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of the symplectic group Sp(n)

Yoshio Agaoka and Eiji Kaneda

(Received August 5, 2005)

Abstract. In this paper, we discuss the rigidity of Sp(n) as a Riemannian submanifold

of M(n, n;H). We prove that the inclusion map fff0, which is called the canonical isometric

imbedding of Sp(n), is rigid in the following strongest sense: Any isometric immersion

fff1 of a connected open set U(⊂ Sp(n)) into RRR4n2
(∼= M(n, n;H)) coincides with fff0 up

to a euclidean transformation of RRR4n2
, i.e., there is a euclidean transformation a of RRR4n2

satisfying fff1 = afff0 on U .
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Introduction

The subject of this paper is to prove the rigidity of the symplectic group
Sp(n) as a Riemannian submanifold of the space of matrices over the field
of quaternion numbers.

Let M(n, n;H) be the space of n×n-matrices over the field H of quater-
nion numbers. Considering M(n, n;H) as a real vector space, we define a
bilinear form ν on M(n, n;H) by setting

ν
(
X, Y

)
= Re(Trace(tX̄Y )), X, Y ∈ M(n, n;H).

It is easily seen that ν defines an inner product on M(n, n;H). With this
inner product ν we can regard M(n, n;H) as the euclidean space R4n2

. The
symplectic group Sp(n) is given by a submanifold of M(n, n;H) consisting
of all matrices g ∈ M(n, n;H) satisfying gtḡ = tḡg = In, where In is
the identity matrix of degree n. The induced metric on Sp(n), which is
denoted by the same symbol ν, is bi-invariant on Sp(n). The inclusion
map fff0 : Sp(n) −→ M(n, n;H) ∼= R4n2

gives an isometric imbedding of
the Riemannian manifold (Sp(n), ν) into R4n2

and is called the canonical
isometric imbedding of Sp(n) into R4n2

(cf. Kobayashi [17]). In this paper
we will discuss the rigidity of the canonical isometric imbedding fff0.

Let M be a Riemannian manifold and let fff be an isometric imbedding of
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M into the euclidean space RN . By definition fff is called strongly rigid when
fff is rigid even if we restrict fff to any connected open set of M , i.e., for any
isometric immersion fff ′ of a connected open set U(⊂ M) into RN there exists
a euclidean transformation a of RN satisfying fff ′ = afff on U . In [8] and [9] we
showed that the canonical isometric imbeddings of the quaternion projective
plane P 2(H) and the Cayley projective plane P 2(CAY) are strongly rigid.

Concerning the canonical isometric imbedding fff0 of Sp(n) into R4n2
,

the following results are known:
(1) In the case where n = 1, fff0 is just the standard isometric imbedding

of S3(∼= Sp(1)) into R4 with radius 1, which is a typical example of
isometric imbeddings with type number 3. Accordingly, by Allendoer-
fer [12] fff0 is known to be strongly rigid.

(2) By investigating the Gauss equation of Sp(2) in codimension 6 (for the
definition, see §2 below), Agaoka [1] showed that the set of solutions
of the Gauss equation is composed of essentially one solution, i.e., any
solution is equivalent to the second fundamental form of fff0. Utilizing
this fact, Agaoka proved that fff0 is strongly rigid when n = 2.

(3) Kaneda [15] proved that fff0(n ≥ 1) is globally rigid in the sense of
Tanaka [19], i.e., if two differentiable maps fff i(i = 1, 2) of Sp(n) into
R4n2

lie both near to fff0 with respect to C3-topology, and if they
induce the same Riemannian metric on Sp(n), then there is a euclidean
transformation a of R4n2

such that fff2 = afff1.
(4) By determining the pseudo-nullity of Sp(n)(n ≥ 1), Agaoka-Kaneda [4]

proved that R4n2
is the least dimensional euclidean space into which

Sp(n) can be locally isometrically immersed. (For the definition of
the pseudo-nullity, see §1.) In other words, Sp(n)(n ≥ 1) cannot be
isometrically immersed into R4n2−1 even locally.

In this paper, we will extend these results (1) ∼ (4) in the following
strongest sense:

Theorem 1 Let fff0 be the canonical isometric imbedding of the symplectic
group Sp(n) into the euclidean space R4n2

. Then fff0 is strongly rigid, i.e.,
for any isometric immersion fff of a connected open set U(⊂ Sp(n)) into
R4n2

there is a euclidean transformation a of R4n2
satisfying fff = afff0 on U .

It should be noted that Sp(n)(n ≥ 1) are the first examples such that
the canonical isometric imbeddings of a series of Riemannian symmetric
spaces parametrized by rank are strongly rigid. We note that Theorem 1
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for the cases n ≥ 2 cannot be proved by applying the theory of type number
in [12]. In fact, the type number of the canonical isometric imbedding fff0

of Sp(n) is less than 2 in case n ≥ 2 (precisely, see Remark 11 in §2).
The method of our proof is quite similar to the methods adopted in [8]
and [9]. We first make a preparatory study on pseudo-abelian subspaces of
sp(n), which is the Lie algebra of Sp(n). Utilizing the knowledge about the
pseudo-abelian subspaces of maximum dimension, we determine the set of
all solutions of the Gauss equation of Sp(n) in codimension 2n2−n(= 4n2−
dimSp(n)). Under this situation, it will be shown that the set of solutions
is composed of essentially one solution, i.e., any solution is equivalent to the
second fundamental form of fff0. Therefore by the theorem of coincidence
(Theorem 5 of [8, pp. 335–336]) we can establish our rigidity theorem of
Sp(n) (Theorem 1).

Throughout this paper we will assume the differentiability of class C∞.
For the notations of Lie algebras and Riemannian symmetric spaces, see
Helgason [14]. For the quaternion numbers and the symplectic group Sp(n),
see Chevalley [13].

1. The pseudo-nullity of Sp(n)

In this section we study the pseudo-nullity of Sp(n). We first recall
the notion of a pseudo-abelian subspace (precisely, see [3]). Let G be a
compact simple Lie group. Let g be the Lie algebra of G and h be a Cartan
subalgebra of g. A subspace W ⊂ g is called pseudo-abelian with respect
to h (or simply, pseudo-abelian) if it satisfies [W, W ] ⊂ h. The maximum
dimension of pseudo-abelian subspaces, which does not depend on the choice
of a Cartan subalgebra h, is called the pseudo-nullity of G and is denoted
by pG. The pseudo-nullity of the symplectic group Sp(n) has been already
determined:

Theorem 2 (see [4]) For the symplectic group G = Sp(n)(n ≥ 1), the
pseudo-nullity is equal to 2n, i.e., pSp(n) = 2n.

In what follows we determine the pseudo-abelian subspace W of sp(n)
which attains the maximum dimension, i.e., dimW = pSp(n) = 2n. First
recall the field of quaternion numbers: Let R be the field of real numbers.
The field H of quaternion numbers is an algebra over R generated by the
elements e0, e1, e2 and e3 satisfying
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(1) e0ei = eie0 = ei (i = 0, 1, 2, 3);
(2) (ei)2 = −e0 (i = 1, 2, 3);
(3) For each permutation {i, j, k} of {1, 2, 3} it holds eiej = ε(ijk)ek,

where ε(ijk) = 1 (resp. ε(ijk) = −1) if {i, j, k} is an even (resp. odd)
permutation.

From (1) we can see that e0 is a unit element of H. Let us simply express
the element ae0 (a ∈ R) as a. In this meaning R is contained in H and
forms a subfield of H.

Let f ∈ H. Then f may be written in the form f = f0 +
∑3

i=1 fie
i,

where f0, f1, f2, f3 ∈ R. As usual we define the real part and the conjugate
of f as follows: Re(f) = f0; f̄ = f0 −

∑3
i=1 fie

i. Then we have Re(f) =
Re(f̄), ff̄ = f̄f =

∑3
i=0 f2

i . Moreover:

Re(fh) = Re(hf), fh = h̄f̄ , f, h ∈ H.

Let i = 1, 2 or 3. Define a subset Ci of H by Ci = R + Rei. It is
easily seen that Ci forms a subfield of H and is isomorphic to the field C
of complex numbers. We also define a subset Di of H by Di = Rej + Rek,
where j and k are so chosen that {i, j, k} is a permutation of {1, 2, 3}.
Then it is clear that

CiDi = DiCi = Di; DiDi = Ci.

In the following we denote by M(p, q;H) the space of p × q-matrices
over H. As stated in Introduction, the symplectic group Sp(n) is considered
as a submanifold of M(n, n;H) ∼= R4n2

. As usual, we identify the tangent
space of Sp(n) at the identity In ∈ Sp(n) with the Lie algebra sp(n), which
is consisting of all matrices X ∈ M(n, n;H) satisfying tX̄ = −X. Let us
denote by Est (1 ≤ s, t ≤ n) the matrix of M(n, n;H) such that the (s, t)-
component is 1 and the others are 0. We define subspaces h(n)i and p(n)i

of sp(n) by

h(n)i =
n∑

s=1

ReiEss; p(n)i =
n∑

s=1

DiEss.

As is well-known, h(n)i is a Cartan subalgebra of sp(n). Moreover:

Proposition 3 Let i = 1, 2 or 3. Then, p(n)i is pseudo-abelian with
respect to h(n)i with dim p(n)i = pSp(n).
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Proof. It is clear that dim p(n)i = 2n. Let X =
∑

s usEss, Y =
∑

s vsEss ∈
p(n)i, where us, vs ∈ Di. Then, since EssEss = Ess and EssEs′s′ = 0 (s 6=
s′), we have [X, Y ] =

∑
s(usvs − vsus)Ess. Since us, vs ∈ Di, it follows

that usvs, vsus ∈ Ci and usvs − vsus ∈ Rei. Hence [X, Y ] ∈ h(n)i, proving
[p(n)i, p(n)i] ⊂ h(n)i. ¤

Further, the space p(n)i is the only pseudo-abelian subspace with re-
spect to h(n)i of dimension pSp(n). In fact, we have

Theorem 4 Let i = 1, 2 or 3. Let W be a pseudo-abelian subspace with
respect to h(n)i satisfying dimW = pSp(n). Then W = p(n)i.

In the rest of this section we prove this theorem. Let X =
∑

st ξstEst ∈
M(n, n;H). We denote by xp = (ξp1, . . . , ξpn) ∈ M(1, n;H) the p-th row
of X and by xq = t(ξ1q, . . . , ξnq) ∈ M(n, 1;H) the q-th column of X. Then
we may write

X =




x1
...

xn


 =

(
x1, . . . , xn

)
.

As is easily seen, X ∈ sp(n) if and only if

tx̄p+xp = 0 (1 ≤ p ≤ n). (1.1)

Let X =
(
x1, . . . , xn

)
, Y =

(
y1, . . . , yn

) ∈ sp(n). Then [X, Y ] ∈ h(n)i if
and only if the following conditions are satisfied:

(
xp, yq

)
=

(
yp, xq

)
(1 ≤ p < q ≤ n), (1.2)(

xr, yr
) ∈ Ci (1 ≤ r ≤ n), (1.3)

where
(

,
)

denotes the inner product of M(n, 1;H) defined by
(
ξ, η

)
= tξ̄η

for ξ, η ∈ M(n, 1;H). Then we note the following formula:
(
ξ, η

)
=

(
η, ξ

)
,

(
ξf, η

)
= f̄

(
ξ, η

)
,

(
ξ, ηf

)
=

(
ξ, η

)
f, f ∈ H.

(1.4)
Now we start the proof of Theorem 4 by induction on n. First consider

the case n = 1. In a natural way we identify M(1, 1;H) with H. Then by
(1.1) we know that w = a0 +

∑3
j=1 aje

j ∈ H belongs to sp(1) if and only
if a0 = 0. Let W be a pseudo-abelian subspace of sp(1) with respect to
h(1)i with dimW = 2. Suppose that W 6= Di. Take a basis {w, w′} of W



84 Y. Agaoka and E. Kaneda

such that w 6∈ Di, i.e., w is an element written in the form w =
∑3

j=1 aje
j ,

where ai 6= 0. By subtracting a scalar multiple of w from w′ if necessary,
we may assume that w′ ∈ Di. Then we have ww′ = (

∑
j 6=i aje

j)w′ + aie
iw′,

(
∑

j 6=i aje
j)w′ ∈ Ci and aie

iw′ ∈ Di. On the other hand, by (1.3) we have
ww′ = −w̄w′ ∈ Ci. This is impossible because aie

iw′ 6= 0. Hence we have
W = Di = p(1)i, showing that Theorem 4 is true when n = 1.

We now assume that n ≥ 2 and Theorem 4 is true for any n′ (1 ≤ n′ <
n). For simplicity, we regard sp(s) (1 ≤ s < n) as a subalgebra of sp(n) in
the following manner:

sp(s) 3 X 7−→
(

X 0
0 0

)
∈ sp(n).

Let W be a pseudo-abelian subspace of sp(n) with respect to h(n)i. As in
[4] we define an ascending chain of subspaces

0 = W0 ⊂ W1 ⊂ W2 ⊂ · · · ⊂ Wn = W

by setting Wr = sp(r) ∩W (1 ≤ r ≤ n). (Note that the numbering of the
above chain is the reverse order of that in [4, p. 79].) It is obvious that Wr

is a pseudo-abelian subspace of sp(r) with respect to h(r)i. Put

Cr =
{
xr ∈ M(n, 1;H) | (x1, . . . , xr,

n−r︷ ︸︸ ︷
0, . . . , 0) ∈ Wr

}

(r = 1, . . . , n).

Then it is clear that Cr
∼= Wr/Wr−1 (1 ≤ r ≤ n) and dimW = c1 + · · ·+cn,

where we set cr = dim Cr (1 ≤ r ≤ n). Moreover, by (1.2) and (1.3) we
have

(
Cp, Cq

)
= 0 (1 ≤ p < q ≤ n), (1.5)(

Cr, Cr

) ⊂ Ci (1 ≤ r ≤ n). (1.6)

The above equalities (1.5) and (1.6) will play decisive roles in the proof of
Theorem 4.

By CHr (1 ≤ r ≤ n) we denote the right H-subspace of M(n, 1;H)
generated by Cr. Set kr = dimHCHr (1 ≤ r ≤ n). Then, in view of (1.5)
and (1.4) we have

(
CHp , CHq

)
= 0 (1 ≤ p < q ≤ n). (1.7)
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Utilizing (1.6) and (1.7), we have proved in [4] the following

Lemma 5 (see [4]) Under the setting stated above the following (1) and
(2) hold:
(1) k1 + · · ·+ kn ≤ n.
(2) cr ≤ 2kr (1 ≤ r ≤ n).
In particular, if dimW = pSp(n) (= 2n), then k1 + · · · + kn = n and cr =
2kr (1 ≤ r ≤ n).

In what follows we assume that W is a pseudo-abelian subspace with
respect to h(n)i satisfying dimW = pSp(n). Let us define an R-linear en-
domorphism ξ 7−→ ξ̃ of M(n, 1;H) by setting ξ̃ = t(ξ1, . . . , ξn−1, 0) for
ξ = t(ξ1, . . . , ξn) ∈ M(n, 1;H). Let C̃n be the image of Cn by this endo-
morphism. We first prove

Lemma 6 kn ≥ 1 and dimH C̃n
H ≤ kn − 1.

Proof. Suppose that kn = 0. Then we have Cn = 0 and hence W = Wn−1.
Therefore, in a natural way W may be regarded as a pseudo-abelian sub-
space of sp(n−1) with respect to h(n−1)i. This implies dimW ≤ pSp(n−1) =
2(n−1), contradicting the assumption dimW = 2n. Consequently, we have
kn ≥ 1. Let ξ ∈ Cn and η ∈ C1 + · · · + Cn−1. Since η is written as η =
t(η1, . . . , ηn−1, 0), we have

(
ξ̃, η

)
=

(
ξ, η

)
= 0 (see (1.5)). Hence we have(

C̃n, C1+· · ·+Cn−1

)
= 0. Viewing (1.4), we have

(
C̃n

H
, CH1 +· · ·+CHn−1

)
=

0. Since both C̃n
H

and CH1 + · · · + CHn−1 may be regarded as subspaces of

M(n− 1, 1;H), we have dimH C̃n
H ≤ n− 1− (k1 + · · ·+ kn−1) (see (1.7)).

Therefore by Lemma 5 we obtain dimH C̃n
H ≤ kn − 1. ¤

Let C ′
n be the subset of Cn consisting of all t(ξ1, . . . , ξn) ∈ Cn such

that the n-th component ξn ∈ Di, i.e., C ′
n = {t(ξ1, . . . , ξn) ∈ Cn | ξn ∈ Di}.

Clearly, C ′
n is a subspace of Cn. We denote by C̃ ′

n the image of C ′
n by the

endomorphism ξ 7−→ ξ̃. Then we can show

Lemma 7 dimC ′
n ≥ 2kn − 1 and dim C̃ ′

n ≤ 2(kn − 1).

Proof. First we note that ξn ∈ Rei + Di holds for any ξ = t(ξ1, . . . , ξn) ∈
Cn. Indeed, ξn is the (n, n)-component of a certain matrix X ∈ sp(n) (recall
the definition of Cn). Consequently, we have dimC ′

n ≥ dimCn − 1 = cn −
1 = 2kn − 1.
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We next prove the second inequality. Let ξ = t(ξ1, . . . , ξn) ∈ C ′
n and

η = t(η1, . . . , ηn) ∈ C ′
n. Then we easily have

(
ξ̃, η̃

)
=

(
ξ, η

)− ξnηn. Since(
ξ, η

) ∈ Ci (see (1.6)) and ξnηn ∈ DiDi = Ci, it follows that
(
ξ̃, η̃

) ∈ Ci.
This proves

(
C̃ ′

n, C̃ ′
n

) ⊂ Ci. By this fact we can deduce that C̃ ′
n ∩ C̃ ′

nej = 0
for any j (= 1, 2, 3) such that j 6= i. In fact, if there is an element ξ̃ ∈ C̃ ′

n

such that ξ̃ej ∈ C̃ ′
n, then we have Ci 3 (

ξ̃, ξ̃ej
)

=
(
ξ̃, ξ̃

)
ej ∈ Ciej = Di.

Since Ci ∩ Di = 0, it follows that
(
ξ̃, ξ̃

)
= 0, i.e., ξ̃ = 0. Thus, we know

that C̃ ′
n + C̃ ′

nej (⊂ C̃n
H
) is a direct sum if j 6= i. Consequently, we have

2 dim C̃ ′
n ≤ 4 dimH C̃n

H ≤ 4(kn−1), i.e., dim C̃ ′
n ≤ 2(kn−1) (see Lemma 6).

This completes the proof of the lemma. ¤

With the basis of Lemma 7 we can show

Lemma 8 Let Dn be the kernel of the linear mapping Cn 3 ξ 7−→ ξ̃ ∈ C̃n.
Then:
(1) Dn = {t(0, . . . , 0, w) ∈ M(n, 1;H) | w ∈ Di}.
(2) C̃n ⊂ Cn.
(3) Cn = Dn + C̃n (direct sum); dim C̃n = cn − 2.

Proof. By Lemma 7 we have dim C ′
n − dim C̃ ′

n ≥ 2kn − 1− 2(kn − 1) > 0.
This implies that Dn ∩ C ′

n 6= 0. Let ξ be a non-trivial element of Dn ∩ C ′
n.

Then, by the definitions of Dn and C ′
n, we know that ξ may be written

as ξ = t(0, . . . , 0, w), where w ∈ Di (w 6= 0). Let η = t(η1, . . . , ηn) be
an arbitrary element of Cn. Then by (1.6) we have

(
ξ, η

)
= w̄ηn ∈ Ci.

Hence we can easily show that ηn ∈ Di (see the proof for the case n = 1).
Accordingly, η ∈ C ′

n and hence C ′
n = Cn. Therefore, we have

dimDn = dim Cn−dim C̃n = dim Cn−dim C̃ ′
n ≥ cn−2(kn−1) = 2.

On the other hand, since Dn ⊂ Cn = C ′
n, we have Dn ⊂ {t(0, . . . , 0, w) |

w ∈ Di} and hence dimDn ≤ dimDi = 2. This, together with the above
inequality, proves dimDn = 2 and Dn = {t(0, . . . , 0, w) | w ∈ Di}. Thus
we obtain (1).

Let ζ = t(ζ1, . . . , ζn) ∈ M(n, 1;H) be an arbitrary element of Cn.
Since Cn = C ′

n, we have ζn ∈ Di and hence ζ ′ = t(0, . . . , 0, ζn) ∈ Dn ⊂
Cn. Consequently, ζ̃ = t(ζ1, . . . , ζn−1, 0) = ζ − ζ ′ ∈ Cn, showing (2). The
assertion (3) immediately follows from (1) and (2). ¤
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With these preparations we can show

Lemma 9 C̃n = 0. Accordingly, Cn = Dn.

Proof. We first prove

C̃n∩ C̃nei = 0. (1.8)

Suppose that there is an element ξ̃ = t(ξ1, . . . , ξn−1, 0) ∈ C̃n such that
ξ̃ei ∈ C̃n. Note that C̃n ⊂ Cn (see Lemma 8 (2)). By the definition of Cn

we know that there are matrices X and Y ∈ W written in the form

X =
(

X ′ ξ′

−tξ̄′ 0

)
, Y =

(
Y ′ ξ′ei

ei tξ̄′ 0

)
,

where X ′, Y ′ ∈ sp(n − 1) and ξ′ = t(ξ1, . . . , ξn−1) ∈ M(n − 1, 1;H). Take
an integer j (= 1, 2, 3) such that j 6= i. Since t(0, . . . , 0, ej) ∈ Dn ⊂ Cn,
we know that there is an element Z ∈ W of the form

Z =
(

Z ′ 0
0 ej

)
,

where Z ′ ∈ sp(n − 1). Since W is a pseudo-abelian with respect to h(n)i,
we have [X, Z] ∈ h(n)i and [Y, Z] ∈ h(n)i. Hence by a direct calculation
we can show

Z ′ξ′ = ξ′ej ; Z ′(ξ′ei) = (ξ′ei)ej . (1.9)

By the second equality of (1.9) we have (Z ′ξ′)ei = ξ′(eiej) = −ξ′(ejei) =
−(ξ′ej)ei and hence Z ′ξ′ = −ξ′ej . This, together with the first equality
of (1.9), proves Z ′ξ′ = ξ′ej = 0. Hence we have ξ′ = 0, i.e., ξ̃ = 0. This

implies (1.8). As a result of (1.8), the subspace C̃n + C̃nei (⊂ C̃n
H
) is a

direct sum. Since dim C̃n = cn − 2 = 2(kn − 1) (see Lemma 8 (3) and

Lemma 5), it follows that dimR C̃n
H ≥ 2 dim C̃n = 4(kn − 1). Hence we

have dimH C̃n
H

= (1/4) dimR C̃n
H ≥ kn − 1. On the other hand, we have

dimH C̃n
H ≤ kn−1 (see Lemma 6). Therefore, we obtain dimH C̃n

H
= kn−1

and C̃n
H

= C̃n + C̃nei. More strongly, we can prove C̃n = 0. In fact, since
C̃n

H
= C̃n + C̃nei, it follows that

(
C̃n

H
, C̃n

H) ⊂ (
C̃n, C̃n

)
+

(
C̃nei, C̃n

)
+

(
C̃n, C̃nei

)
+

(
C̃nei, C̃nei

)
.

If C̃n 6= 0, then it is easy to see that
(
C̃n

H
, C̃n

H)
= H. However, the
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right side of the above inclusion is contained in Ci, because
(
C̃n, C̃n

) ⊂(
Cn, Cn

) ⊂ Ci (see Lemma 8 (2) and (1.6)),
(
C̃nei, C̃n

) ⊂ eiCi = Ci,(
C̃n, C̃nei

) ⊂ Ciei = Ci and
(
C̃nei, C̃nei

) ⊂ eiCiei = Ci (see (1.4)). This is
a contradiction. Hence we have C̃n = 0. The equality Cn = Dn now follows
immediately. ¤

Proof of Theorem 4. By Lemma 9 and Lemma 8 (3) we have cn = 2kn = 2.
Hence, Wn−1, which is a pseudo-abelian subspace of sp(n− 1) with respect
to h(n − 1)i, satisfies dim Wn−1 = c1 + · · · + cn−1 = 2(n − 1) = pSp(n−1).
Therefore, by the hypothesis of our induction we know that Wn−1 = p(n−
1)i. From this fact we can deduce W = p(n)i. In fact, let X be an arbitrary
element of W . Then X may be written as X =

(
X′ 0
0 w

)
, where X ′ ∈ sp(n−

1), w ∈ Di (see Lemma 9 and Lemma 8 (1)). Since [X, Wn−1] ⊂ h(n)i, it
follows that [X ′, p(n − 1)i] ⊂ h(n − 1)i. Hence we have X ′ ∈ p(n − 1)i,
because p(n − 1)i is a maximal pseudo-abelian subspace of sp(n − 1) with
respect to h(n − 1)i. Consequently, we have X ∈ p(n)i and W = p(n)i,
which completes the proof of Theorem 4. ¤

2. The Gauss equation of Sp(n)

Let M be a Riemannian manifold. We denote by g the Riemannian
metric of M and by R the Riemannian curvature tensor of type (1, 3) with
respect to g. Let x ∈ M and let Tx(M) (resp. T ∗x (M)) be the tangent (resp.
cotangent) vector space of M at x. Let r be a non-negative integer. We
define a quadratic equation with respect to an unknown Ψ ∈ S2T ∗x (M)⊗Rr

by

− g(R(X, Y )Z, W )

=
〈
Ψ(X, Z), Ψ(Y, W )

〉− 〈
Ψ(X, W ), Ψ(Y, Z)

〉
, (2.1)

where X, Y , Z, W ∈ Tx(M) and
〈

,
〉

is the standard inner product of Rr.
We call (2.1) the Gauss equation in codimension r at x. The set of solutions
of (2.1) is called the Gaussian variety in codimension r at x and is denoted
by Gx(M, Rr).

Let O(r) be the orthogonal group of Rr. We define an action of O(r)
on S2T ∗x (M)⊗ Rr by

(ρΨ)(X, Y ) = ρ(Ψ(X, Y )), X, Y ∈ Tx(M), ρ ∈ O(r). (2.2)
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As is easily seen, if Ψ is a solution of (2.1), then ρΨ is also a solution of (2.1)
for any ρ ∈ O(r). We say that Gx(M, Rr) is EOS if Gx(M, Rr) 6= ∅ and if
Gx(M, Rr) is composed of essentially one solution, i.e., for any solutions Ψ1

and Ψ2 ∈ Gx(M, Rr) there is an element ρ ∈ O(r) such that Ψ2 = ρΨ1.
In the following we consider the case where M is the symplectic group

Sp(n) endowed with the bi-invariant metric ν, which is induced from the
inclusion Sp(n) ⊂ M(n, n;H). As usual we identify the tangent space of
Sp(n) at the identity In with the Lie algebra sp(n). We denote by

(
,

)
the inner product of sp(n) induced from ν at In. The curvature transfor-
mation R0(X, Y ) (X, Y ∈ sp(n)) of Sp(n) at In is given by R0(X, Y ) =
−(1/4) ad([X, Y ]) (see [14]). Hence at In the Gauss equation (2.1) is written
as

1
4
([

[X, Y ], Z
]
, W

)

=
〈
Ψ(X, Z), Ψ(Y, W )

〉− 〈
Ψ(X, W ), Ψ(Y, Z)

〉
, (2.3)

where Ψ ∈ S2(sp(n)∗)⊗Rr and X, Y, Z, W ∈ sp(n). We simply denote by
G(Sp(n), Rr) the Gaussian variety in codimension r at In. The main aim
of this and the subsequent sections is to prove

Theorem 10 For any positive integer n the Gaussian variety
G(Sp(n), R2n2−n) in codimension 2n2 − n is EOS.

By homogeneity, we know that the Gaussian variety Gx(Sp(n), R2n2−n)
in codimension 2n2−n is EOS at each x ∈ Sp(n). By this result we conclude
that Sp(n) is formally rigid in codimension 2n2 − n. (For the definition of
formal rigidness, see [8].) Accordingly, by Theorem 5 of [8] we can establish
the rigidity theorem of Sp(n) (Theorem 1).

In the following we will prove Theorem 10 by induction on n. As we
have stated in the introduction, if n = 1, then Sp(1) ∼= S3 and the canonical
isometric imbedding fff0 is the inclusion map of the standard sphere S3 with
radius 1 into R4. The second fundamental form Ψ0 of fff0 at xxx ∈ S3 is given
by Ψ0 = −νxxx. Hence fff0 is a typical example of an isometric imbedding
with type number 3. By applying the theory of type number in [12] or by
a direct calculation we know that any solution Ψ of the Gauss equation of
S3 in codimension 1 can be represented by Ψ = ±Ψ0. Therefore we get
Theorem 10 for the case n = 1. For this reason we may assume n ≥ 2 in
the following discussion.
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Remark 11 It should be noted that in case n ≥ 2 the theory of type
number in [12] is not applicable to the canonical isometric imbedding fff0

of Sp(n). In fact, for an isometric imbedding fff of a Riemannian manifold
M into the euclidean space Rm, the type number k of fff must satisfy the
inequality k ≤ dimM/(m− dimM) (see [18] or [16]). Consequently, in the
case of fff0 we can easily show that k < 2 when n ≥ 2.

Now let N(n) be the subspace of M(n, n;H) composed of all X ∈
M(n, n;H) satisfying tX̄ = X. Clearly, we have dim N(n) = 2n2 − n and

M(n, n;H) = sp(n)+N(n) (orthogonal direct sum).

As is easily seen, N(n) is the normal vector space of the canonical isometric
imbedding fff0 at In. The second fundamental form Ψ0 of fff0 at In is an
element of S2(sp(n)∗)⊗N(n) given by

Ψ0(X, Y ) =
1
2
(
XY +Y X

)
, X, Y ∈ sp(n) (2.4)

(see [15, p. 370]). Under a natural identification (N(n), ν) ∼= (R2n2−n,
〈

,
〉
)

as euclidean vector spaces we can regard the unknown Ψ in the Gauss
equation (2.3) in codimension 2n2 − n as an element of S2(sp(n)∗)⊗N(n).
(In what follows, the inner product ν of N(n) will be denoted by

〈
,

〉
.)

Therefore the Gaussian variety G(Sp(n), R2n2−n) may be considered as a
subset of S2(sp(n)∗)⊗N(n). In this meaning we write G(Sp(n), R2n2−n) as
G(Sp(n),N(n)). Then Ψ0 may be considered as an element of G(Sp(n),N(n)),
which is called the canonical solution of the Gauss equation (2.3) in codi-
mension 2n2 − n. Now Theorem 10 may be stated in the following way:
Any solution Ψ ∈ G(Sp(n), N(n)) of the Gauss equation (2.3) is equivalent
to Ψ0, i.e., there is an element ρ ∈ O(N(n)) such that Ψ = ρΨ0, where
O(N(n)) stands for the orthogonal group of N(n).

3. The space KKKΨ(X)

In this section we assume that n ≥ 2. Let Ψ ∈ S2(sp(n)∗) ⊗ N(n)
and let X ∈ sp(n). We define a linear mapping ΨX : sp(n) −→ N(n) by
setting ΨX(Y ) = Ψ(X, Y ) (Y ∈ sp(n)). By KKKΨ(X) (⊂ sp(n)) we denote
the kernel of ΨX . In this section we investigate the kernel KKKΨ(X) for a
solution Ψ of the Gauss equation (2.3), i.e., Ψ ∈ G(Sp(n), N(n)). As in
the case of P 2(H) or P 2(CAY), the knowledge about KKKΨ(X) will play an
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important role to determine the solutions of the Gauss equation (2.3) (cf.
[8] and [9]).

Let X ∈ sp(n). By C(X) we denote the centralizer of X in sp(n). Then
we have

Lemma 12 Let Ψ ∈ S2(sp(n)∗)⊗N(n) and X ∈ sp(n). Then:
(1) dimKKKΨ(X) ≥ 2n.
(2) If Ψ ∈ G(Sp(n), N(n)), then [KKKΨ(X), KKKΨ(X)] ⊂ C(X).

Proof. Since

dimKKKΨ(X) ≥ dimSp(n)−dimN(n) = (2n2+n)−(2n2−n) = 2n,

we get (1). Assume that Ψ ∈ G(Sp(n), N(n)). Then by (2.3) for each Y ∈
sp(n) we have

(
[[KKKΨ(X), KKKΨ(X)], X], Y ]

) ⊂ 〈
Ψ(KKKΨ(X), X), Ψ(KKKΨ(X), Y )

〉

= 0.

Consequently, we have [[KKKΨ(X), KKKΨ(X)], X] = 0. The assertion (2) im-
mediately follows from this equality (cf. [10, Lemma 3]). ¤

Let X ∈ sp(n). Since sp(n) is a compact simple Lie algebra, we know
that dimC(X) ≥ rank(sp(n)) = n. We recall that an element X ∈ sp(n) is
called regular (resp. singular) if dimC(X) = n (resp. dimC(X) > n).

Lemma 13 Let Ψ ∈ G(Sp(n), N(n)) and H ∈ h(n)i (i = 1, 2, 3). Then
KKKΨ(H) ⊃ p(n)i. If H is regular, then the equality KKKΨ(H) = p(n)i holds.

Proof. Let H ∈ h(n)i. Then by Lemma 12 (2) we have [KKKΨ(H), KKKΨ(H)]⊂
C(H). Assume that H is regular. Then, since C(H) = h(n)i, we have
[KKKΨ(H), KKKΨ(H)] ⊂ h(n)i. This implies that KKKΨ(H) is a pseudo-abelian
subspace with respect to h(n)i. Therefore we have dimKKKΨ(H) ≤ pSp(n) =
2n (see Theorem 2). On the other hand, since dimKKKΨ(H) ≥ 2n (see
Lemma 12 (1)), it follows that dimKKKΨ(H) = 2n. Hence KKKΨ(H) = p(n)i

(see Theorem 4). Let H ′ ∈ h(n)i be an arbitrary element. Note that regular
elements are dense in h(n)i and, as we have shown, Ψ(H, p(n)i) = 0 holds
for any regular element H ∈ h(n)i. Because of the continuity of Ψ we have
Ψ(H ′, p(n)i) = 0. This shows that KKKΨ(H ′) ⊃ p(n)i. ¤

Let Ψ ∈ S2(sp(n)∗) ⊗ N(n) and let g ∈ Sp(n). We define an element



92 Y. Agaoka and E. Kaneda

Ψg ∈ S2(sp(n)∗)⊗N(n) by

(Ψg)(X, Y ) = Ψ(Ad(g−1)X, Ad(g−1)Y ), X, Y ∈ sp(n). (3.1)

Then we can easily see the following

Lemma 14 Let Ψ ∈ S2(sp(n)∗)⊗N(n) and let g ∈ Sp(n). Then:
(1) KKKΨg(X) = Ad(g)KKKΨ(Ad(g−1)X), X ∈ sp(n).
(2) Ψg ∈ G(Sp(n), N(n)) if and only if Ψ ∈ G(Sp(n), N(n)).

Combining Lemma 13 with Lemma 14, we have

Proposition 15 Let Ψ ∈ G(Sp(n), N(n)), X ∈ sp(n) and g ∈ Sp(n).
Assume that Ad(g)X ∈ h(n)i for some i (= 1, 2, 3). Then KKKΨ(X) ⊃
Ad(g−1)p(n)i. Further, if X is regular, then KKKΨ(X) = Ad(g−1)p(n)i.

Proof. Note that Ψg ∈ G(Sp(n), N(n)) (see Lemma 14 (2)). Apply-
ing Lemma 13 to Ψg, we have KKKΨg(Ad(g)X) ⊃ p(n)i. Therefore by
Lemma 14 (1) we have p(n)i ⊂ KKKΨg(Ad(g)X) = Ad(g)KKKΨ(X). Conse-
quently, KKKΨ(X) ⊃ Ad(g−1)p(n)i. If X is regular, then Ad(g)X is also
regular. Accordingly, we have KKKΨg(Ad(g)X) = p(n)i and hence KKKΨ(X) =
Ad(g−1)p(n)i. ¤

Remark 16 Let Ψ ∈ G(Sp(n), N(n)). It is well-known that any element
of sp(n) is conjugate to an element of a Cartan subalgebra h(n)i. Therefore,
for a regular element X ∈ sp(n) the space KKKΨ(X) is determined by Propo-
sition 15. Here we note that if X is regular, then KKKΨ(X) does not depend
on the choice of the solution Ψ ∈ G(Sp(n), N(n)), i.e., KKKΨ(X) = KKKΨ′(X)
holds for any Ψ, Ψ′ ∈ G(Sp(n), N(n)).

In the following discussion, we will determine KKKΨ(X) for singular ele-
ments X ∈ sp(n) of special type. By Proposition 15 we immediately obtain

Proposition 17 Let Ψ ∈ G(Sp(n), N(n)). Let i = 1, 2 or 3 and X ∈
sp(n). Denote by Gi

X the subset of Sp(n) consisting of all g ∈ Sp(n) such
that Ad(g)X ∈ h(n)i. Then:

KKKΨ(X) ⊃
∑

g∈Gi
X

Ad(g−1)p(n)i. (3.2)

Let a, b and i are integers satisfying 1 ≤ a 6= b ≤ n, 1 ≤ i ≤ 3. Define
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elements H i
a, Pab and Qi

ab ∈ M(n, n;H) by

H i
a = Eaae

i; Pab = −Pba = Eab−Eba; Qi
ab = Qi

ba = (Eab+Eba)ei.

Then it is easily seen that H i
a, Pab, Qi

ab ∈ sp(n) and
(
H i

a, Hj
b

)
= δabδij ;

(
H i

a, Pcd

)
=

(
H i

a, Qj
cd

)
= 0;(

Pab, Pcd

)
= 2(δacδbd − δadδbc);

(
Pab, Qi

cd

)
= 0;

(
Qi

ab, Qj
cd

)
= 2(δacδbd + δadδbc)δij .

(3.3)

Therefore the set {H i
a (1 ≤ a ≤ n)} forms an orthonormal basis of h(n)i (1 ≤

i ≤ 3) and the set {H i
a (1 ≤ a ≤ n, 1 ≤ i ≤ 3), (1/

√
2)Pab (1 ≤ a < b ≤

n), (1/
√

2)Qi
ab (1 ≤ a < b ≤ n, 1 ≤ i ≤ 3)} forms an orthonormal basis of

sp(n).
Let a, b and i are integers satisfying 1 ≤ a 6= b ≤ n, 1 ≤ i ≤ 3. Define a

subspace si
ab by si

ab = R(H i
a −H i

b) + RPab + RQi
ab. By an easy calculation

we have

[H i
a −H i

b, Pab] = 2Qi
ab; [H i

a −H i
b, Qi

ab] = −2Pab;

[Pab, Qi
ab] = 2(H i

a −H i
b).

This indicates that si
ab forms a three-dimensional subalgebra of sp(n) and is

not abelian. Now we note the following lemma, which holds for any compact
Lie algebra:

Lemma 18 Let s be a three-dimensional subalgebra of a compact Lie al-
gebra g. Assume that s is not abelian. Then, for any linearly independent
elements Z, Z ′ ∈ s, there is an element g ∈ exp(R[Z, Z ′]) (⊂ exp(g)) such
that Ad(g)Z ∈ RZ ′.

Proof. Since g is compact, s is also a compact Lie algebra. Hence s may
be represented by a direct sum of its center and its semi-simple part. Note
that any simple Lie algebra is of dimension ≥ 3. Under the assumption that
s is not abelian and dim s = 3, we know that the center of s is trivial and
that s is simple. Hence, s is isomorphic to the simple Lie algebra su(2).

Let B be an ad(g)-invariant inner product of g. Let Z, Z ′ ∈ s. If Z

and Z ′ are linearly independent, then it follows that [Z, Z ′] 6= 0, because
rank(s) = 1. Set s′ = RZ + RZ ′. Then we have B(s′, R[Z, Z ′]) = 0, i.e.,
R[Z, Z ′] is the orthogonal complement of s′ in s with respect to B. Indeed,
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we have

B(Z, [Z, Z ′]) = B([Z, Z], Z ′) = 0;

B(Z ′, [Z, Z ′]) = −B([Z ′, Z ′], Z) = 0.

Similarly, we can prove B(ad[Z, Z ′](Z), [Z, Z ′]) = B(ad[Z, Z ′](Z ′), [Z, Z ′])
= 0. This means that s′ is invariant by ad[Z, Z ′]. Moreover, we have
ad([Z, Z ′])Z ′′ 6= 0 for any Z ′′ ∈ s′ with Z ′′ 6= 0. Therefore, Ad(exp(R[Z, Z ′]))
forms a non-trivial subgroup of rotations of s′ with respect to B. From this
fact the lemma follows immediately. ¤

In the following, we say a subalgebra s of sp(n) is NAT if s is non-
abelian and dim s = 3. As we have seen, si

ab = R(H i
a −H i

b) + RPab + RQi
ab

is NAT. For non-zero elements X and Y ∈ sp(n) we write X ∼ Y if there
is an element g ∈ Sp(n) such that Ad(g)X ∈ RY . Apparently, ∼ defines
an equivalence relation in sp(n) \ {0}. According to Lemma 18 if s is NAT,
then Z ∼ Z ′ for any Z, Z ′ ∈ s \ {0}. For example, we have (H i

a − H i
b) ∼

Pab ∼ Qi
ab.

For simplicity in the following discussion we set KKK0(X) = KKKΨ0(X). As
in the previous section we regard sp(s) (0 ≤ s < n) as a subalgebra of sp(n).
Then by easy calculations we have

KKK0(H i
n) = sp(n− 1) +

∑

j 6=i

RHj
n;

KKK0(H i
n−1 + H i

n) = sp(n− 2) +
∑

j 6=i

RHj
n−1 (3.4)

+
∑

j 6=i

RHj
n +

∑

j 6=i

RQj
n−1,n.

Let Ψ be an arbitrary solution of the Gauss equation (2.3). By Re-
mark 16 we know that KKKΨ(X) = KKK0(X) holds for a regular element X ∈
sp(n). We now extend this relation to singular elements:

Proposition 19 Let Ψ ∈ G(Sp(n), N(n)). Then for each i (= 1, 2, 3) it
holds:
(1) KKKΨ(H i

n) = KKK0(H i
n).

(2) KKKΨ(H i
n−1 + H i

n) = KKK0(H i
n−1 + H i

n).

Proof. Let Sp(n − 1) be the analytic subgroup of Sp(n) corresponding
to the subalgebra sp(n − 1). Let g ∈ Sp(n − 1). Then it is easy to
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see that Ad(g)H i
n = H i

n. Hence by Proposition 17 we have KKKΨ(H i
n) ⊃∑

g∈Sp(n−1) Ad(g−1)p(n)i. Since h(n− 1)j (j 6= i) is a Cartan subalgebra of
sp(n− 1), any element of sp(n− 1) is conjugate to an element of h(n− 1)j

under the action of Sp(n − 1). Hence we have
⋃

g∈Sp(n−1) Ad(g−1)h(n −
1)j = sp(n − 1). Since p(n)i ⊃ h(n − 1)j , we have KKKΨ(H i

n) ⊃ sp(n − 1).
This, together with KKKΨ(H i

n) ⊃ p(n)i, shows KKKΨ(H i
n) ⊃ sp(n−1)+p(n)i =

KKK0(H i
n). We now show the equality KKKΨ(H i

n) = KKK0(H i
n). Take an element

X ∈ KKKΨ(H i
n) ∩KKK0(H i

n)⊥, where KKK0(H i
n)⊥ is the orthogonal complement

of KKK0(H i
n) in sp(n). Then X can be expressed as

X =
(

0 ξ

−tξ̄ cei

)
, ξ ∈ M(n−1, 1;H), c ∈ R.

Take j, k (= 1, 2, 3) so that {i, j, k} is an even permutation of {1, 2, 3}.
Then since X ∈KKKΨ(H i

n) and Hj
n ∈KKKΨ(H i

n), we obtain by Lemma 12 the
following

0 = [[X, Hj
n], H i

n] =
(

0 −ξek

−ek tξ̄ 4cej

)
.

Hence we have ξ = 0 and c = 0, i.e., X = 0. This proves KKKΨ(H i
n) ∩

KKK0(H i
n)⊥ = 0, i.e., KKKΨ(H i

n) = KKK0(H i
n).

Next we prove KKKΨ(H i
n−1 + H i

n) = KKK0(H i
n−1 + H i

n). As in the case
of KKKΨ(H i

n), we can easily show that KKKΨ(H i
n−1 + H i

n) ⊃ sp(n − 2) +∑
j 6=iRHj

n−1 +
∑

j 6=iRHj
n. Take an element Y ∈ KKKΨ(H i

n−1 + H i
n) such

that
(
Y, sp(n − 2) +

∑
j 6=iRHj

n−1 +
∑

j 6=iRHj
n

)
= 0. Then Y can be ex-

pressed as

Y =




0 ξ η

−tξ̄ α β

−tη̄ −β̄ γ


 , ξ, η ∈ M(n−2, 1;H), α, γ ∈ Rei, β ∈ H.

Take j, k (= 1, 2, 3) so that {i, j, k} is an even permutation of {1, 2, 3}.
Then by a direct calculation have

[[Y, Hj
n−1±Hj

n], H i
n−1+H i

n] =




0 −ξek ∓ηek

−ek tξ −4αek β′′

∓ek tη −β′′ ∓4γek


 ,

where β′ = ±βej − ejβ, β′′ = β′ei − eiβ′. (Note that ejα = −αej , ejγ =
−γej , eiα = αei, eiγ = γei, because α, γ ∈ Rei.) Since Y ∈ KKKΨ(H i

n−1 +
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H i
n) and Hj

n−1 ±Hj
n ∈KKKΨ(H i

n−1 + H i
n), we have [[Y, Hj

n−1 ±Hj
n], H i

n−1 +
H i

n] = 0 (see Lemma 12). Hence we conclude that ξ = η = 0 and α = γ = 0
and β′′ = 0. From the equality β′′ = 0, we immediately have β′ ∈ Ci.
Further, from β′ ∈ Ci we can easily conclude that β ∈ Di. Thus we have
Y ∈ ∑

j 6=iRQj
n−1,n and hence KKKΨ(H i

n−1 + H i
n) ⊂KKK0(H i

n−1 + H i
n).

To complete the proof of (2) we have to show KKKΨ(H i
n−1 + H i

n) ⊃∑
j 6=iRQj

n−1,n. Take j (1 ≤ j ≤ 3) such that j 6= i. Since s
j
n−1,n =

R(Hj
n−1 − Hj

n) + RPn−1,n + RQj
n−1,n is NAT, there is an element g ∈

exp(RPn−1,n) such that Ad(g)Qj
n−1,n ∈ R(Hj

n−1−Hj
n) (⊂ p(n)i) (see Lemma

18). Moreover, since [Pn−1,n, H i
n−1+H i

n] = 0, we have Ad(g)(H i
n−1+H i

n) =
H i

n−1 + H i
n ∈ h(n)i, i.e., g ∈ Gi

(Hi
n−1+Hi

n)
. Therefore, by Proposition 17 we

have Qj
n−1,n ∈ KKKΨ(H i

n−1 + H i
n). Accordingly, it follows that KKKΨ(H i

n−1 +
H i

n) ⊃ ∑
j 6=iRQj

n−1,n, completing the proof of (2). ¤

By S we denote the subset of sp(n) consisting of all non-zero elements
X ∈ sp(n) such that X ∼ H i

n or X ∼ H i
n−1 +H i

n for some i (= 1, 2, 3). We
note that each element X ∈ S is a singular element of sp(n), because H i

n

and H i
n−1 + H i

n are singular elements of sp(n).
By use of Proposition 19 we can prove

Proposition 20 Let Ψ ∈ G(Sp(n), N(n)). Assume X ∈ S. Then KKKΨ(X)
= KKK0(X).

Proof. Let g ∈ Sp(n). Then we have Ψg and Ψg
0 ∈ G(Sp(n), N(n)) (see

Lemma 14 (2)). By applying Proposition 19 to Ψg and Ψg
0, we have

KKKΨg(H i
n) = KKK0(H i

n) = KKKΨg
0
(H i

n);

KKKΨg(H i
n−1 + H i

n) = KKK0(H i
n−1 + H i

n) = KKKΨg
0
(H i

n−1 + H i
n)

for any i (= 1, 2, 3). Now assume that X ∈ S and that g is an element
of Sp(n) such that Ad(g)X ∈ RH i

n or Ad(g)X ∈ R(H i
n−1 + H i

n). Then by
the above equalities we have KKKΨg(Ad(g)X) = KKKΨg

0
(Ad(g)X). (Note that

KKKΨ(cZ) = KKKΨ(Z) holds for any Ψ ∈ S2(sp(n)∗) ⊗ N(n), Z ∈ sp(n) and
c ∈ R (c 6= 0).) On account of Lemma 14 (1) we have KKKΨg(Ad(g)X) =
Ad(g)KKKΨ(X) and KKKΨg

0
(Ad(g)X) = Ad(g)KKKΨ0(X) = Ad(g)KKK0(X). There-

fore KKKΨ(X) = KKK0(X) follows immediately. ¤

As a consequence of Proposition 20 we can show
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Proposition 21 Let i = 1, 2 or 3. Then
(1) H i

a ∈ S (1 ≤ a ≤ n);
(2) H i

a ±H i
b ∈ S (1 ≤ a < b ≤ n);

(3) Pab ∈ S, Qi
ab ∈ S (1 ≤ a < b ≤ n).

Consequently, for any Ψ ∈ G(Sp(n), N(n)) the following equalities hold:

KKKΨ(H i
a) = KKK0(H i

a); KKKΨ(H i
a ±H i

b) = KKK0(H i
a ±H i

b);

KKKΨ(Pab) = KKK0(Pab); KKKΨ(Qi
ab) = KKK0(Qi

ab).
(3.5)

Proof. Let i = 1, 2 or 3. It is easily shown that under the action of Sp(n),
H i

a (1 ≤ a ≤ n − 1) is conjugate to H i
n. This implies that H i

a ∈ S (1 ≤
a ≤ n). It is also known that H i

a + H i
b (1 ≤ a < b ≤ n) (resp. H i

a −
H i

b (1 ≤ a < b ≤ n)) is conjugate to H i
n−1 + H i

n (resp. H i
n−1 − H i

n). Let
{i, j, k} be a permutation of {1, 2, 3}. Then we easily have [H i

n, Hj
n] =

2ε(ijk)Hk
n. This proves that s =

∑3
i=1RH i

n is NAT. In view of the proof
of Lemma 18 exp(RHk

n) acts on s′ = RH i
n +RHj

n as a non-trivial subgroup
of rotations of s′. Hence, we can find an element h ∈ exp(RHk

n) such that
Ad(h)H i

n = −H i
n. Since [Hk

n, H i
n−1] = 0, we have Ad(h)H i

n−1 = H i
n−1 and

hence Ad(h)(H i
n−1 − H i

n) = H i
n−1 + H i

n. Therefore, we have H i
a ± H i

b ∈
S (1 ≤ a < b ≤ n). As we have pointed out, Pab ∼ Qi

ab ∼ (H i
a −H i

b). Since
H i

a − H i
b ∈ S, it follows that Pab ∈ S and Qi

ab ∈ S. This completes the
proof. ¤

Remark 22 In the next section, after the proof of Theorem 10 we will
know that KKKΨ(X) = KKK0(X) holds for any X ∈ sp(n) (see Remark 36).

4. Solutions of the Gauss equation

In this section we will prove Theorem 10. We assume that n ≥ 2 and
that the Gaussian variety G(Sp(n′), N(n′)) is EOS for any n′ such that
n′ < n.

We now regard N(n− 1) as a subspace of N(n) by the assignment

N(n−1) 3 Z 7−→
(

Z 0
0 0

)
∈ N(n).

Let M be the orthogonal complement of N(n− 1) in N(n). Then we easily
have dim M = 4n− 3 and
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M = REnn +
n−1∑

a=1

{
R(Ean + Ena) +

3∑

j=1

R(Ean − Ena)ej

}

(orthogonal direct sum).

As in the previous section, we denote by Ψ0 the canonical solution (2.4).
By a simple calculation we can easily verify that Ψ0(sp(n−1), sp(n−1)) =
N(n − 1) and M = (Ψ0)Hi

n
(sp(n)) (i = 1, 2, 3). In a natural manner, the

restriction Ψ0|sp(n−1) of Ψ0 to sp(n − 1) may be regarded as an element
G(Sp(n − 1), N(n − 1)). Therefore, by the hypothesis of our induction we
have:

Lemma 23 For any Ψ′ ∈ G(Sp(n − 1), N(n − 1)) there is an element
ρ′ ∈ O(N(n− 1)) such that ρ′Ψ′ = Ψ0|sp(n−1).

Let Ψ ∈ G(Sp(n), N(n)). By VVV Ψ(X) (⊂ N(n)) we denote the image of
sp(n) by the map ΨX . We call Ψ a normal solution if Ψ satisfies:
(1) VVV Ψ(H i

n) = M (i = 1, 2, 3);
(2) Ψ|sp(n−1) = Ψ0|sp(n−1),
where Ψ|sp(n−1) means the restriction of Ψ to sp(n−1). By G0(Sp(n), N(n))
we mean the subset of G(Sp(n), N(n)) consisting of all normal solutions.

Proposition 24 Let Ψ ∈ G(Sp(n), N(n)). Then there is an element ρ ∈
O(N(n)) such that ρΨ ∈ G0(Sp(n), N(n)).

Proof. Since dimKKKΨ(H i
n) = dimKKK0(H i

n) (see Proposition 19), we have
dimVVV Ψ(H i

n) = dimVVV Ψ0(H
i
n). Hence we have dimVVV Ψ(H i

n) = dim M for
any i (= 1, 2, 3). Let X, Y ∈ sp(n− 1). Then by the Gauss equation (2.3)
we get

1
4
(
[[X, H i

n], Y ], Z
)

=
〈
Ψ(X, Y ), Ψ(H i

n, Z)
〉− 〈

Ψ(X, Z), Ψ(H i
n, Y )

〉

for any Z ∈ sp(n) and i (= 1, 2, 3). Since [X, H i
n] = 0 and KKKΨ(H i

n) =
KKK0(H i

n) ⊃ sp(n−1) (see (3.4) and Proposition 19), we have Ψ(H i
n, Y ) = 0.

Consequently, we have
〈
Ψ(X, Y ), Ψ(H i

n, Z)
〉

= 0, which proves
〈
Ψ(sp(n−1), sp(n−1)), VVV Ψ(H i

n)
〉

= 0. (4.1)

Take an element ρ1 ∈ O(N(n)) such that ρ1(VVV Ψ(H1
n)) = M. Then by

(4.1) we have (ρ1Ψ)(sp(n− 1), sp(n− 1)) = ρ1(Ψ(sp(n− 1), sp(n− 1))) ⊂
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N(n−1). Hence, in a natural manner, (ρ1Ψ)|sp(n−1) may be regarded as an
element of G(Sp(n−1), N(n−1)). Hence there is an element ρ′2 ∈ O(N(n−
1)) such that ρ′2((ρ1Ψ)|sp(n−1)) = Ψ0|sp(n−1) (see Lemma 23). Take ρ2 ∈
O(N(n)) such that ρ2|M = 111M and ρ2|N(n−1) = ρ′2. Put ρ = ρ2ρ1. Then
we have VVV ρΨ(H1

n) = ρ(VVV Ψ(H1
n)) = M and (ρΨ)|sp(n−1) = Ψ0|sp(n−1). We

finally prove VVV ρΨ(H i
n) = M (i = 2, 3). As is easily seen, we have Ψ(sp(n−

1), sp(n−1)) = ρ−1(N(n−1)). Hence by (4.1) we have VVV Ψ(H i
n) ⊂ ρ−1(M).

Therefore, VVV ρΨ(H i
n) = ρ(VVV Ψ(H i

n)) ⊂ M. Since dimVVV ρΨ(H i
n) = dim M, we

have VVV ρΨ(H i
n) = M, implying ρΨ ∈ G0(Sp(n), N(n)). This completes the

proof. ¤

By virtue of Proposition 24 to show Theorem 10 it suffices to prove that
any element of G0(Sp(n), N(n)) is equivalent to Ψ0.

By m we denote the orthogonal complement of sp(n− 1) in sp(n). For
simplicity, we set Pa = Pan, Qi

a = Qi
an and H i = H i

n for integers a (1 ≤ a ≤
n− 1) and i (1 ≤ i ≤ 3). Set

ma = RPa+
3∑

i=1

RQi
a (1 ≤ a ≤ n−1), mn =

3∑

i=1

RH i.

Since
(
ma, mb

)
= 0 (a 6= b), we have

m =
n−1∑

a=1

ma+mn (orthogonal direct sum).

Lemma 25 Let Ψ ∈ G0(Sp(n), N(n)) and let i = 1, 2 or 3. Then:

M =
n−1∑

a=1

Ψ(H i, ma)+RΨ(H i, H i) (direct sum).

Proof. Since KKKΨ(H i) = sp(n−1)+
∑

j 6=iRHj and VVV Ψ(H i) = Ψ(H i, m) =
M, we have the lemma. ¤

In what follows we will observe the value Ψ(X, Y ) (X, Y ∈ sp(n)) for
the following four cases:
( I ) X ∈ m and Y ∈ sp(n− 1);
( II ) X ∈ mn and Y ∈ mn;
(III) X ∈ ma and Y ∈ ma (1 ≤ a ≤ n− 1);
(IV) X ∈ mn and Y ∈ ma (1 ≤ a ≤ n− 1).

We first observe Case (I):
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Proposition 26 Let Ψ ∈ G0(Sp(n), N(n)). Then:
(1) Ψ(m, sp(n− 1)) ⊂ M.
(2) Let X, Y ∈ m and Z ∈ sp(n− 1). Then:

〈
Ψ(X, Z), Ψ(H i, Y )

〉
=

1
4
(
[[X, Z], H i], Y

)
. (4.2)

Proof. We first note that Ψ(H i, sp(n − 1)) = 0 (1 ≤ i ≤ 3), because
KKKΨ(H i) ⊃ sp(n − 1). This proves Ψ(mn, sp(n − 1)) = 0. We now prove
Ψ(ma, sp(n− 1)) ⊂ M for any a (1 ≤ a ≤ n− 1). To show this we prove

Ψ(Pa, sp(n−1)) ⊂ M; Ψ(Qi
a, sp(n−1)) ⊂ M (i = 1, 2, 3).

(4.3)
Define an element Zi

0 ∈ sp(n−1) (1 ≤ i ≤ 3) by Zi
0 = (

∑n−1
s=1 sEss)ei. Then

it is well-known that Zi
0 is a regular element of sp(n− 1). Moreover, since

Ψ|sp(n−1) = Ψ0|sp(n−1), it follows that Ψ(Zi
0, sp(n − 1)) ⊂ N(n − 1). Here

we note that the equality Ψ(Zi
0, sp(n− 1)) = N(n− 1) holds. Indeed, since

dimKer((Ψ0)Zi
0
|sp(n−1)) = 2(n− 1) (see Proposition 15), we have

dimΨ(Zi
0, sp(n− 1)) = dim sp(n− 1)− dimKer((Ψ0)Zi

0
|sp(n−1))

= dim N(n− 1).

Now let us set W i
a = Zi

0 − aH i ∈ sp(n) (1 ≤ a ≤ n − 1). By a direct
calculation we can verify Ψ0(Pa, W i

a) = Ψ0(Qi
a, W i

a) = 0. Hence by (3.5)
we have Ψ(Pa, W i

a) = Ψ(Qi
a, W i

a) = 0. Moreover, since Ψ(H i, sp(n−1)) =
0, we have Ψ(W i

a, sp(n− 1)) = Ψ(Zi
0, sp(n− 1)) = N(n− 1). Let Z, Z ′ ∈

sp(n− 1). Then by the Gauss equation (2.3) we have

1
4
(
[[W i

a, Z], Z ′], Pa

)

=
〈
Ψ(W i

a, Z ′), Ψ(Z, Pa)
〉− 〈

Ψ(W i
a, Pa), Ψ(Z, Z ′)

〉
, (4.4)

1
4
(
[[W i

a, Z], Z ′], Qi
a

)

=
〈
Ψ(W i

a, Z ′), Ψ(Z, Qi
a)

〉− 〈
Ψ(W i

a, Qi
a), Ψ(Z, Z ′)

〉
. (4.5)

Since [H i, Z] = 0, we have [[W i
a, Z], Z ′] = [[Zi

0, Z], Z ′] ∈ sp(n − 1).
Hence, the left sides of (4.4) and (4.5) vanish. Further, since Ψ(Pa, W i

a) =
Ψ(Qi

a, W i
a) = 0, we have

〈
Ψ(W i

a, Z ′), Ψ(Z, Pa)
〉
=

〈
Ψ(W i

a, Z ′), Ψ(Z, Qi
a)

〉
= 0. Since Z and Z ′ are arbitrary elements of sp(n− 1) and since
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Ψ(W i
a, sp(n− 1)) = N(n− 1), we have

〈
N(n−1), Ψ(sp(n−1), Pa)

〉
=

〈
N(n−1), Ψ(sp(n−1), Qi

a)
〉

= 0,

showing (4.3). Consequently, we have Ψ(ma, sp(n − 1)) ⊂ M, which com-
pletes the proof of (1).

Next we show (2). Let X, Y ∈ m and Z ∈ sp(n − 1). Then by the
Gauss equation (2.3) we have

1
4
(
[[X, H i], Z], Y

)
=

〈
Ψ(X, Z), Ψ(H i, Y )

〉−〈
Ψ(X, Y ), Ψ(H i, Z)

〉
.

Note that Ψ(H i, Z) = 0 and [Z, H i] = 0. The latter equality, together
with the Jacobi identity, shows [[X, H i], Z] = [[X, Z], H i]. Thus we obtain
(4.2). ¤

Remark 27 Here we state a remark on the value Ψ(X, Z) (X ∈ m, Z ∈
sp(n − 1)). Note that the right side of (4.2) is an intrinsic quantity. Since
Ψ(H i, m) = M, we know that Ψ(X, Z) ∈ M is uniquely determined if the
values Ψ(H i, Y ) (Y ∈ m) are given. Therefore, if Ψ(H i, Y ) = Ψ0(H i, Y )
holds for any Y ∈ m, then we may conclude that Ψ(X, Z) = Ψ0(X, Z) (X ∈
m, Z ∈ sp(n− 1)). See Case (c) below in the proof of Theorem 10.

We next observe Case (II):

Proposition 28 Let Ψ ∈ G0(Sp(n), N(n)). Then:
(1) Ψ(H1, H1) = Ψ(H2, H2) = Ψ(H3, H3).
(2) Ψ(H1, H2) = Ψ(H2, H3) = Ψ(H3, H1) = 0.
(3)

〈
Ψ(H i, H i), Ψ(H i, H i)

〉
= 1 (1 ≤ i ≤ 3).

(4)
〈
Ψ(H i, H i), Ψ(H i, ma)

〉
= 0 (1 ≤ i ≤ 3, 1 ≤ a ≤ n− 1).

To prove the proposition we prepare

Lemma 29 Let Ψ ∈ G(Sp(n), N(n)). Let X and Y ∈ sp(n). Assume:
( i ) Ψ0(X, X) = Ψ0(Y, Y ).
(ii) X + Y ∈ S.
Then Ψ(X, X) = Ψ(Y, Y ).

Proof. By (i) we easily have Ψ0(X +Y, X−Y ) = 0, i.e., X−Y ∈KKK0(X +
Y ). Since X + Y ∈ S, we have KKK0(X + Y ) = KKKΨ(X + Y ) (see Proposi-
tion 20). Consequently, it follows that X − Y ∈ KKKΨ(X + Y ), i.e., Ψ(X +
Y, X − Y ) = 0. This implies Ψ(X, X) = Ψ(Y, Y ). ¤
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Proof of Proposition 28. Let {i, j, k} be a permutation of {1, 2, 3}. As
shown in the proof of Proposition 21, s =

∑3
i=1RH i is NAT. Consequently,

H i + Hj ∈ S, because (H i + Hj) ∼ H i. On the other hand, it is easily
checked that Ψ0(H i, H i) = Ψ0(Hj , Hj) = −Enn. Hence by Lemma 29 we
have Ψ(H i, H i) =Ψ(Hj , Hj). Similarly, we have Ψ(Hj , Hj) =Ψ(Hk, Hk),
proving (1). The assertion (2) is clear from Lemma 13. Finally we prove
(3) and (4). Let k be an integer such that 1 ≤ k ≤ 3, k 6= i and X ∈ sp(n).
Then by the Gauss equation (2.3) we have

1
4
(
[[H i, Hk], Hk], X

)

=
〈
Ψ(H i, Hk), Ψ(Hk, X)

〉− 〈
Ψ(H i, X), Ψ(Hk, Hk)

〉
.

By a simple calculation we have [[H i, Hk], Hk] = −4H i. Moreover, by the
results obtained in (1) and (2) we have Ψ(H i, Hk) = 0 and Ψ(Hk, Hk) =
Ψ(H i, H i). Consequently, we have

〈
Ψ(H i, X), Ψ(H i, H i)

〉
=

(
H i, X

)
.

Therefore, we obtain (3) and (4), because
(
H i, H i

)
= 1 and

(
H i, ma

)
= 0

(see (3.3)). ¤

In Case (III) the value Ψ(X, Y ) (X, Y ∈ ma) (1 ≤ a ≤ n − 1) are
determined by

Proposition 30 Let Ψ ∈ G0(Sp(n), N(n)) and let a be an integer such
that 1 ≤ a ≤ n− 1. Then:
(1) Ψ(Pa, Qi

a) = 0 (1 ≤ i ≤ 3).
(2) Ψ(Qi

a, Qj
a) = 0 (1 ≤ i 6= j ≤ 3).

(3) Ψ(Pa, Pa) = Ψ(Qi
a, Qi

a) = Ψ(H i, H i) + Ψ(H i
a, H i

a) (1 ≤ i ≤ 3).

Proof. Since Ψ0(Pa, Qi
a) = 0 and Ψ0(Qi

a, Qj
a) = 0 (i 6= j), we obtain (1)

and (2) (see (3.5)). We now prove (3). Since si
an = R(H i−H i

a)+RPa+RQi
a

is NAT, it follows that Qi
a+(H i−H i

a) ∈ S. Indeed, Qi
a+(H i−H i

a) ∼ (H i−
H i

a). By Lemma 29 we have Ψ(Qi
a, Qi

a) = Ψ(H i −H i
a, H i −H i

a), because
Ψ0(Qi

a, Qi
a) = Ψ0(H i −H i

a, H i −H i
a) = −(Eaa + Enn). Since H i

a ∈ sp(n−
1), we have Ψ(H i, H i

a) = 0. Consequently, Ψ(Qi
a, Qi

a) = Ψ(H i, H i) +
Ψ(H i

a, H i
a). Similarly, we can prove Ψ(Pa, Pa) = Ψ(H i, H i)+Ψ(H i

a, H i
a).
¤

Before proceeding to Case (IV) we extend Lemma 29 to the following
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form:

Lemma 31 Let Ψ ∈ G(Sp(n), N(n)). Let X, X ′, Y and Y ′ ∈ sp(n).
Assume:
( i ) Ψ0(X, Y ′) = Ψ0(Y, X ′) = 0.
( ii ) Ψ0(X, X ′) = Ψ0(Y, Y ′).
(iii) X ∈ S, Y ∈ S and X + Y ∈ S.
Then Ψ(X, X ′) = Ψ(Y, Y ′).

Proof. By (i) and (ii) we have Y ′ ∈ KKK0(X), X ′ ∈ KKK0(Y ) and Ψ0(X +
Y, X ′ − Y ′) = 0. The last equality implies that X ′ − Y ′ ∈ KKK0(X + Y ).
Hence by (iii) we have Y ′ ∈KKKΨ(X), X ′ ∈KKKΨ(Y ) and X ′ − Y ′ ∈KKKΨ(X +
Y ). Consequently, we have Ψ(Y ′, X) = Ψ(X ′, Y ) = Ψ(X + Y, X ′ − Y ′) =
0. Hence Ψ(X, X ′) = Ψ(Y, Y ′). ¤

With this preparation we observe Case (IV).

Proposition 32 Let Ψ ∈ G0(Sp(n), N(n)). Let a be an integer such that
1 ≤ a ≤ n− 1. Then:
(1) Ψ(H1, Q1

a) = Ψ(H2, Q2
a) = Ψ(H3, Q3

a).
(2) Ψ(H i, Qj

a) = −ε(ijk)Ψ(Hk, Pa), where {i, j, k} is a permutation of
{1, 2, 3}.

(3) Ψ(H1, ma) = Ψ(H2, ma) = Ψ(H3, ma).
(4) For each i (1 ≤ i ≤ 3) the set {√2Ψ(H i, Pa),

√
2Ψ(H i, Qj

a) (1 ≤ j ≤
3)} forms an orthonormal basis of Ψ(H i, ma).

Proof. Let {i, j, k} be a permutation of {1, 2, 3}. We note that the sub-
space s = R(H i

a + H i) + RQj
a + RQk

a forms a subalgebra of sp(n) and is
NAT. In fact, by simple calculations we have

[H i
a + H i, Qj

a] = 2ε(ijk)Qk
a; [H i

a + H i, Qk
a] = −2ε(ijk)Qj

a;

[Qj
a, Qk

a] = 2ε(ijk)(H i
a + H i).

Hence we have H i
a + H i + Qj

a ∈ S and H i
a + H i + Qk

a ∈ S, because H i
a +

H i + Qj
a ∼ H i

a + H i + Qk
a ∼ H i

a + H i ∈ S.
Now we prove (1). By direct calculations we can show Ψ0(H1

a +H1, Q1
a)

= Ψ0(H2
a + H2, Q2

a) = Ψ0(H3
a + H3, Q3

a) = −(Ean + Ena). Moreover we
have Ψ0(H i

a +H i, Hj
a +Hj) = Ψ0(Qi

a, Qj
a) = 0 if i 6= j (see Lemma 13 and

Proposition 30). Therefore by Lemma 31 we have

Ψ(H1
a+H1, Q1

a) = Ψ(H2
a+H2, Q2

a) = Ψ(H3
a+H3, Q3

a). (4.6)
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Here we show Ψ(H1
a , Q1

a) = Ψ(H2
a , Q2

a) = Ψ(H3
a , Q3

a). Let i = 1, 2 or 3.
Since H i

a ∈ sp(n − 1) and Qi
a ∈ m, it follows from Proposition 26 (1) that

Ψ(H i
a, Qi

a) ∈ M. Moreover, by Proposition 26 (2) we have

〈
Ψ(Qi

a, H i
a), Ψ(H1, Y )

〉
=

1
4
(
[[Qi

a, H i
a], H1], Y

)

for any Y ∈ m. Since [Qi
a, H i

a] = Pa, the right side of the above equality does
not depend on the choice of i. This implies that Ψ(H1

a , Q1
a) = Ψ(H2

a , Q2
a) =

Ψ(H3
a , Q3

a), because Ψ(H1, m) = M. This, together with (4.6), proves (1).
We next prove (2). Let {i, j, k} be a permutation of {1, 2, 3}. Then by

direct calculations we have Ψ0(H i
a −H i, Qj

a) = ε(ijk)Ψ0(Hk
a + Hk, Pa) =

ε(ijk)(Ean−Ena)ek. Moreover, Ψ0(H i
a−H i, Hk

a + Hk) = Ψ0(Q
j
a, Pa) = 0

(see Lemma 13 and Proposition 30). Since Hk
a + Hk + Qj

a ∈ S, we obtain
by Lemma 31 the following

Ψ(H i
a−H i, Qj

a) = ε(ijk)Ψ(Hk
a +Hk, Pa). (4.7)

Note that H i
a, Hk

a ∈ sp(n−1), Qj
a, Pa ∈ m and [Qj

a, H i
a] = ε(ijk)[Pa, Hk

a ] =
−ε(ijk)Qk

a. As in the proof of (1) we have Ψ(H i
a, Qj

a) = ε(ijk)Ψ(Hk
a , Pa).

Accordingly, from (4.7) we have Ψ(H i, Qj
a) = −ε(ijk)Ψ(Hk, Pa). This

completes the proof of (2).
By (1) and (2) we have

Ψ(H1, Pa) = −Ψ(H2, Q3
a) = Ψ(H3, Q2

a);

Ψ(H1, Q1
a) = Ψ(H2, Q2

a) = Ψ(H3, Q3
a);

Ψ(H1, Q2
a) = −Ψ(H2, Q1

a) = −Ψ(H3, Pa);

Ψ(H1, Q3
a) = Ψ(H2, Pa) = −Ψ(H3, Q1

a).

(4.8)

By these equalities we clearly obtain (3).
Finally, we prove (4). Let X and Y are one of Pa and Qj

a (1 ≤ j ≤ 3),
i.e., X, Y ∈ {Pa, Qj

a (1 ≤ j ≤ 3)}. By the Gauss equation (2.3) we have

1
4
(
[[H i, X], H i], Y

)

=
〈
Ψ(H i, H i), Ψ(X, Y )

〉− 〈
Ψ(H i, Y ), Ψ(X, H i)

〉
.

By direct calculations we can verify [[H i, X], H i] = X. Hence the left
side of the above equality becomes (1/4)

(
X, Y

)
. First assume that X = Y .

Then we have Ψ(X, X) = Ψ(H i, H i)+Ψ(H i
a, H i

a) (see Proposition 30 (3)).
Since

〈
Ψ(H i, H i), Ψ(H i, H i)

〉
= 1 (see Proposition 28), Ψ(H i, H i) ∈ M
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and Ψ(H i
a, H i

a) ∈ N(n− 1), we have
〈
Ψ(H i, H i), Ψ(X, X)

〉
=

〈
Ψ(H i, H i), Ψ(H i, H i) + Ψ(H i

a, H i
a)

〉

= 1.

Since
(
X, X

)
= 2 (see (3.3)), we have

〈
Ψ(H i, X), Ψ(H i, X)

〉
= 1/2.

We next consider the case X 6= Y . Then we have
(
X, Y

)
= 0 and

Ψ(X, Y ) = 0 (see (3.3) and Proposition 30 (1), (2)). Hence it follows
that

〈
Ψ(H i, X), Ψ(H i, Y )

〉
= 0. This completes the proof of (4). ¤

We are now in a position to prove Theorem 10.

Proof of Theorem 10. Let Ψ ∈ G0(Sp(n), N(n)). Set HHH = Ψ(H1, H1),
PPP a =

√
2Ψ(H1, Pa) (1 ≤ a ≤ n − 1), QQQi

a =
√

2Ψ(H1, Qi
a) (1 ≤ a ≤ n −

1, 1 ≤ i ≤ 3). Then we have

Lemma 33 The set O = {HHH, PPP a (1 ≤ a ≤ n−1), QQQi
a (1 ≤ a ≤ n−1, 1 ≤

i ≤ 3)} forms an orthonormal basis of M.

Proof. By virtue of Proposition 28 (3), (4) and Proposition 32 (4) we have
only to prove

〈
Ψ(H1, ma), Ψ(H1, mb)

〉
= 0 (1 ≤ a 6= b ≤ n−1). (4.9)

Let X ∈ ma and Y ∈ mb. By the Gauss equation (2.3) we have

1
4
(
[[H1, X], H2], Y

)

=
〈
Ψ(H1, H2), Ψ(X, Y )

〉− 〈
Ψ(H1, Y ), Ψ(X, H2)

〉
.

As is easily seen, [[H1, X], H2] ∈ ma. Hence the left side of the above
equality vanishes. On the other hand, since Ψ(H1, H2) = 0 (see Propo-
sition 28), it follows that

〈
Ψ(H1, Y ), Ψ(X, H2)

〉
= 0. This proves that〈

Ψ(H1, mb), Ψ(H2, ma)
〉

= 0. Therefore, we obtain (4.9), because
Ψ(H2, ma) = Ψ(H1, ma) (see Proposition 32 (3)). This completes the
proof. ¤

Let O0 = {HHH0, (PPP a)0 (1 ≤ a ≤ n−1), (QQQi
a)0 (1 ≤ a ≤ n−1, 1 ≤ i ≤ 3)}

be the orthonormal basis of M corresponding to Ψ0, i.e., HHH0 = Ψ0(H1,H1),
(PPP a)0 =

√
2Ψ0(H1, Pa) and (QQQi

a)0 =
√

2Ψ0(H1, Qi
a). Then, there is an

orthogonal transformation ρ′ of M such that HHH0 = ρ′(HHH), (PPP a)0 = ρ′(PPP a)
and (QQQi

a)0 = ρ′(QQQi
a). Extend ρ′ to the orthogonal transformation ρ of N(n)
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satisfying ρ|M = ρ′ and ρ|N(n−1) = 111N(n−1). Then, it is easy to see that
ρΨ ∈ G0(Sp(n), N(n)). For simplicity, set Ψ1 = ρΨ. In the following we
will prove Ψ1 = Ψ0. In view of Lemma 25 and the decomposition sp(n) =
m + sp(n − 1), we may conclude Ψ1 = Ψ0 if Ψ1(X, Y ) = Ψ0(X, Y ) holds
for any pairs X and Y listed in the following (a) ∼ (e):
(a) X ∈ sp(n− 1) and Y ∈ sp(n− 1);
(b) X ∈ mn and Y ∈ m;
(c) X ∈ m and Y ∈ sp(n− 1);
(d) X ∈ ma and Y ∈ ma (1 ≤ a ≤ n− 1);
(e) X ∈ ma and Y ∈ mb (1 ≤ a 6= b ≤ n− 1).

Case (a): Let X, Y ∈ sp(n− 1). Since Ψ(X, Y ) = Ψ0(X, Y ) ∈ N(n− 1)
and ρ|N(n−1) = 111N(n−1), we have Ψ1(X, Y ) = ρ(Ψ(X, Y )) = ρ(Ψ0(X, Y ))
= Ψ0(X, Y ).

Case (b): By the very definition of ρ we have Ψ1(H1, Y ) = Ψ0(H1, Y )
for Y ∈ ∑n−1

a=1 ma +RH1. Applying Proposition 32 to both Ψ1 and Ψ0, we
have Ψ1(H i, Y ) = Ψ0(H i, Y ) for i = 2, 3, Y ∈ ∑n−1

a=1 ma (see (1), (2) and
(4.8)). Further, since Ψ1(H1, H1) = Ψ0(H1, H1), we have Ψ1(H i, Hj) =
Ψ0(H i, Hj) (1 ≤ i, j ≤ 3) (see Proposition 28 (1), (2)). Thus we obtain
Ψ1(X, Y ) = Ψ0(X, Y ) for any X ∈ mn and Y ∈ ∑n−1

a=1 ma + mn = m.

Case (c): By Case (b) we have Ψ1(H i, Y ) = Ψ0(H i, Y ) (i = 1, 2, 3;Y ∈
m). As we have remarked (see Remark 27), we obtain Ψ1(X, Y ) =Ψ0(X, Y )
for X ∈ m, Y ∈ sp(n− 1).

Case (d): As seen in Case (b), we have Ψ1(H i, H i) = Ψ0(H i, H i). More-
over, since H i

a ∈ sp(n−1), we have Ψ1(H i
a, H i

a) = Ψ0(H i
a, H i

a) (i = 1, 2, 3).
Hence by applying Proposition 30 to Ψ1 and Ψ0, we easily have Ψ1(X, Y ) =
Ψ0(X, Y ) for X, Y ∈ ma.

Case (e): We note that this case occurs when n ≥ 3. We first show

Lemma 34 Assume that n ≥ 3. Let a and c be integers such that 1 ≤
a 6= c ≤ n− 1. Then Pa ± Pac ∈ S;Qi

a ±Qi
ac ∈ S (i = 1, 2, 3).

Proof. By easy calculations we have

[H i
c −H i, Pa ± Pac] = Qi

a ∓Qi
ac;

[H i
c −H i, Qi

a ∓Qi
ac] = −(Pa ± Pac);
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[Pa ± Pac, Qi
a ∓Qi

ac] = 2(H i
c −H i).

Consequently, both the subspaces s+ = R(H i
c−H i)+R(Pa +Pac)+R(Qi

a−
Qi

ac) and s− = R(H i
c−H i)+R(Pa−Pac)+R(Qi

a+Qi
ac) are NAT. Therefore,

we have Pa±Pac ∼ H i
c−H i ∼ Qi

a±Qi
ac. Since H i

c−H i ∈ S, it follows that
Pa ± Pac ∈ S and Qi

a ±Qi
ac ∈ S. ¤

First assume n ≥ 4. Let us consider the case X = Pa and Y = Pb.
Take an integer c (1 ≤ c ≤ n − 1) such that c 6= a and c 6= b. By easy
calculations we have Ψ0(Pa, Pb) = Ψ0(Pac, Pbc) = −(1/2)(Eab + Eba) and
Ψ0(Pa, Pbc) = Ψ0(Pac, Pb) = 0. Since Pa, Pac and Pa + Pac ∈ S, it follows
that Ψ1(Pa, Pb) = Ψ1(Pac, Pbc) (see Lemma 31). Since Pac, Pbc ∈ sp(n −
1), we have Ψ1(Pac, Pbc) = Ψ0(Pac, Pbc) (see the Case (a)). Hence we have
Ψ1(Pa, Pb) = Ψ0(Pa, Pb). In a similar manner we can prove Ψ1(Pa, Qi

b) =
Ψ0(Pa, Qi

b) (i = 1, 2, 3) and Ψ1(Qi
a, Qj

b) = Ψ0(Qi
a, Qj

b) (i, j = 1, 2, 3). By
these facts we obtain the equality Ψ1(X, Y ) = Ψ0(X, Y ) (X ∈ ma, Y ∈
mb) when n ≥ 4.

Next we assume n = 3. Apparently, the method used in the case n ≥ 4
cannot be applied to this case. We prove

Lemma 35 Assume that n = 3. Then Ψ1(m1, m2) ⊂ N(2).

Proof. Set Ba = {Pa, Q1
a, Q2

a, Q3
a} (a = 1, 2). Let X ∈ B1 and Y ∈ B2.

We first show
〈
Ψ1(X, Y ), Ψ1(H1, H1)

〉
=

〈
Ψ1(X, Y ), Ψ1(H1, m1+m2)

〉
= 0.

(4.10)
If this is true, then we have Ψ1(X, Y ) ∈ N(2), because M = RΨ1(H1, H1)
+Ψ1(H1, m1 + m2) (see Lemma 25) and because N(2) is the orthogonal
complement of M in N(3).

By the Gauss equation (2.3) we have

1
4
(
[[H1, X], H1], Y

)

=
〈
Ψ1(H1, H1), Ψ1(X, Y )

〉− 〈
Ψ1(H1, Y ), Ψ1(X, H1)

〉
.

As observed in the proof of Proposition 32, we have [[H1, X], H1] = X.
Since

(
X, Y

)
= 0, the left side of the above equality vanishes. Moreover,

in view of (4.9) we have
〈
Ψ1(H1, Y ), Ψ1(X, H1)

〉
= 0. Consequently, we

have
〈
Ψ1(X, Y ), Ψ1(H1, H1)

〉
= 0. Let Z be an arbitrary element of B1.
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Then by the Gauss equation (2.3) we have

1
4
(
[[X, H1], Y ], Z

)

=
〈
Ψ1(X, Y ), Ψ1(H1, Z)

〉− 〈
Ψ1(X, Z), Ψ1(H1, Y )

〉
.

Here we can easily verify that [[X, H1], Y ] ∈ sp(2) and hence the left side of
the above equality vanishes. By Proposition 30 (1), (2) we have Ψ1(X, Z) =
0 if X 6= Z. Hence

〈
Ψ1(X, Y ), Ψ1(H1, Z)

〉
= 0. On the other hand, if X =

Z, then we have Ψ1(X, Z) = Ψ1(X, X) = Ψ1(H1, H1) +Ψ1(H1
1 , H1

1 ) (see
Proposition 30). Hence by Proposition 28 (4) and the fact Ψ1(H1

1 , H1
1 ) ∈

N(2) we have
〈
Ψ1(X, Z), Ψ1(H1, Y )

〉
= 0. Therefore, in this case, we

also obtain
〈
Ψ1(X, Y ), Ψ1(H1, Z)

〉
= 0. Since Z is an arbitrary element

of B1, we have
〈
Ψ1(X, Y ), Ψ1(H1, m1)

〉
= 0. In a similar way we can

prove
〈
Ψ1(X, Y ), Ψ1(H1, m2)

〉
= 0, showing (4.10). Accordingly, we get

Ψ1(X, Y ) ∈ N(2) and hence Ψ1(m1, m2) ⊂ N(2). ¤

Now let X ∈ m1, Y ∈ m2. Take arbitrary elements Z1, Z2 ∈ sp(2).
Then by the Gauss equation (2.3) we have

1
4
(
[[X, Z1], Y ], Z2

)

=
〈
Ψ1(X, Y ), Ψ1(Z1, Z2)

〉− 〈
Ψ1(X, Z2), Ψ1(Z1, Y )

〉
.

By the results of Case (a) and Case (c) we have Ψ1(Z1, Z2) = Ψ0(Z1, Z2),
Ψ1(X, Z2) = Ψ0(X, Z2) and Ψ1(Y, Z1) = Ψ0(Y, Z1). Therefore we have

〈
Ψ1(X, Y ), Ψ0(Z1, Z2)

〉

=
1
4
(
[[X, Z1], Y ], Z2

)
+

〈
Ψ0(X, Z2), Ψ0(Z1, Y )

〉
.

Since Ψ0 is a solution of the Gauss equation (2.3), we have
〈
Ψ0(X, Y ), Ψ0(Z1, Z2)

〉

=
1
4
(
[[X, Z1], Y ], Z2

)
+

〈
Ψ0(X, Z2), Ψ0(Z1, Y )

〉
.

Hence, by subtraction, we have
〈
Ψ1(X, Y ) − Ψ0(X, Y ), Ψ0(Z1, Z2)

〉
=

0. Here we note that Ψ1(X, Y ) − Ψ0(X, Y ) ∈ N(2). Indeed, we have
Ψ1(X, Y ) ∈ N(2) (see Lemma 35) and have Ψ0(X, Y ) ∈ N(2) by a simple
calculation. Since Ψ0(sp(2), sp(2)) = N(2), the above equality implies that
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Ψ1(X, Y ) − Ψ0(X, Y ) = 0, i.e., Ψ1(X, Y ) = Ψ0(X, Y ). This completes
the proof of (e) in the case where n = 3.

Thus by the above case studies (a) ∼ (e) we get Ψ1 = Ψ0, i.e., ρΨ =
Ψ0. This completes the proof of Theorem 10. ¤

Remark 36 As seen in the above discussion, we have proved Theorem 10
by utilizing the equality KKKΨ(X) = KKK0(X) for regular elements X or for
elements X ∈ S. After we have established Theorem 10, we easily conclude
that KKKΨ(X) = KKK0(X) holds for any element X ∈ sp(n).
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