \in \mathcal{G}(Sp(n), \mathfrak{N}(n))$. In the following discussion, we will determine $K_{\Psi}(X)$ for singular elements $X \in \mathfrak{sp}(n)$ of special type. By Proposition 15 we immediately obtain **Proposition 17** Let $\Psi \in \mathcal{G}(Sp(n), \mathfrak{N}(n))$. Let i = 1, 2 or 3 and $X \in \mathfrak{sp}(n)$. Denote by G_X^i the subset of Sp(n) consisting of all $g \in Sp(n)$ such that $\mathrm{Ad}(g)X \in \mathfrak{h}(n)^i$. Then: $$\mathbf{K}_{\Psi}(X) \supset \sum_{g \in G_X^i} \operatorname{Ad}(g^{-1})\mathfrak{p}(n)^i.$$ (3.2) Let a, b and i are integers satisfying $1 \le a \ne b \le n$, $1 \le i \le 3$. Define elements H_a^i , P_{ab} and $Q_{ab}^i \in M(n, n; \mathbb{H})$ by $$H_a^i = E_{aa}e^i$$; $P_{ab} = -P_{ba} = E_{ab} - E_{ba}$; $Q_{ab}^i = Q_{ba}^i = (E_{ab} + E_{ba})e^i$. Then it is easily seen that H_a^i , P_{ab} , $Q_{ab}^i \in \mathfrak{sp}(n)$ and $$(H_a^i, H_b^j) = \delta_{ab}\delta_{ij}; \quad (H_a^i, P_{cd}) = (H_a^i, Q_{cd}^j) = 0;$$ $$(P_{ab}, P_{cd}) = 2(\delta_{ac}\delta_{bd} - \delta_{ad}\delta_{bc}); \quad (P_{ab}, Q_{cd}^i) = 0;$$ $$(Q_{ab}^i, Q_{cd}^j) = 2(\delta_{ac}\delta_{bd} + \delta_{ad}\delta_{bc})\delta_{ij}.$$ $$(3.3)$$ Therefore the set $\{H_a^i \ (1 \le a \le n)\}$ forms an orthonormal basis of $\mathfrak{h}(n)^i \ (1 \le i \le 3)$ and the set $\{H_a^i \ (1 \le a \le n, \ 1 \le i \le 3), \ (1/\sqrt{2})P_{ab} \ (1 \le a < b \le n), \ (1/\sqrt{2})Q_{ab}^i \ (1 \le a < b \le n, \ 1 \le i \le 3)\}$ forms an orthonormal basis of $\mathfrak{sp}(n)$. Let a, b and i are integers satisfying $1 \le a \ne b \le n, 1 \le i \le 3$. Define a subspace \mathfrak{s}^i_{ab} by $\mathfrak{s}^i_{ab} = \mathbb{R}(H^i_a - H^i_b) + \mathbb{R}P_{ab} + \mathbb{R}Q^i_{ab}$. By an easy calculation we have $$[H_a^i - H_b^i, P_{ab}] = 2Q_{ab}^i; \quad [H_a^i - H_b^i, Q_{ab}^i] = -2P_{ab};$$ $$[P_{ab}, Q_{ab}^i] = 2(H_a^i - H_b^i).$$ This indicates that \mathfrak{s}_{ab}^i forms a three-dimensional subalgebra of $\mathfrak{sp}(n)$ and is not abelian. Now we note the following lemma, which holds for any compact Lie algebra: **Lemma 18** Let \mathfrak{s} be a three-dimensional subalgebra of a compact Lie algebra \mathfrak{g} . Assume that \mathfrak{s} is not abelian. Then, for any linearly independent elements $Z, Z' \in \mathfrak{s}$, there is an element $g \in \exp(\mathbb{R}[Z, Z'])$ ($\subset \exp(\mathfrak{g})$) such that $\operatorname{Ad}(q)Z \in \mathbb{R}Z'$. *Proof.* Since \mathfrak{g} is compact, \mathfrak{s} is also a compact Lie algebra. Hence \mathfrak{s} may be represented by a direct sum of its center and its semi-simple part. Note that any simple Lie algebra is of dimension ≥ 3 . Under the assumption that \mathfrak{s} is not abelian and dim $\mathfrak{s}=3$, we know that the center of \mathfrak{s} is trivial and that \mathfrak{s} is simple. Hence, \mathfrak{s} is isomorphic to the simple Lie
algebra $\mathfrak{su}(2)$. Let B be an $\mathrm{ad}(\mathfrak{g})$ -invariant inner product of \mathfrak{g} . Let $Z, Z' \in \mathfrak{s}$. If Z and Z' are linearly independent, then it follows that $[Z, Z'] \neq 0$, because $\mathrm{rank}(\mathfrak{s}) = 1$. Set $\mathfrak{s}' = \mathbb{R}Z + \mathbb{R}Z'$. Then we have $B(\mathfrak{s}', \mathbb{R}[Z, Z']) = 0$, i.e., $\mathbb{R}[Z, Z']$ is the orthogonal complement of \mathfrak{s}' in \mathfrak{s} with respect to B. Indeed, we have $$B(Z, [Z, Z']) = B([Z, Z], Z') = 0;$$ $B(Z', [Z, Z']) = -B([Z', Z'], Z) = 0.$ Similarly, we can prove $B(\operatorname{ad}[Z, Z'](Z), [Z, Z']) = B(\operatorname{ad}[Z, Z'](Z'), [Z, Z']) = 0$. This means that \mathfrak{s}' is invariant by $\operatorname{ad}[Z, Z']$. Moreover, we have $\operatorname{ad}([Z, Z'])Z'' \neq 0$ for any $Z'' \in \mathfrak{s}'$ with $Z'' \neq 0$. Therefore, $\operatorname{Ad}(\exp(\mathbb{R}[Z, Z']))$ forms a non-trivial subgroup of rotations of \mathfrak{s}' with respect to B. From this fact the lemma follows immediately. In the following, we say a subalgebra $\mathfrak s$ of $\mathfrak s\mathfrak p(n)$ is NAT if $\mathfrak s$ is non-abelian and $\dim \mathfrak s=3$. As we have seen, $\mathfrak s_{ab}^i=\mathbb R(H_a^i-H_b^i)+\mathbb RP_{ab}+\mathbb RQ_{ab}^i$ is NAT. For non-zero elements X and $Y\in \mathfrak s\mathfrak p(n)$ we write $X\sim Y$ if there is an element $g\in Sp(n)$ such that $\mathrm{Ad}(g)X\in \mathbb RY$. Apparently, \sim defines an equivalence relation in $\mathfrak s\mathfrak p(n)\setminus\{0\}$. According to Lemma 18 if $\mathfrak s$ is NAT, then $Z\sim Z'$ for any $Z,\,Z'\in \mathfrak s\setminus\{0\}$. For example, we have $(H_a^i-H_b^i)\sim P_{ab}\sim Q_{ab}^i$. For simplicity in the following discussion we set $K_0(X) = K_{\Psi_0}(X)$. As in the previous section we regard $\mathfrak{sp}(s)$ $(0 \le s < n)$ as a subalgebra of $\mathfrak{sp}(n)$. Then by easy calculations we have $$\begin{aligned} \pmb{K}_{0}(H_{n}^{i}) &= \mathfrak{sp}(n-1) + \sum_{j \neq i} \mathbb{R} H_{n}^{j}; \\ \pmb{K}_{0}(H_{n-1}^{i} + H_{n}^{i}) &= \mathfrak{sp}(n-2) + \sum_{j \neq i} \mathbb{R} H_{n-1}^{j} \\ &+ \sum_{j \neq i} \mathbb{R} H_{n}^{j} + \sum_{j \neq i} \mathbb{R} Q_{n-1,n}^{j}. \end{aligned}$$ (3.4) Let Ψ be an arbitrary solution of the Gauss equation (2.3). By Remark 16 we know that $\mathbf{K}_{\Psi}(X) = \mathbf{K}_{0}(X)$ holds for a regular element $X \in \mathfrak{sp}(n)$. We now extend this relation to singular elements: **Proposition 19** Let $\Psi \in \mathcal{G}(Sp(n), \mathfrak{N}(n))$. Then for each i = 1, 2, 3 it holds: - (1) $\mathbf{K}_{\Psi}(H_n^i) = \mathbf{K}_0(H_n^i).$ - (2) $\mathbf{K}_{\Psi}(H_{n-1}^i + H_n^i) = \mathbf{K}_0(H_{n-1}^i + H_n^i).$ *Proof.* Let Sp(n-1) be the analytic subgroup of Sp(n) corresponding to the subalgebra $\mathfrak{sp}(n-1)$. Let $g \in Sp(n-1)$. Then it is easy to see that $\operatorname{Ad}(g)H_n^i = H_n^i$. Hence by Proposition 17 we have $K_{\Psi}(H_n^i) \supset \sum_{g \in Sp(n-1)} \operatorname{Ad}(g^{-1})\mathfrak{p}(n)^i$. Since $\mathfrak{h}(n-1)^j$ $(j \neq i)$ is a Cartan subalgebra of $\mathfrak{sp}(n-1)$, any element of $\mathfrak{sp}(n-1)$ is conjugate to an element of $\mathfrak{h}(n-1)^j$ under the action of Sp(n-1). Hence we have $\bigcup_{g \in Sp(n-1)} \operatorname{Ad}(g^{-1})\mathfrak{h}(n-1)^j = \mathfrak{sp}(n-1)$. Since $\mathfrak{p}(n)^i \supset \mathfrak{h}(n-1)^j$, we have $K_{\Psi}(H_n^i) \supset \mathfrak{sp}(n-1)$. This, together with $K_{\Psi}(H_n^i) \supset \mathfrak{p}(n)^i$, shows $K_{\Psi}(H_n^i) \supset \mathfrak{sp}(n-1) + \mathfrak{p}(n)^i = K_0(H_n^i)$. We now show the equality $K_{\Psi}(H_n^i) = K_0(H_n^i)$. Take an element $X \in K_{\Psi}(H_n^i) \cap K_0(H_n^i)^{\perp}$, where $K_0(H_n^i)^{\perp}$ is the orthogonal complement of $K_0(H_n^i)$ in $\mathfrak{sp}(n)$. Then X can be expressed as $$X = \begin{pmatrix} 0 & \xi \\ -t\bar{\xi} & ce^i \end{pmatrix}, \quad \xi \in M(n-1, 1; \mathbb{H}), \ c \in \mathbb{R}.$$ Take j, k (= 1, 2, 3) so that $\{i, j, k\}$ is an even permutation of $\{1, 2, 3\}$. Then since $X \in \mathbf{K}_{\Psi}(H_n^i)$ and $H_n^j \in \mathbf{K}_{\Psi}(H_n^i)$, we obtain by Lemma 12 the following $$0 = [[X, H_n^j], H_n^i] = \begin{pmatrix} 0 & -\xi e^k \\ -e^k t \bar{\xi} & 4ce^j \end{pmatrix}.$$ Hence we have $\xi = 0$ and c = 0, i.e., X = 0. This proves $\mathbf{K}_{\Psi}(H_n^i) \cap \mathbf{K}_0(H_n^i)^{\perp} = 0$, i.e., $\mathbf{K}_{\Psi}(H_n^i) = \mathbf{K}_0(H_n^i)$. Next we prove $K_{\Psi}(H_{n-1}^i + H_n^i) = K_0(H_{n-1}^i + H_n^i)$. As in the case of $K_{\Psi}(H_n^i)$, we can easily show that $K_{\Psi}(H_{n-1}^i + H_n^i) \supset \mathfrak{sp}(n-2) + \sum_{j \neq i} \mathbb{R} H_{n-1}^j + \sum_{j \neq i} \mathbb{R} H_n^j$. Take an element $Y \in K_{\Psi}(H_{n-1}^i + H_n^i)$ such that $(Y, \mathfrak{sp}(n-2) + \sum_{j \neq i} \mathbb{R} H_{n-1}^j + \sum_{j \neq i} \mathbb{R} H_n^j) = 0$. Then Y can be expressed as $$Y = \begin{pmatrix} 0 & \xi & \eta \\ -^t \bar{\xi} & \alpha & \beta \\ -^t \bar{\eta} & -\bar{\beta} & \gamma \end{pmatrix}, \quad \xi, \, \eta \in M(n-2, 1; \mathbb{H}), \, \alpha, \, \gamma \in \mathbb{R}e^i, \, \beta \in \mathbb{H}.$$ Take j, k (= 1, 2, 3) so that $\{i, j, k\}$ is an even permutation of $\{1, 2, 3\}$. Then by a direct calculation have $$[[Y, H_{n-1}^j \pm H_n^j], H_{n-1}^i + H_n^i] = \begin{pmatrix} 0 & -\xi e^k & \mp \eta e^k \\ -e^k {}^t \overline{\xi} & -4\alpha e^k & \beta'' \\ \mp e^k {}^t \overline{\eta} & -\overline{\beta''} & \mp 4\gamma e^k \end{pmatrix},$$ where $\beta' = \pm \beta e^j - e^j \beta$, $\beta'' = \beta' e^i - e^i \beta'$. (Note that $e^j \alpha = -\alpha e^j$, $e^j \gamma = -\gamma e^j$, $e^i \alpha = \alpha e^i$, $e^i \gamma = \gamma e^i$, because $\alpha, \gamma \in \mathbb{R} e^i$.) Since $Y \in \mathbf{K}_{\Psi}(H_{n-1}^i + \mathbf{K}_{q-1}^i)$ H_n^i) and $H_{n-1}^j \pm H_n^j \in \mathbf{K}_{\Psi}(H_{n-1}^i + H_n^i)$, we have $[[Y, H_{n-1}^j \pm H_n^j], H_{n-1}^i + H_n^i] = 0$ (see Lemma 12). Hence we conclude that $\xi = \eta = 0$ and $\alpha = \gamma = 0$ and $\beta'' = 0$. From the equality $\beta'' = 0$, we immediately have $\beta' \in \mathbb{C}^i$. Further, from $\beta' \in \mathbb{C}^i$ we can easily conclude that $\beta \in \mathbb{D}^i$. Thus we have $Y \in \sum_{i \neq i} \mathbb{R}Q_{n-1,n}^j$ and hence $\mathbf{K}_{\Psi}(H_{n-1}^i + H_n^i) \subset \mathbf{K}_0(H_{n-1}^i + H_n^i)$. To complete the proof of (2) we have to show $\mathbf{K}_{\Psi}(H_{n-1}^{i} + H_{n}^{i}) \supset \sum_{j \neq i} \mathbb{R}Q_{n-1,n}^{j}$. Take j ($1 \leq j \leq 3$) such that $j \neq i$. Since $\mathfrak{s}_{n-1,n}^{j} = \mathbb{R}(H_{n-1}^{j} - H_{n}^{j}) + \mathbb{R}P_{n-1,n} + \mathbb{R}Q_{n-1,n}^{j}$ is NAT, there is an element $g \in \exp(\mathbb{R}P_{n-1,n})$ such that $\mathrm{Ad}(g)Q_{n-1,n}^{j} \in \mathbb{R}(H_{n-1}^{j} - H_{n}^{j})$ ($\subset \mathfrak{p}(n)^{i}$) (see Lemma 18). Moreover, since $[P_{n-1,n}, H_{n-1}^{i} + H_{n}^{i}] = 0$, we have $\mathrm{Ad}(g)(H_{n-1}^{i} + H_{n}^{i}) = H_{n-1}^{i} + H_{n}^{i} \in \mathfrak{h}(n)^{i}$, i.e., $g \in G_{(H_{n-1}^{i} + H_{n}^{i})}^{i}$. Therefore, by Proposition 17 we have $Q_{n-1,n}^{j} \in \mathbf{K}_{\Psi}(H_{n-1}^{i} + H_{n}^{i})$. Accordingly, it follows that $\mathbf{K}_{\Psi}(H_{n-1}^{i} + H_{n}^{i}) \supset \sum_{j \neq i} \mathbb{R}Q_{n-1,n}^{j}$, completing the proof of (2). By \mathcal{S} we denote the subset of $\mathfrak{sp}(n)$ consisting of all non-zero elements $X \in \mathfrak{sp}(n)$ such that $X \sim H_n^i$ or $X \sim H_{n-1}^i + H_n^i$ for some i (= 1, 2, 3). We note that each element $X \in \mathcal{S}$ is a singular element of $\mathfrak{sp}(n)$, because H_n^i and $H_{n-1}^i + H_n^i$ are singular elements of $\mathfrak{sp}(n)$. By use of Proposition 19 we can prove **Proposition 20** Let $\Psi \in \mathcal{G}(Sp(n), \mathfrak{N}(n))$. Assume $X \in \mathcal{S}$. Then $K_{\Psi}(X) = K_0(X)$. *Proof.* Let $g \in Sp(n)$. Then we have Ψ^g and $\Psi_0^g \in \mathcal{G}(Sp(n), \mathfrak{N}(n))$ (see Lemma 14 (2)). By applying Proposition 19 to Ψ^g and Ψ_0^g , we have $$\begin{split} \pmb{K}_{\pmb{\Psi}^g}(H_n^i) &= \pmb{K}_0(H_n^i) = \pmb{K}_{\pmb{\Psi}_0^g}(H_n^i);\\ \pmb{K}_{\pmb{\Psi}^g}(H_{n-1}^i + H_n^i) &= \pmb{K}_0(H_{n-1}^i + H_n^i) = \pmb{K}_{\pmb{\Psi}_0^g}(H_{n-1}^i + H_n^i) \end{split}$$ for any i = 1, 2, 3). Now assume that $X \in \mathcal{S}$ and that g is an element of Sp(n) such that $Ad(g)X \in \mathbb{R}H_n^i$ or $Ad(g)X \in \mathbb{R}(H_{n-1}^i + H_n^i)$. Then by the above equalities we have $\mathbf{K}_{\Psi^g}(Ad(g)X) = \mathbf{K}_{\Psi_0^g}(Ad(g)X)$. (Note that $\mathbf{K}_{\Psi}(cZ) = \mathbf{K}_{\Psi}(Z)$ holds for any $\Psi \in S^2(\mathfrak{sp}(n)^*) \otimes \mathfrak{N}(n)$, $Z \in \mathfrak{sp}(n)$ and $c \in \mathbb{R}$ ($c \neq 0$).) On account of Lemma 14 (1) we have $\mathbf{K}_{\Psi^g}(Ad(g)X) = Ad(g)\mathbf{K}_{\Psi}(X)$ and $\mathbf{K}_{\Psi_0^g}(Ad(g)X) = Ad(g)\mathbf{K}_{\Psi_0}(X) = Ad(g)\mathbf{K}_{\Psi}(X)$. Therefore $\mathbf{K}_{\Psi}(X) = \mathbf{K}_0(X)$ follows immediately. As a consequence of Proposition 20 we can show **Proposition 21** Let i = 1, 2 or 3. Then - (1) $H_a^i \in \mathcal{S} \quad (1 \le a \le n);$ - (2) $H_a^i \pm H_b^i \in \mathcal{S} \quad (1 \le a < b \le n);$ - (3) $P_{ab} \in \mathcal{S}, \ Q_{ab}^i \in \mathcal{S} \quad (1 \le a < b \le n).$ Consequently, for any $\Psi \in \mathcal{G}(Sp(n), \mathfrak{N}(n))$ the following equalities hold: $$K_{\Psi}(H_a^i) = K_0(H_a^i); \quad K_{\Psi}(H_a^i \pm H_b^i) = K_0(H_a^i \pm H_b^i);$$ $$K_{\Psi}(P_{ab}) = K_0(P_{ab}); \quad K_{\Psi}(Q_{ab}^i) = K_0(Q_{ab}^i).$$ (3.5) Proof. Let i=1,2 or 3. It is easily shown that under the action of Sp(n), H_a^i (1 ≤ a ≤ n − 1) is conjugate to H_n^i . This implies that $H_a^i \in \mathcal{S}$ (1 ≤ a ≤ n). It is also known that $H_a^i + H_b^i$ (1 ≤ a < b ≤ n) (resp. $H_a^i - H_b^i$ (1 ≤ a <
b ≤ n) is conjugate to $H_{n-1}^i + H_n^i$ (resp. $H_{n-1}^i - H_n^i$). Let $\{i,j,k\}$ be a permutation of $\{1,2,3\}$. Then we easily have $[H_n^i, H_n^j] = 2\varepsilon(ijk)H_n^k$. This proves that $\mathfrak{s} = \sum_{i=1}^3 \mathbb{R}H_n^i$ is NAT. In view of the proof of Lemma 18 $\exp(\mathbb{R}H_n^k)$ acts on $\mathfrak{s}' = \mathbb{R}H_n^i + \mathbb{R}H_n^j$ as a non-trivial subgroup of rotations of \mathfrak{s}' . Hence, we can find an element $h \in \exp(\mathbb{R}H_n^k)$ such that $\mathrm{Ad}(h)H_n^i = -H_n^i$. Since $[H_n^k, H_{n-1}^i] = 0$, we have $\mathrm{Ad}(h)H_{n-1}^i = H_{n-1}^i$ and hence $\mathrm{Ad}(h)(H_{n-1}^i - H_n^i) = H_{n-1}^i + H_n^i$. Therefore, we have $H_a^i \pm H_b^i \in \mathcal{S}$ (1 ≤ a < b ≤ n). As we have pointed out, $P_{ab} \sim Q_{ab}^i \sim (H_a^i - H_b^i)$. Since $H_a^i - H_b^i \in \mathcal{S}$, it follows that $P_{ab} \in \mathcal{S}$ and $Q_{ab}^i \in \mathcal{S}$. This completes the proof. **Remark 22** In the next section, after the proof of Theorem 10 we will know that $K_{\Psi}(X) = K_0(X)$ holds for any $X \in \mathfrak{sp}(n)$ (see Remark 36). #### 4. Solutions of the Gauss equation In this section we will prove Theorem 10. We assume that $n \geq 2$ and that the Gaussian variety $\mathcal{G}(Sp(n'), \mathfrak{N}(n'))$ is EOS for any n' such that n' < n. We now regard $\mathfrak{N}(n-1)$ as a subspace of $\mathfrak{N}(n)$ by the assignment $$\mathfrak{N}(n-1)\ni Z\longmapsto\begin{pmatrix} Z&0\\0&0\end{pmatrix}\in\mathfrak{N}(n).$$ Let \mathfrak{M} be the orthogonal complement of $\mathfrak{N}(n-1)$ in $\mathfrak{N}(n)$. Then we easily have dim $\mathfrak{M}=4n-3$ and $$\mathfrak{M} = \mathbb{R}E_{nn} + \sum_{a=1}^{n-1} \left\{ \mathbb{R}(E_{an} + E_{na}) + \sum_{j=1}^{3} \mathbb{R}(E_{an} - E_{na})e^{j} \right\}$$ (orthogonal direct sum). As in the previous section, we denote by Ψ_0 the canonical solution (2.4). By a simple calculation we can easily verify that $\Psi_0(\mathfrak{sp}(n-1), \mathfrak{sp}(n-1)) = \mathfrak{N}(n-1)$ and $\mathfrak{M} = (\Psi_0)_{H_n^i}(\mathfrak{sp}(n))$ (i=1,2,3). In a natural manner, the restriction $\Psi_0|_{\mathfrak{sp}(n-1)}$ of Ψ_0 to $\mathfrak{sp}(n-1)$ may be regarded as an element $\mathcal{G}(Sp(n-1), \mathfrak{N}(n-1))$. Therefore, by the hypothesis of our induction we have: **Lemma 23** For any $\Psi' \in \mathcal{G}(Sp(n-1), \mathfrak{N}(n-1))$ there is an element $\rho' \in O(\mathfrak{N}(n-1))$ such that $\rho'\Psi' = \Psi_0|_{\mathfrak{sp}(n-1)}$. Let $\Psi \in \mathcal{G}(Sp(n), \mathfrak{N}(n))$. By $V_{\Psi}(X) \subset \mathfrak{N}(n)$ we denote the image of $\mathfrak{sp}(n)$ by the map Ψ_X . We call Ψ a normal solution if Ψ satisfies: - (1) $V_{\Psi}(H_n^i) = \mathfrak{M} \ (i = 1, 2, 3);$ - (2) $\Psi|_{\mathfrak{sp}(n-1)} = \Psi_0|_{\mathfrak{sp}(n-1)},$ where $\Psi|_{\mathfrak{sp}(n-1)}$ means the restriction of Ψ to $\mathfrak{sp}(n-1)$. By $\mathcal{G}^0(Sp(n), \mathfrak{N}(n))$ we mean the subset of $\mathcal{G}(Sp(n), \mathfrak{N}(n))$ consisting of all normal solutions. **Proposition 24** Let $\Psi \in \mathcal{G}(Sp(n), \mathfrak{N}(n))$. Then there is an element $\rho \in O(\mathfrak{N}(n))$ such that $\rho \Psi \in \mathcal{G}^0(Sp(n), \mathfrak{N}(n))$. *Proof.* Since $\dim \mathbf{K}_{\Psi}(H_n^i) = \dim \mathbf{K}_0(H_n^i)$ (see Proposition 19), we have $\dim \mathbf{V}_{\Psi}(H_n^i) = \dim \mathbf{V}_{\Psi_0}(H_n^i)$. Hence we have $\dim \mathbf{V}_{\Psi}(H_n^i) = \dim \mathfrak{M}$ for any i (= 1, 2, 3). Let $X, Y \in \mathfrak{sp}(n-1)$. Then by the Gauss equation (2.3) we get $$\frac{1}{4} ([[X, H_n^i], Y], Z) = \langle \mathbf{\Psi}(X, Y), \mathbf{\Psi}(H_n^i, Z) \rangle - \langle \mathbf{\Psi}(X, Z), \mathbf{\Psi}(H_n^i, Y) \rangle$$ for any $Z \in \mathfrak{sp}(n)$ and i = 1, 2, 3. Since $[X, H_n^i] = 0$ and $\mathbf{K}_{\Psi}(H_n^i) = \mathbf{K}_0(H_n^i) \supset \mathfrak{sp}(n-1)$ (see (3.4) and Proposition 19), we have $\Psi(H_n^i, Y) = 0$. Consequently, we have $\langle \Psi(X, Y), \Psi(H_n^i, Z) \rangle = 0$, which proves $$\langle \Psi(\mathfrak{sp}(n-1), \mathfrak{sp}(n-1)), V_{\Psi}(H_n^i) \rangle = 0.$$ (4.1) Take an element $\rho_1 \in O(\mathfrak{N}(n))$ such that $\rho_1(\boldsymbol{V}_{\Psi}(H_n^1)) = \mathfrak{M}$. Then by (4.1) we have $(\rho_1\Psi)(\mathfrak{sp}(n-1),\mathfrak{sp}(n-1)) = \rho_1(\Psi(\mathfrak{sp}(n-1),\mathfrak{sp}(n-1))) \subset$ $\mathfrak{N}(n-1)$. Hence, in a natural manner, $(\rho_1 \Psi)|_{\mathfrak{sp}(n-1)}$ may be regarded as an element of $\mathcal{G}(Sp(n-1), \mathfrak{N}(n-1))$. Hence there is an element $\rho_2' \in O(\mathfrak{N}(n-1))$ such that $\rho_2'((\rho_1 \Psi)|_{\mathfrak{sp}(n-1)}) = \Psi_0|_{\mathfrak{sp}(n-1)}$ (see Lemma 23). Take $\rho_2 \in O(\mathfrak{N}(n))$ such that $\rho_2|_{\mathfrak{M}} = \mathbf{1}_{\mathfrak{M}}$ and $\rho_2|_{\mathfrak{N}(n-1)} = \rho_2'$. Put $\rho = \rho_2 \rho_1$. Then we have $\mathbf{V}_{\rho \Psi}(H_n^1) = \rho(\mathbf{V}_{\Psi}(H_n^1)) = \mathfrak{M}$ and $(\rho \Psi)|_{\mathfrak{sp}(n-1)} = \Psi_0|_{\mathfrak{sp}(n-1)}$. We finally prove $\mathbf{V}_{\rho \Psi}(H_n^i) = \mathfrak{M}$ (i=2,3). As is easily seen, we have $\Psi(\mathfrak{sp}(n-1), \mathfrak{sp}(n-1)) = \rho^{-1}(\mathfrak{N}(n-1))$. Hence by (4.1) we have $\mathbf{V}_{\Psi}(H_n^i) \subset \rho^{-1}(\mathfrak{M})$. Therefore, $\mathbf{V}_{\rho \Psi}(H_n^i) = \rho(\mathbf{V}_{\Psi}(H_n^i)) \subset \mathfrak{M}$. Since $\dim \mathbf{V}_{\rho \Psi}(H_n^i) = \dim \mathfrak{M}$, we have $\mathbf{V}_{\rho \Psi}(H_n^i) = \mathfrak{M}$, implying $\rho \Psi \in \mathcal{G}^0(Sp(n), \mathfrak{N}(n))$. This completes the proof. By virtue of Proposition 24 to show Theorem 10 it suffices to prove that any element of $\mathcal{G}^0(Sp(n), \mathfrak{N}(n))$ is equivalent to Ψ_0 . By \mathfrak{m} we denote the orthogonal complement of $\mathfrak{sp}(n-1)$ in $\mathfrak{sp}(n)$. For simplicity, we set $P_a = P_{an}$, $Q_a^i = Q_{an}^i$ and $H^i = H_n^i$ for integers $a \ (1 \le a \le n-1)$ and $i \ (1 \le i \le 3)$. Set $$\mathfrak{m}_a = \mathbb{R}P_a + \sum_{i=1}^3 \mathbb{R}Q_a^i \ (1 \le a \le n-1), \quad \mathfrak{m}_n = \sum_{i=1}^3 \mathbb{R}H^i.$$ Since $(\mathfrak{m}_a, \mathfrak{m}_b) = 0 \ (a \neq b)$, we have $$\mathfrak{m} = \sum_{a=1}^{n-1} \mathfrak{m}_a + \mathfrak{m}_n$$ (orthogonal direct sum). **Lemma 25** Let $\Psi \in \mathcal{G}^0(Sp(n), \mathfrak{N}(n))$ and let i = 1, 2 or 3. Then: $$\mathfrak{M} = \sum_{a=1}^{n-1} \mathbf{\Psi}(H^i, \, \mathfrak{m}_a) + \mathbb{R}\mathbf{\Psi}(H^i, \, H^i) \quad (direct \, sum).$$ *Proof.* Since $K_{\Psi}(H^i) = \mathfrak{sp}(n-1) + \sum_{j \neq i} \mathbb{R}H^j$ and $V_{\Psi}(H^i) = \Psi(H^i, \mathfrak{m}) = \mathfrak{M}$, we have the lemma. In what follows we will observe the value $\Psi(X, Y)$ $(X, Y \in \mathfrak{sp}(n))$ for the following four cases: - (I) $X \in \mathfrak{m} \text{ and } Y \in \mathfrak{sp}(n-1);$ - (II) $X \in \mathfrak{m}_n$ and $Y \in \mathfrak{m}_n$; - (III) $X \in \mathfrak{m}_a$ and $Y \in \mathfrak{m}_a$ $(1 \le a \le n-1)$; - (IV) $X \in \mathfrak{m}_n$ and $Y \in \mathfrak{m}_a$ $(1 \le a \le n-1)$. We first observe Case (I): **Proposition 26** Let $\Psi \in \mathcal{G}^0(Sp(n), \mathfrak{N}(n))$. Then: - (1) $\Psi(\mathfrak{m}, \mathfrak{sp}(n-1)) \subset \mathfrak{M}$. - (2) Let $X, Y \in \mathfrak{m}$ and $Z \in \mathfrak{sp}(n-1)$. Then: $$\langle \Psi(X, Z), \Psi(H^i, Y) \rangle = \frac{1}{4} ([[X, Z], H^i], Y).$$ (4.2) *Proof.* We first note that $\Psi(H^i, \mathfrak{sp}(n-1)) = 0$ $(1 \le i \le 3)$, because $K_{\Psi}(H^i) \supset \mathfrak{sp}(n-1)$. This proves $\Psi(\mathfrak{m}_n, \mathfrak{sp}(n-1)) = 0$. We now prove $\Psi(\mathfrak{m}_a, \mathfrak{sp}(n-1)) \subset \mathfrak{M}$ for any $a \ (1 \le a \le n-1)$. To show this we prove $$\Psi(P_a,\,\mathfrak{sp}(n-1))\subset\mathfrak{M};\quad \Psi(Q_a^i,\,\mathfrak{sp}(n-1))\subset\mathfrak{M}\quad (i=1,\,2,\,3). \tag{4.3}$$ Define an element $Z_0^i \in \mathfrak{sp}(n-1)$ $(1 \leq i \leq 3)$ by $Z_0^i = (\sum_{s=1}^{n-1} s E_{ss}) e^i$. Then it is well-known that Z_0^i is a regular element of $\mathfrak{sp}(n-1)$. Moreover, since $\Psi|_{\mathfrak{sp}(n-1)} = \Psi_0|_{\mathfrak{sp}(n-1)}$, it follows that $\Psi(Z_0^i, \mathfrak{sp}(n-1)) \subset \mathfrak{N}(n-1)$. Here we note that the equality $\Psi(Z_0^i, \mathfrak{sp}(n-1)) = \mathfrak{N}(n-1)$ holds. Indeed, since $\dim \mathbf{Ker}((\Psi_0)_{Z_0^i}|_{\mathfrak{sp}(n-1)}) = 2(n-1)$ (see Proposition 15), we have $$\dim \mathbf{\Psi}(Z_0^i, \, \mathfrak{sp}(n-1)) = \dim \mathfrak{sp}(n-1) - \dim \mathbf{Ker}((\mathbf{\Psi}_0)_{Z_0^i}|_{\mathfrak{sp}(n-1)})$$ $$= \dim \mathfrak{N}(n-1).$$ Now let us set $W_a^i = Z_0^i - aH^i \in \mathfrak{sp}(n)$ $(1 \le a \le n-1)$. By a direct calculation we can verify $\Psi_0(P_a, W_a^i) = \Psi_0(Q_a^i, W_a^i) = 0$. Hence by (3.5) we have $\Psi(P_a, W_a^i) = \Psi(Q_a^i, W_a^i) = 0$. Moreover, since $\Psi(H^i, \mathfrak{sp}(n-1)) = 0$, we have $\Psi(W_a^i, \mathfrak{sp}(n-1)) = \Psi(Z_0^i, \mathfrak{sp}(n-1)) = \mathfrak{N}(n-1)$. Let $Z, Z' \in \mathfrak{sp}(n-1)$. Then by the Gauss equation (2.3) we have $$\frac{1}{4} \left([[W_a^i, Z], Z'], P_a \right) = \left\langle \mathbf{\Psi}(W_a^i, Z'), \mathbf{\Psi}(Z, P_a) \right\rangle - \left\langle \mathbf{\Psi}(W_a^i, P_a), \mathbf{\Psi}(Z, Z') \right\rangle, \qquad (4.4)$$ $$\frac{1}{4} \left([[W_a^i, Z], Z'], Q_a^i \right) = \left\langle \mathbf{\Psi}(W_a^i, Z'), \mathbf{\Psi}(Z, Q_a^i) \right\rangle - \left\langle \mathbf{\Psi}(W_a^i, Q_a^i), \mathbf{\Psi}(Z, Z') \right\rangle. \qquad (4.5)$$ Since $[H^i, Z] = 0$, we have $[[W_a^i, Z], Z'] = [[Z_0^i, Z], Z'] \in \mathfrak{sp}(n-1)$. Hence, the left sides of (4.4) and (4.5) vanish. Further, since $\Psi(P_a, W_a^i) = \Psi(Q_a^i, W_a^i) = 0$, we have $\langle \Psi(W_a^i, Z'), \Psi(Z, P_a) \rangle = \langle \Psi(W_a^i, Z'), \Psi(Z, Q_a^i) \rangle = 0$. Since Z and Z' are arbitrary elements of
$\mathfrak{sp}(n-1)$ and since $\Psi(W_a^i, \mathfrak{sp}(n-1)) = \mathfrak{N}(n-1)$, we have $$\langle \mathfrak{N}(n-1), \, \Psi(\mathfrak{sp}(n-1), \, P_a) \rangle = \langle \mathfrak{N}(n-1), \, \Psi(\mathfrak{sp}(n-1), \, Q_a^i) \rangle = 0$$ showing (4.3). Consequently, we have $\Psi(\mathfrak{m}_a, \mathfrak{sp}(n-1)) \subset \mathfrak{M}$, which completes the proof of (1). Next we show (2). Let $X, Y \in \mathfrak{m}$ and $Z \in \mathfrak{sp}(n-1)$. Then by the Gauss equation (2.3) we have $$\frac{1}{4} \big([[X,H^i],Z],Y \big) = \big\langle \mathbf{\Psi}(X,Z),\mathbf{\Psi}(H^i,Y) \big\rangle - \big\langle \mathbf{\Psi}(X,Y),\mathbf{\Psi}(H^i,Z) \big\rangle.$$ Note that $\Psi(H^i, Z) = 0$ and $[Z, H^i] = 0$. The latter equality, together with the Jacobi identity, shows $[[X, H^i], Z] = [[X, Z], H^i]$. Thus we obtain (4.2). Remark 27 Here we state a remark on the value $\Psi(X, Z)$ $(X \in \mathfrak{m}, Z \in \mathfrak{sp}(n-1))$. Note that the right side of (4.2) is an intrinsic quantity. Since $\Psi(H^i, \mathfrak{m}) = \mathfrak{M}$, we know that $\Psi(X, Z) \in \mathfrak{M}$ is uniquely determined if the values $\Psi(H^i, Y)$ $(Y \in \mathfrak{m})$ are given. Therefore, if $\Psi(H^i, Y) = \Psi_0(H^i, Y)$ holds for any $Y \in \mathfrak{m}$, then we may conclude that $\Psi(X, Z) = \Psi_0(X, Z)$ $(X \in \mathfrak{m}, Z \in \mathfrak{sp}(n-1))$. See Case (c) below in the proof of Theorem 10. We next observe Case (II): **Proposition 28** Let $\Psi \in \mathcal{G}^0(Sp(n), \mathfrak{N}(n))$. Then: - (1) $\Psi(H^1, H^1) = \Psi(H^2, H^2) = \Psi(H^3, H^3).$ - (2) $\Psi(H^1, H^2) = \Psi(H^2, H^3) = \Psi(H^3, H^1) = 0.$ - (3) $\langle \mathbf{\Psi}(H^i, H^i), \mathbf{\Psi}(H^i, H^i) \rangle = 1 \quad (1 \le i \le 3).$ - (4) $\langle \Psi(H^i, H^i), \Psi(H^i, \mathfrak{m}_a) \rangle = 0 \quad (1 \le i \le 3, \ 1 \le a \le n-1).$ To prove the proposition we prepare **Lemma 29** Let $\Psi \in \mathcal{G}(Sp(n), \mathfrak{N}(n))$. Let X and $Y \in \mathfrak{sp}(n)$. Assume: - (i) $\Psi_0(X, X) = \Psi_0(Y, Y)$. - (ii) $X + Y \in \mathcal{S}$. Then $\Psi(X, X) = \Psi(Y, Y)$. *Proof.* By (i) we easily have $\Psi_0(X+Y,X-Y)=0$, i.e., $X-Y\in K_0(X+Y)$. Since $X+Y\in \mathcal{S}$, we have $K_0(X+Y)=K_{\Psi}(X+Y)$ (see Proposition 20). Consequently, it follows that $X-Y\in K_{\Psi}(X+Y)$, i.e., $\Psi(X+Y,X-Y)=0$. This implies $\Psi(X,X)=\Psi(Y,Y)$. Proof of Proposition 28. Let $\{i, j, k\}$ be a permutation of $\{1, 2, 3\}$. As shown in the proof of Proposition 21, $\mathfrak{s} = \sum_{i=1}^{3} \mathbb{R}H^{i}$ is NAT. Consequently, $H^{i} + H^{j} \in \mathcal{S}$, because $(H^{i} + H^{j}) \sim H^{i}$. On the other hand, it is easily checked that $\Psi_{0}(H^{i}, H^{i}) = \Psi_{0}(H^{j}, H^{j}) = -E_{nn}$. Hence by Lemma 29 we have $\Psi(H^{i}, H^{i}) = \Psi(H^{j}, H^{j})$. Similarly, we have $\Psi(H^{j}, H^{j}) = \Psi(H^{k}, H^{k})$, proving (1). The assertion (2) is clear from Lemma 13. Finally we prove (3) and (4). Let k be an integer such that $1 \leq k \leq 3$, $k \neq i$ and $K \in \mathfrak{sp}(n)$. Then by the Gauss equation (2.3) we have $$\begin{split} &\frac{1}{4} \left([[H^i,\,H^k],\,H^k],\,X \right) \\ &= \left\langle \mathbf{\Psi}(H^i,\,H^k),\,\mathbf{\Psi}(H^k,\,X) \right\rangle - \left\langle \mathbf{\Psi}(H^i,\,X),\,\mathbf{\Psi}(H^k,\,H^k) \right\rangle. \end{split}$$ By a simple calculation we have $[[H^i, H^k], H^k] = -4H^i$. Moreover, by the results obtained in (1) and (2) we have $\Psi(H^i, H^k) = 0$ and $\Psi(H^k, H^k) = \Psi(H^i, H^i)$. Consequently, we have $$\langle \mathbf{\Psi}(H^i, X), \mathbf{\Psi}(H^i, H^i) \rangle = (H^i, X).$$ Therefore, we obtain (3) and (4), because $(H^i, H^i) = 1$ and $(H^i, \mathfrak{m}_a) = 0$ (see (3.3)). In Case (III) the value $\Psi(X, Y)$ $(X, Y \in \mathfrak{m}_a)$ $(1 \le a \le n-1)$ are determined by **Proposition 30** Let $\Psi \in \mathcal{G}^0(Sp(n), \mathfrak{N}(n))$ and let a be an integer such that $1 \leq a \leq n-1$. Then: - (1) $\Psi(P_a, Q_a^i) = 0 \quad (1 \le i \le 3).$ - (2) $\Psi(Q_a^i, Q_a^j) = 0 \quad (1 \le i \ne j \le 3).$ - (3) $\Psi(P_a, P_a) = \Psi(Q_a^i, Q_a^i) = \Psi(H^i, H^i) + \Psi(H_a^i, H_a^i)$ $(1 \le i \le 3).$ Proof. Since $\Psi_0(P_a, Q_a^i) = 0$ and $\Psi_0(Q_a^i, Q_a^j) = 0$ $(i \neq j)$, we obtain (1) and (2) (see (3.5)). We now prove (3). Since $\mathfrak{s}_{an}^i = \mathbb{R}(H^i - H_a^i) + \mathbb{R}P_a + \mathbb{R}Q_a^i$ is NAT, it follows that $Q_a^i + (H^i - H_a^i) \in \mathcal{S}$. Indeed, $Q_a^i + (H^i - H_a^i) \sim (H^i - H_a^i)$. By Lemma 29 we have $\Psi(Q_a^i, Q_a^i) = \Psi(H^i - H_a^i, H^i - H_a^i)$, because $\Psi_0(Q_a^i, Q_a^i) = \Psi_0(H^i - H_a^i, H^i - H_a^i) = -(E_{aa} + E_{nn})$. Since $H_a^i \in \mathfrak{sp}(n-1)$, we have $\Psi(H^i, H_a^i) = 0$. Consequently, $\Psi(Q_a^i, Q_a^i) = \Psi(H^i, H^i) + \Psi(H_a^i, H_a^i)$. Similarly, we can prove $\Psi(P_a, P_a) = \Psi(H^i, H^i) + \Psi(H_a^i, H_a^i)$. Before proceeding to Case (IV) we extend Lemma 29 to the following form: **Lemma 31** Let $\Psi \in \mathcal{G}(Sp(n), \mathfrak{N}(n))$. Let X, X', Y and $Y' \in \mathfrak{sp}(n)$. Assume: - (i) $\Psi_0(X, Y') = \Psi_0(Y, X') = 0.$ - (ii) $\Psi_0(X, X') = \Psi_0(Y, Y').$ - (iii) $X \in \mathcal{S}, Y \in \mathcal{S} \text{ and } X + Y \in \mathcal{S}.$ Then $\Psi(X, X') = \Psi(Y, Y')$. Proof. By (i) and (ii) we have $Y' \in \mathbf{K}_0(X)$, $X' \in \mathbf{K}_0(Y)$ and $\mathbf{\Psi}_0(X + Y, X' - Y') = 0$. The last equality implies that $X' - Y' \in \mathbf{K}_0(X + Y)$. Hence by (iii) we have $Y' \in \mathbf{K}_{\Psi}(X)$, $X' \in \mathbf{K}_{\Psi}(Y)$ and $X' - Y' \in \mathbf{K}_{\Psi}(X + Y)$. Consequently, we have $\mathbf{\Psi}(Y', X) = \mathbf{\Psi}(X', Y) = \mathbf{\Psi}(X + Y, X' - Y') = 0$. Hence $\mathbf{\Psi}(X, X') = \mathbf{\Psi}(Y, Y')$. With this preparation we observe Case (IV). **Proposition 32** Let $\Psi \in \mathcal{G}^0(Sp(n), \mathfrak{N}(n))$. Let a be an integer such that $1 \le a \le n-1$. Then: - (1) $\Psi(H^1, Q_a^1) = \Psi(H^2, Q_a^2) = \Psi(H^3, Q_a^3).$ - (2) $\Psi(H^i, Q_a^j) = -\varepsilon(ijk)\Psi(H^k, P_a)$, where $\{i, j, k\}$ is a permutation of $\{1, 2, 3\}$. - (3) $\Psi(H^1, \mathfrak{m}_a) = \Psi(H^2, \mathfrak{m}_a) = \Psi(H^3, \mathfrak{m}_a).$ - (4) For each i $(1 \le i \le 3)$ the set $\{\sqrt{2}\Psi(H^i, P_a), \sqrt{2}\Psi(H^i, Q_a^j) \ (1 \le j \le 3)\}$ forms an orthonormal basis of $\Psi(H^i, \mathfrak{m}_a)$. *Proof.* Let $\{i, j, k\}$ be a permutation of $\{1, 2, 3\}$. We note that the subspace $\mathfrak{s} = \mathbb{R}(H_a^i + H^i) + \mathbb{R}Q_a^j + \mathbb{R}Q_a^k$ forms a subalgebra of $\mathfrak{sp}(n)$ and is NAT. In fact, by simple calculations we have $$\begin{split} [H_a^i+H^i,\,Q_a^j] &= 2\varepsilon(ijk)Q_a^k; \quad [H_a^i+H^i,\,Q_a^k] = -2\varepsilon(ijk)Q_a^j; \\ [Q_a^j,\,Q_a^k] &= 2\varepsilon(ijk)(H_a^i+H^i). \end{split}$$ Hence we have $H_a^i + H^i + Q_a^j \in \mathcal{S}$ and $H_a^i + H^i + Q_a^k \in \mathcal{S}$, because $H_a^i + H^i + Q_a^j \sim H_a^i + H^i + Q_a^k \sim H_a^i + H^i \in \mathcal{S}$. Now we prove (1). By direct calculations we can show $\Psi_0(H_a^1 + H^1, Q_a^1) = \Psi_0(H_a^2 + H^2, Q_a^2) = \Psi_0(H_a^3 + H^3, Q_a^3) = -(E_{an} + E_{na})$. Moreover we have $\Psi_0(H_a^i + H^i, H_a^j + H^j) = \Psi_0(Q_a^i, Q_a^j) = 0$ if $i \neq j$ (see Lemma 13 and Proposition 30). Therefore by Lemma 31 we have $$\Psi(H_a^1 + H^1, \, Q_a^1) = \Psi(H_a^2 + H^2, \, Q_a^2) = \Psi(H_a^3 + H^3, \, Q_a^3). \eqno(4.6)$$ Here we show $\Psi(H_a^1, Q_a^1) = \Psi(H_a^2, Q_a^2) = \Psi(H_a^3, Q_a^3)$. Let i = 1, 2 or 3. Since $H_a^i \in \mathfrak{sp}(n-1)$ and $Q_a^i \in \mathfrak{m}$, it follows from Proposition 26 (1) that $\Psi(H_a^i, Q_a^i) \in \mathfrak{M}$. Moreover, by Proposition 26 (2) we have $$\left\langle \mathbf{\Psi}(Q_a^i,\,H_a^i),\,\mathbf{\Psi}(H^1,\,Y)\right\rangle = \frac{1}{4} \left([[Q_a^i,\,H_a^i],\,H^1],\,Y\right)$$ for any $Y \in \mathfrak{m}$. Since $[Q_a^i, H_a^i] = P_a$, the right side of the above equality does not depend on the choice of i. This implies that $\Psi(H_a^1, Q_a^1) = \Psi(H_a^2, Q_a^2) = \Psi(H_a^3, Q_a^3)$, because $\Psi(H^1, \mathfrak{m}) = \mathfrak{M}$. This, together with (4.6), proves (1). We next prove (2). Let $\{i, j, k\}$ be a permutation of $\{1, 2, 3\}$. Then by direct calculations we have $\Psi_0(H_a^i - H^i, Q_a^j) = \varepsilon(ijk)\Psi_0(H_a^k + H^k, P_a) = \varepsilon(ijk)(E_{an} - E_{na})e^k$. Moreover, $\Psi_0(H_a^i - H^i, H_a^k + H^k) = \Psi_0(Q_a^j, P_a) = 0$ (see Lemma 13 and Proposition 30). Since $H_a^k + H^k + Q_a^j \in \mathcal{S}$, we obtain by Lemma 31 the following $$\Psi(H_a^i - H^i, Q_a^j) = \varepsilon(ijk)\Psi(H_a^k + H^k, P_a). \tag{4.7}$$ Note that H_a^i , $H_a^k \in \mathfrak{sp}(n-1)$, Q_a^j , $P_a \in \mathfrak{m}$ and $[Q_a^j, H_a^i] = \varepsilon(ijk)[P_a, H_a^k] = -\varepsilon(ijk)Q_a^k$. As in the proof of (1) we have $\Psi(H_a^i, Q_a^j) = \varepsilon(ijk)\Psi(H_a^k, P_a)$. Accordingly, from (4.7) we have $\Psi(H^i, Q_a^j) = -\varepsilon(ijk)\Psi(H^k, P_a)$. This completes the proof of (2). By (1) and (2) we have $$\begin{split} & \Psi(H^1,\,P_a) = -\Psi(H^2,\,Q_a^3) = \Psi(H^3,\,Q_a^2); \\ & \Psi(H^1,\,Q_a^1) = \Psi(H^2,\,Q_a^2) = \Psi(H^3,\,Q_a^3); \\ & \Psi(H^1,\,Q_a^2) = -\Psi(H^2,\,Q_a^1) = -\Psi(H^3,\,P_a); \\ & \Psi(H^1,\,Q_a^3) = \Psi(H^2,\,P_a) = -\Psi(H^3,\,Q_a^1). \end{split} \tag{4.8}$$ By these equalities we clearly obtain (3). Finally, we prove (4). Let X and Y are one of P_a and Q_a^j $(1 \le j \le 3)$, i.e., $X, Y \in \{P_a, Q_a^j \ (1 \le j \le 3)\}$. By the Gauss equation (2.3) we have $$\frac{1}{4} ([[H^i, X], H^i], Y) = \langle \mathbf{\Psi}(H^i, H^i), \mathbf{\Psi}(X, Y) \rangle - \langle \mathbf{\Psi}(H^i, Y), \mathbf{\Psi}(X, H^i) \rangle.$$ By direct calculations we can verify $[[H^i, X], H^i] = X$. Hence the left side of the above equality becomes (1/4)(X, Y). First assume that X = Y. Then we have $\Psi(X, X) = \Psi(H^i, H^i) + \Psi(H^i_a, H^i_a)$ (see
Proposition 30 (3)). Since $\langle \Psi(H^i, H^i), \Psi(H^i, H^i) \rangle = 1$ (see Proposition 28), $\Psi(H^i, H^i) \in \mathfrak{M}$ and $\Psi(H_a^i, H_a^i) \in \mathfrak{N}(n-1)$, we have $$\left\langle \mathbf{\Psi}(H^i, H^i), \mathbf{\Psi}(X, X) \right\rangle = \left\langle \mathbf{\Psi}(H^i, H^i), \mathbf{\Psi}(H^i, H^i) + \mathbf{\Psi}(H_a^i, H_a^i) \right\rangle$$ = 1. Since (X, X) = 2 (see (3.3)), we have $\langle \Psi(H^i, X), \Psi(H^i, X) \rangle = 1/2$. We next consider the case $X \neq Y$. Then we have (X, Y) = 0 and $\Psi(X, Y) = 0$ (see (3.3) and Proposition 30 (1), (2)). Hence it follows that $\langle \Psi(H^i, X), \Psi(H^i, Y) \rangle = 0$. This completes the proof of (4). We are now in a position to prove Theorem 10. Proof of Theorem 10. Let $\Psi \in \mathcal{G}^0(Sp(n), \mathfrak{N}(n))$. Set $\mathbf{H} = \Psi(H^1, H^1)$, $\mathbf{P}_a = \sqrt{2}\Psi(H^1, P_a) \ (1 \le a \le n-1), \ \mathbf{Q}_a^i = \sqrt{2}\Psi(H^1, Q_a^i) \ (1 \le a \le n-1), \ 1 \le i \le 3$. Then we have **Lemma 33** The set $\mathfrak{O} = \{ \boldsymbol{H}, \boldsymbol{P}_a \ (1 \leq a \leq n-1), \boldsymbol{Q}_a^i \ (1 \leq a \leq n-1, 1 \leq i \leq 3) \}$ forms an orthonormal basis of \mathfrak{M} . *Proof.* By virtue of Proposition 28 (3), (4) and Proposition 32 (4) we have only to prove $$\langle \mathbf{\Psi}(H^1, \, \mathbf{m}_a), \, \mathbf{\Psi}(H^1, \, \mathbf{m}_b) \rangle = 0 \quad (1 \le a \ne b \le n-1).$$ (4.9) Let $X \in \mathfrak{m}_a$ and $Y \in \mathfrak{m}_b$. By the Gauss equation (2.3) we have $$\begin{split} \frac{1}{4} \big([[H^1, X], H^2], Y \big) \\ &= \langle \boldsymbol{\Psi}(H^1, H^2), \boldsymbol{\Psi}(X, Y) \rangle - \langle \boldsymbol{\Psi}(H^1, Y), \boldsymbol{\Psi}(X, H^2) \rangle. \end{split}$$ As is easily seen, $[[H^1, X], H^2] \in \mathfrak{m}_a$. Hence the left side of the above equality vanishes. On the other hand, since $\Psi(H^1, H^2) = 0$ (see Proposition 28), it follows that $\langle \Psi(H^1, Y), \Psi(X, H^2) \rangle = 0$. This proves that $\langle \Psi(H^1, \mathfrak{m}_b), \Psi(H^2, \mathfrak{m}_a) \rangle = 0$. Therefore, we obtain (4.9), because $\Psi(H^2, \mathfrak{m}_a) = \Psi(H^1, \mathfrak{m}_a)$ (see Proposition 32 (3)). This completes the proof. Let $\mathfrak{O}_0 = \{ \boldsymbol{H}_0, \ (\boldsymbol{P}_a)_0 \ (1 \leq a \leq n-1), \ (\boldsymbol{Q}_a^i)_0 \ (1 \leq a \leq n-1, \ 1 \leq i \leq 3) \}$ be the orthonormal basis of \mathfrak{M} corresponding to $\boldsymbol{\Psi}_0$, i.e., $\boldsymbol{H}_0 = \boldsymbol{\Psi}_0(H^1, H^1)$, $(\boldsymbol{P}_a)_0 = \sqrt{2}\boldsymbol{\Psi}_0(H^1, P_a)$ and $(\boldsymbol{Q}_a^i)_0 = \sqrt{2}\boldsymbol{\Psi}_0(H^1, Q_a^i)$. Then, there is an orthogonal transformation ρ' of \mathfrak{M} such that $\boldsymbol{H}_0 = \rho'(\boldsymbol{H}), \ (\boldsymbol{P}_a)_0 = \rho'(\boldsymbol{P}_a)$ and $(\boldsymbol{Q}_a^i)_0 = \rho'(\boldsymbol{Q}_a^i)$. Extend ρ' to the orthogonal transformation ρ of $\mathfrak{N}(n)$ satisfying $\rho|_{\mathfrak{M}} = \rho'$ and $\rho|_{\mathfrak{M}(n-1)} = \mathbf{1}_{\mathfrak{M}(n-1)}$. Then, it is easy to see that $\rho \Psi \in \mathcal{G}^0(Sp(n), \mathfrak{N}(n))$. For simplicity, set $\Psi_1 = \rho \Psi$. In the following we will prove $\Psi_1 = \Psi_0$. In view of Lemma 25 and the decomposition $\mathfrak{sp}(n) = \mathfrak{m} + \mathfrak{sp}(n-1)$, we may conclude $\Psi_1 = \Psi_0$ if $\Psi_1(X, Y) = \Psi_0(X, Y)$ holds for any pairs X and Y listed in the following (a) \sim (e): - (a) $X \in \mathfrak{sp}(n-1)$ and $Y \in \mathfrak{sp}(n-1)$; - (b) $X \in \mathfrak{m}_n$ and $Y \in \mathfrak{m}$; - (c) $X \in \mathfrak{m}$ and $Y \in \mathfrak{sp}(n-1)$; - (d) $X \in \mathfrak{m}_a$ and $Y \in \mathfrak{m}_a$ $(1 \le a \le n-1)$; - (e) $X \in \mathfrak{m}_a$ and $Y \in \mathfrak{m}_b$ $(1 \le a \ne b \le n 1)$. Case (a): Let $X, Y \in \mathfrak{sp}(n-1)$. Since $\Psi(X, Y) = \Psi_0(X, Y) \in \mathfrak{N}(n-1)$ and $\rho|_{\mathfrak{N}(n-1)} = \mathbf{1}_{\mathfrak{N}(n-1)}$, we have $\Psi_1(X, Y) = \rho(\Psi(X, Y)) = \rho(\Psi_0(X, Y)) = \Psi_0(X, Y)$. Case (b): By the very definition of ρ we have $\Psi_1(H^1, Y) = \Psi_0(H^1, Y)$ for $Y \in \sum_{a=1}^{n-1} \mathfrak{m}_a + \mathbb{R}H^1$. Applying Proposition 32 to both Ψ_1 and Ψ_0 , we have $\Psi_1(H^i, Y) = \Psi_0(H^i, Y)$ for $i = 2, 3, Y \in \sum_{a=1}^{n-1} \mathfrak{m}_a$ (see (1), (2) and (4.8)). Further, since $\Psi_1(H^1, H^1) = \Psi_0(H^1, H^1)$, we have $\Psi_1(H^i, H^j) = \Psi_0(H^i, H^j)$ (1 $\leq i, j \leq 3$) (see Proposition 28 (1), (2)). Thus we obtain $\Psi_1(X, Y) = \Psi_0(X, Y)$ for any $X \in \mathfrak{m}_n$ and $Y \in \sum_{a=1}^{n-1} \mathfrak{m}_a + \mathfrak{m}_n = \mathfrak{m}$. Case (c): By Case (b) we have $\Psi_1(H^i, Y) = \Psi_0(H^i, Y)$ ($i = 1, 2, 3; Y \in \mathfrak{m}$). As we have remarked (see Remark 27), we obtain $\Psi_1(X, Y) = \Psi_0(X, Y)$ for $X \in \mathfrak{m}, Y \in \mathfrak{sp}(n-1)$. Case (d): As seen in Case (b), we have $\Psi_1(H^i, H^i) = \Psi_0(H^i, H^i)$. Moreover, since $H_a^i \in \mathfrak{sp}(n-1)$, we have $\Psi_1(H_a^i, H_a^i) = \Psi_0(H_a^i, H_a^i)$ (i = 1, 2, 3). Hence by applying Proposition 30 to Ψ_1 and Ψ_0 , we easily have $\Psi_1(X, Y) = \Psi_0(X, Y)$ for $X, Y \in \mathfrak{m}_a$. Case (e): We note that this case occurs when $n \geq 3$. We first show **Lemma 34** Assume that $n \geq 3$. Let a and c be integers such that $1 \leq a \neq c \leq n-1$. Then $P_a \pm P_{ac} \in \mathcal{S}$; $Q_a^i \pm Q_{ac}^i \in \mathcal{S}$ (i = 1, 2, 3). *Proof.* By easy calculations we have $$[H_c^i - H^i, P_a \pm P_{ac}] = Q_a^i \mp Q_{ac}^i;$$ $$[H_c^i - H^i, Q_a^i \mp Q_{ac}^i] = -(P_a \pm P_{ac});$$ $$[P_a \pm P_{ac}, Q_a^i \mp Q_{ac}^i] = 2(H_c^i - H^i).$$ Consequently, both the subspaces $\mathfrak{s}_+ = \mathbb{R}(H_c^i - H^i) + \mathbb{R}(P_a + P_{ac}) + \mathbb{R}(Q_a^i - Q_{ac}^i)$ and $\mathfrak{s}_- = \mathbb{R}(H_c^i - H^i) + \mathbb{R}(P_a - P_{ac}) + \mathbb{R}(Q_a^i + Q_{ac}^i)$ are NAT. Therefore, we have $P_a \pm P_{ac} \sim H_c^i - H^i \sim Q_a^i \pm Q_{ac}^i$. Since $H_c^i - H^i \in \mathcal{S}$, it follows that $P_a \pm P_{ac} \in \mathcal{S}$ and $Q_a^i \pm Q_{ac}^i \in \mathcal{S}$. First assume $n \geq 4$. Let us consider the case $X = P_a$ and $Y = P_b$. Take an integer c $(1 \leq c \leq n-1)$ such that $c \neq a$ and $c \neq b$. By easy calculations we have $\Psi_0(P_a, P_b) = \Psi_0(P_{ac}, P_{bc}) = -(1/2)(E_{ab} + E_{ba})$ and $\Psi_0(P_a, P_{bc}) = \Psi_0(P_{ac}, P_b) = 0$. Since P_a , P_{ac} and $P_a + P_{ac} \in \mathcal{S}$, it follows that $\Psi_1(P_a, P_b) = \Psi_1(P_{ac}, P_{bc})$ (see Lemma 31). Since P_{ac} , $P_{bc} \in \mathfrak{sp}(n-1)$, we have $\Psi_1(P_{ac}, P_{bc}) = \Psi_0(P_{ac}, P_{bc})$ (see the Case (a)). Hence we have $\Psi_1(P_a, P_b) = \Psi_0(P_a, P_b)$. In a similar manner we can prove $\Psi_1(P_a, Q_b^i) = \Psi_0(P_a, Q_b^i)$ (i = 1, 2, 3) and $\Psi_1(Q_a^i, Q_b^j) = \Psi_0(Q_a^i, Q_b^j)$ (i, j = 1, 2, 3). By these facts we obtain the equality $\Psi_1(X, Y) = \Psi_0(X, Y)$ ($X \in \mathfrak{m}_a, Y \in \mathfrak{m}_b$) when $n \geq 4$. Next we assume n=3. Apparently, the method used in the case $n \geq 4$ cannot be applied to this case. We prove **Lemma 35** Assume that n = 3. Then $\Psi_1(\mathfrak{m}_1, \mathfrak{m}_2) \subset \mathfrak{N}(2)$. *Proof.* Set $\mathfrak{B}_a = \{P_a, Q_a^1, Q_a^2, Q_a^3\}$ (a = 1, 2). Let $X \in \mathfrak{B}_1$ and $Y \in \mathfrak{B}_2$. We first show $$\langle \Psi_1(X, Y), \Psi_1(H^1, H^1) \rangle = \langle \Psi_1(X, Y), \Psi_1(H^1, \mathfrak{m}_1 + \mathfrak{m}_2) \rangle = 0.$$ (4.10) If this is true, then we have $\Psi_1(X, Y) \in \mathfrak{N}(2)$, because $\mathfrak{M} = \mathbb{R}\Psi_1(H^1, H^1) + \Psi_1(H^1, \mathfrak{m}_1 + \mathfrak{m}_2)$ (see Lemma 25) and because $\mathfrak{N}(2)$ is the orthogonal complement of \mathfrak{M} in $\mathfrak{N}(3)$. By the Gauss equation (2.3) we have $$\frac{1}{4} ([[H^1, X], H^1], Y) = \langle \mathbf{\Psi}_1(H^1, H^1), \mathbf{\Psi}_1(X, Y) \rangle - \langle \mathbf{\Psi}_1(H^1, Y), \mathbf{\Psi}_1(X, H^1) \rangle.$$ As observed in the proof of Proposition 32, we have $[[H^1, X], H^1] = X$. Since (X, Y) = 0, the left side of the above equality vanishes. Moreover, in view of (4.9) we have $\langle \Psi_1(H^1, Y), \Psi_1(X, H^1) \rangle = 0$. Consequently, we have $\langle \Psi_1(X, Y), \Psi_1(H^1, H^1) \rangle = 0$. Let Z be an arbitrary element of \mathfrak{B}_1 . Then by the Gauss equation (2.3) we have $$\frac{1}{4}([[X, H^1], Y], Z)$$ $$= \langle \mathbf{\Psi}_1(X, Y), \mathbf{\Psi}_1(H^1, Z) \rangle - \langle \mathbf{\Psi}_1(X, Z), \mathbf{\Psi}_1(H^1, Y) \rangle.$$ Here we can easily verify that $[[X, H^1], Y] \in \mathfrak{sp}(2)$ and hence the left side of the above equality vanishes. By Proposition 30 (1), (2) we have $\Psi_1(X, Z) = 0$ if $X \neq Z$. Hence $\langle \Psi_1(X, Y), \Psi_1(H^1, Z) \rangle = 0$. On the other hand, if X = Z, then we have $\Psi_1(X, Z) = \Psi_1(X, X) = \Psi_1(H^1, H^1) + \Psi_1(H^1_1, H^1_1)$ (see Proposition 30). Hence by Proposition 28 (4) and the fact $\Psi_1(H^1_1, H^1_1) \in \mathfrak{N}(2)$ we have $\langle \Psi_1(X, Z), \Psi_1(H^1, Y) \rangle = 0$. Therefore, in this case, we also obtain $\langle \Psi_1(X, Y), \Psi_1(H^1, Z) \rangle = 0$. Since Z is an arbitrary element of \mathfrak{B}_1 , we have $\langle \Psi_1(X, Y), \Psi_1(H^1, \mathfrak{m}_1) \rangle = 0$. In a similar way we can prove $\langle \Psi_1(X, Y), \Psi_1(H^1, \mathfrak{m}_2) \rangle = 0$, showing (4.10). Accordingly, we get $\Psi_1(X, Y) \in \mathfrak{N}(2)$ and hence $\Psi_1(\mathfrak{m}_1, \mathfrak{m}_2) \subset \mathfrak{N}(2)$. Now let $X \in \mathfrak{m}_1$, $Y \in \mathfrak{m}_2$. Take arbitrary elements Z_1 , $Z_2 \in \mathfrak{sp}(2)$. Then by the Gauss equation (2.3) we have $$\frac{1}{4} ([[X, Z_1], Y], Z_2) = \langle \Psi_1(X, Y), \Psi_1(Z_1, Z_2) \rangle - \langle \Psi_1(X, Z_2),
\Psi_1(Z_1, Y) \rangle.$$ By the results of Case (a) and Case (c) we have $\Psi_1(Z_1, Z_2) = \Psi_0(Z_1, Z_2)$, $\Psi_1(X, Z_2) = \Psi_0(X, Z_2)$ and $\Psi_1(Y, Z_1) = \Psi_0(Y, Z_1)$. Therefore we have $$\langle \Psi_1(X, Y), \Psi_0(Z_1, Z_2) \rangle$$ = $\frac{1}{4} ([[X, Z_1], Y], Z_2) + \langle \Psi_0(X, Z_2), \Psi_0(Z_1, Y) \rangle.$ Since Ψ_0 is a solution of the Gauss equation (2.3), we have $$\langle \Psi_0(X, Y), \Psi_0(Z_1, Z_2) \rangle$$ = $\frac{1}{4} ([[X, Z_1], Y], Z_2) + \langle \Psi_0(X, Z_2), \Psi_0(Z_1, Y) \rangle.$ Hence, by subtraction, we have $\langle \Psi_1(X,Y) - \Psi_0(X,Y), \Psi_0(Z_1,Z_2) \rangle = 0$. Here we note that $\Psi_1(X,Y) - \Psi_0(X,Y) \in \mathfrak{N}(2)$. Indeed, we have $\Psi_1(X,Y) \in \mathfrak{N}(2)$ (see Lemma 35) and have $\Psi_0(X,Y) \in \mathfrak{N}(2)$ by a simple calculation. Since $\Psi_0(\mathfrak{sp}(2),\mathfrak{sp}(2)) = \mathfrak{N}(2)$, the above equality implies that $\Psi_1(X, Y) - \Psi_0(X, Y) = 0$, i.e., $\Psi_1(X, Y) = \Psi_0(X, Y)$. This completes the proof of (e) in the case where n = 3. Thus by the above case studies (a) \sim (e) we get $\Psi_1 = \Psi_0$, i.e., $\rho \Psi = \Psi_0$. This completes the proof of Theorem 10. Remark 36 As seen in the above discussion, we have proved Theorem 10 by utilizing the equality $K_{\Psi}(X) = K_0(X)$ for regular elements X or for elements $X \in \mathcal{S}$. After we have established Theorem 10, we easily conclude that $K_{\Psi}(X) = K_0(X)$ holds for any element $X \in \mathfrak{sp}(n)$. #### References - Agaoka Y., Isometric immersions of SO(5). J. Math. Kyoto Univ. 24 (1984), 713–724. - [2] Agaoka Y. and Kaneda E., On local isometric immersions of Riemannian symmetric spaces. Tôhoku Math. J. **36** (1984), 107–140. - [3] Agaoka Y. and Kaneda E., An estimate on the codimension of local isometric imbeddings of compact Lie groups. Hiroshima Math. J. 24 (1994), 77–110. - [4] Agaoka Y. and Kaneda E., Local isometric imbeddings of symplectic groups. Geometriae Dedicata 71 (1998), 75–82. - [5] Agaoka Y. and Kaneda E., Strongly orthogonal subsets in root systems. Hokkaido Math. J. 31 (2002), 107–136. - [6] Agaoka Y. and Kaneda E., A lower bound for the curvature invariant p(G/K) associated with a Riemannian symmetric space G/K. Hokkaido Math. J. **33** (2004), 153–184. - [7] Agaoka Y. and Kaneda E., Local isometric imbeddings of $P^2(\mathbf{H})$ and $P^2(\mathbf{Cay})$. Hokkaido Math. J. **33** (2004), 399–412. - [8] Agaoka Y. and Kaneda E., Rigidity of the canonical isometric imbedding of the Cayley projective plane $P^2(\mathbf{Cay})$. Hokkaido Math. J. **34** (2005), 331–353. - [9] Agaoka Y. and Kaneda E., Rigidity of the canonical isometric imbedding of the quaternion projective plane P²(H). Hokkaido Math. J. 35 (2006), 119–138. - [10] Agaoka Y. and Kaneda E., A lower bound for the class number of $P^n(\mathbf{C})$ and $P^n(\mathbf{H})$. Hokkaido Math. J. **35** (2006), 753–766. - [11] Agaoka Y. and Kaneda E., Local isometric imbeddings of Grassmann manifolds. in preparation. - [12] Allendoerfer C.B., Rigidity for spaces of class greater than one. Amer. J. Math. 61 (1939), 633–644. - [13] Chevalley C., Theory of Lie Groups I. Princeton University Press, Princeton (1946). - [14] Helgason S., Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, New York (1978). - [15] Kaneda E., Global rigidity of compact classical Lie groups. Hokkaido Math. J. 14 (1985), 365–397. - [16] Kaneda E. and Tanaka N., Rigidity for isometric imbeddings. J. Math. Kyoto Univ. 18 (1978), 1–70. - [17] Kobayashi S., Isometric imbeddings of compact symmetric spaces. Tôhoku Math. J. 20 (1968), 21–25. - [18] Kobayashi S. and Nomizu K., Foundations of Differential Geometry II. Wiley-Interscience, New York (1969). - [19] Tanaka N., Rigidity for elliptic isometric imbeddings. Nagoya Math. J. 51 (1973), 137–160. Y. Agaoka Faculty of Integrated Arts and Sciences Hiroshima University 1-7-1 Kagamiyama, Higashi-Hiroshima City Hiroshima, 739-8521 Japan E-mail: agaoka@mis.hiroshima-u.ac.jp E. Kaneda Faculty of Foreign Studies Osaka University of Foreign Studies 8-1-1 Aomadani-Higashi, Minoo City Osaka, 562-8558 Japan E-mail: kaneda@osaka-gaidai.ac.jp