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Commutators with Reisz potentials

in one and several parameters

Michael T. Lacey

(Received September 5, 2005)

Abstract. Let Mb be the operator of pointwise multiplication by b, that is Mbf = bf .

Set [A, B] = AB− BA. The Reisz potentials are the operators

Rαf(x) =

Z
f(x− y)

dy

|y|α , 0 < α < 1.

They map Lp 7→ Lq , for 1−α +1/q = 1/p, a fact we shall take for granted in this paper.

A Theorem of Chanillo [6] states that one has the equivalence

‖[Mb, Rα]‖p→q ' ‖b‖BMO

with the later norm being that of the space of functions of bounded mean oscillation.

We discuss a proof of this result in a discrete setting, and extend part of the equivalence

above to the higher parameter setting.

Key words: Reisz potential, fractional integral, paraproduct, commutator, multiparame-

ter, bounded mean oscillation.

1. Introduction: One parameter

Our topic is norm bounds on commutators of different operators with
the operation of multiplication by a function. Chanillo [6] proved that com-
mutators with Reisz potentials characterize the function space BMO. We
are concerned with a proof of this result, and extensions to multi-parameter
situations.

To set notation, let H be the Hilbert transform, that is

Hf(x) = p.v.
∫

f(x− y)
dy

y
.

Let Mb be the operator of pointwise multiplication by b, that is Mbf = bf

and [A, B] = AB− BA. A classical result states that

‖[Mb, H]‖p→p ' ‖b‖BMO, 1 < p < ∞. (1.1)
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The latter space is that of functions of bounded mean oscillation, the dual
to the real valued Hardy space H1. The dyadic version of this space is
defined in (2.4).

The history of this result goes back to the characterization of the bound-
edness of Hankel operators due to Nehari [24]. In the purely harmonic
analysis setting, Coifmann, Rochberg and Weiss [10] provided an extensive
study of this equivalence.

Set the Reisz potentials to be

Rαf(x) =
∫

f(x−y)
dy

|y|α , 0 < α < 1. (1.2)

These operators map Lp 7→ Lq, for 1− α + 1/q = 1/p, a fact we shall take
for granted in this paper. We are interested in the Theorem of Chanillo [6].

Theorem 1.3 For 1− α + 1/q = 1/p, and 1 < p < q < ∞ we have

‖[Mb,Rα]‖p→q ' ‖b‖BMO (1.4)

The method of proof introduced by Chanillo [6] is to dominate the
sharp function of the commutator, a method that has been extended by a
variety of authors in different settings, see [11, 13, 19, 27, 31]. We give a
new proof, showing that the commutator with the Reisz potential is a sum
of paraproducts. See the next section for a definition of paraproducts.

The rationale for this new proof is an extension of part Chanillo’s result
to a higher parameter setting, motivated in part by an extension of the
Nehari theorem to higher parameter settings in papers of Ferguson and
Lacey [18] and Lacey and Terwelleger [22]. Also see the recent papers of
Muscalu, Pipher, Tao and Thiele [25, 26].

Theorem 3.1 is the main result of this paper. It is a partial extension of
the one parameter result above, in that the upper bound on the commutator
is established. This upper bound is in terms of the product BMO norm of
the symbol b. Product BMO is the one identified by S.-Y. Chang and
R. Fefferman [5, 4], a definition of which we will recall below. The lower
bound on the commutator norm may not be true. See Section 3.4.

We restrict attention to discrete forms of the Reisz potentials. In situ-
ations such as this one, it permits one to concentrate on the most essential
parts of the proofs, see e.g. [1] which is just one reference that is closely
associated with the themes of this paper.

Appropriate averaging procedures will permit one to recover the con-
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tinuous analogs, but we omit this argument, as it is well represented in the
literature. For different versions of this argument, see [23, 28, 29]. In addi-
tion, the Reisz potentials on higher dimensional spaces are also frequently
considered. The author is not aware of any reason why the methods of this
paper will not extend to this level of generality; it is not pursued as it would
complicate our presentation.

2. The one parameter statement

2.1. Haar functions and paraproducts
The dyadic intervals are

D def= {[j2k, (j+1)2k) : j, k ∈ Z}.
Each dyadic interval I is a union of its left and right halves I−, and I+

respectively. The Haar function hI adapted to I is

hI
def= |I|−1/2(−1I−+1I+). (2.1)

We will also denote the Haar functions as h0
I , setting

h1
I = |I|−1/21I . (2.2)

Thus, h0
I has integral zero, while h1

I is a multiple of an indicator function.
It is an essential fact that the Haar functions form an unconditional

basis for Lp, in particular

‖f‖p '
∥∥∥
[∑

I∈D
|〈f, hI〉h1

I |2
]1/2∥∥∥

p
(2.3)

Define the dyadic BMO semi norm by

‖f‖BMO
def= sup

J∈D

[ 1
|J |

∑

I⊂J

|〈f, hI〉|2
]1/2

. (2.4)

The Haar paraproducts are

B(f1, f2)
def=

∑

I∈D

〈f1, hI〉√
|I| 〈f2, h1

I〉hI (2.5)

It is critical that there is exactly one function which is a multiple of the
identity. We take as a given the fundmental fact about the boundedness of
these operators.
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Theorem 2.6 We have

‖B(f1, · )‖p ' ‖f1‖BMO, 1 < p < ∞. (2.7)

This theorem goes back to the work of Coifman and Meyer [9, 8, 7].
It plays a critical role in the T1 theorem of David and Journé [12]. See
for instance the discussion in the text of E.M. Stein [30]. An analogous
result in the higher parameter situation will be stated and proved in the
next section.

We shall also appeal to some operators, related to, but not as central,
the paraproducts. Define

C(f1, f2)
def=

∑

I∈D
|I|−1/2hI

2∏

j=1

〈fj , hI〉 (2.8)

Notice that every Haar function that appears has zero integral. Therefore,
we can estimate

‖C(f1, f2)‖p '
∥∥∥
[∑

I∈D
||I|−1/2

2∏

j=1

〈fj , hI〉h1
I |2

]1/2∥∥∥
p

≤ sup
I∈D

|〈f1, hI〉|√
|I|

∥∥∥
[∑

I∈D
|〈f2, hI〉h1

I |2
]1/2∥∥∥

p

. sup
I∈D

|〈f1, hI〉|√
|I| ‖f2‖p

We will not have recourse to these operators until the next section.
Define Haar projections to a particular scale by

Pnf
def=

∑

|I|=2n

〈f, hI〉hI . (2.9)

And define a related paraproduct by

Dk(f1, f2) =
∑

n∈Z
(Pnf1)(Pn+kf2). (2.10)

It is straight forward to see that

‖Dk(f1, f2)‖p . sup
I∈D

|〈f1, hI〉|√
|I| ‖f2‖p (2.11)

In particular, these paraproducts admit a bound on their operator norms
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that is strictly smaller than the BMO norm.

2.1.1. The Dyadic Reisz Potential and Commutator Consider a
dyadic analog of the Reisz Potentials given by

Iαf
def=

∑

I∈D

〈f, 1I〉
|I|α 1I , 0 < α < 1. (2.12)

This operator enjoys the same mapping properties of the continuous Reisz
potentials, a fact we shall take for granted.

And the continuous versions can be recovered from the dyadic models by
an appropriate averaging procedure. This point of view is nicely illustrated
in the article of Petermichl [29], in which the Hilbert transform is recovered
from a dyadic model.

We discuss the proof of a dyadic version of the Theorem of Chanillo,
Theorem 1.3

Theorem 2.13 For 0 < α < 1, 1−α + 1/q = 1/p and 1 < p < q < ∞ we
have

‖[Mb, Iα]‖p→q ' ‖b‖BMO. (2.14)

Indeed concerning the upper bound on the commutator, the main point
is this: The commutator [Iα, Mb] is a linear combination of the four terms

B(b, · ) ◦ Iα, Iα ◦D0(b, · ), (2.15)

D0(b, · ) ◦ Iα,
∞∑

k=1

2−k(1−α) Dk(b, · ) ◦ Iα (2.16)

These operators are defined in (2.5) and (2.10). Therefore, the upper bound
on the commutator is an immediate consequence of those for the Reisz
potentials, and the corresponding paraproducts.

Observe that our Reisz potential, applied to a Haar function, has an
explicit form.

IαhI = cα|I|1−αhI , (2.17)

for a choice of constant cα =
∑∞

n=1 2−n(1−α). In addition, for a dyadic
interval J , we have

Iα1J =
∑

K⊃J

|J |
|K|α1K . (2.18)
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For later use, observe that Iα1J equals (1 + cα)|J |1−α on the interval J .
We can then compute the commutator, with multiplying function hI

applied to another Haar function hJ

[MhI
, Iα]hJ = cαhI |J |1−αhJ − Iα(hI · hJ)

=





0 J ( I

cα|I|−α1I − |I|−1Iα(1I) I = J

cα hJ(I){|J |1−α − |I|1−α}hI I ( J.

(2.19)

And in the case that I ( J , note that hJ takes exactly one value on I,
which is denoted as hJ(I).

We expand [Mb, Iα]f as a double sum over Haar functions. The leading
term in the case of I ( J in (2.19) gives us

cα

∑

I∈D

∑

I(J

〈b, hI〉〈f, hJ〉|J |1−αhJ(I)hI = B(b, Iαf)

which is the first term in (2.15).
For the second term in (2.19) in the case of I ( J , given a dyadic

interval I and integer k > 0, let Ik denote the dyadic interval that contains
I and has length |Ik| = 2k|I|. Note that

∑

I∈D
〈b, hI〉〈f, hIk

〉|I|1−αhIk
(I)hI = 2−k(1−α)Dk(b, Iαf).

This leads to the second half of (2.16).
Consider the leading term in the case of I = J in (2.19). It gives us

∑

I∈D
〈b, hI〉〈f, hI〉|I|−α1I = D0(b, Iαf)

which is the first half of (2.16).
Consider the second term in the case of I = J in (2.19). It gives us

∑

I∈D
〈b, hI〉〈f, hI〉|I|−1Iα1I = Iα◦D0(b, f)

which is the second half of (2.15). Our proof of the upper bound on the
commutator norm in Theorem 2.13 is finished.

Let us discuss the proof of the lower bound. We can take b ∈ BMO of
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norm one. Fix an interval J so that
∑

I⊂J

|〈b, hI〉|2 ≥ 1
2
|J |.

It is important to observe that by the John Nirenberg estimates we have

1 . |J |−1/p
∥∥∥
∑

I⊂J

〈b, hI〉hI

∥∥∥
p

≤ |J |−1/q
∥∥∥
∑

I⊂J

〈b, hI〉hI

∥∥∥
q

. 1.

We obtain a lower bound on the Lq norm of the commutator applied
to 1J . Write the function b as b = b′ + b′′ where b′ =

∑
|I|≤|J |〈b, hI〉hI .

[Mb, Iα]1J = b(Iα1J)− Iα(b1J)

= b′Iα1J − Iαb′ − b′′Iα1J + b′′(J)Iα1J .

Notice that b′′ takes a single value on J , and that the last two terms cancel
on that interval. Thus,

‖[Mb, Iα]1J‖q ≥ ‖b′Iα1J−Iαb′‖Lq(J) (2.20)

Taking the explicit formulas (2.17) and (2.18) into account, we see that the
last term above is at least a constant times

|J |1−α
∥∥∥
∑

I⊂J

〈b, hI〉hI

∥∥∥
q

& |J |1−α+1/q−1/p
∥∥∥
∑

I⊂J

〈b, hI〉hI

∥∥∥
p

& |J |1−α+1/q

= |J |1/p.

It follows that this commutator admits a universal lower bound on its Lp 7→
Lq norm, assuming that the BMO of the function b is one. The proof is
complete. ¤

It is of interest to provide another proof of the lower bound. Let us
begin by establishing the lower bound

‖[Mb, Iα]‖p→q & sup
I∈D

|〈b, hI〉|√
|I| . (2.21)
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Indeed, apply the commutator to the Haar function hI ,

[Mb, Iα]hI = cαb · hI − Iα(bhI)

= −〈b, hI〉|I|−1/2+1−α1I − cα

∑

J(I

hI(J)〈b, hI〉 |I||J |

By the Littlewood Paley inequality for Haar functions, the latter term can
be ignored in providing a lower bound on the Lq norm. We can then estimate

‖[Mb, Iα]hI‖q & |〈b, hI〉|√
|I| |I|

1−α‖1I‖q

& |〈b, hI〉|√
|I| |I|

1/p.

This proves (2.21).
Now, in seeking to prove the lower bound, we can assume that ‖b‖BMO =

1, while

sup
I∈D

|〈b, hI〉|√
|I| < η

where η > 0 is a small absolute constant to be chosen.
Recall that the paraproducts Dk have an upper bound on their norm

given in (2.11). As well, we have shown that the commutator [Mb, Iα] as a
sum of the terms in (2.15)—(2.16). Notice that for all of these terms, save
one, we have an upper bound on their norm of an absolute constant times
η.

The one term that this does not apply to is B(b, · ) ◦ Iα. But, it is very
easy to see that

‖B(b, · )◦ Iα‖p→q & c > 0.

Indeed, just apply the commutator to 1J for dyadic intervals J . And so,
for η > 0 sufficiently small, we see that ‖[Mb, Iα]‖p→q > c/2.

3. Higher parameter commutators and paraproducts

We work in the setting of more variables, so that functions f are defined
on Rd. Set Iα,j to be the Reisz potential as defined in (2.12), applied in the
jth coordinate. For a sequence of choices of 0 < αj < 1, observe that the
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operator

Iα1 ◦ · · · ◦ Iαd

will map Lp to Lq provided 1−∑d
j=1 αj + 1/q = 1/p, and 1 < p < q < ∞.

One uses the one parameter result in each coordinate seperately.
Our main result is

Theorem 3.1 Let 0 < αj < 1, 1 − ∑d
j=1 αj + 1/q = 1/p, and 1 < p <

q < ∞ we have

‖[· · · [Mb, Iα1,1], . . . , Iαd,d]‖p→q . ‖b‖BMOd
(3.2)

The strategy of appealing to sharp function estimates has well known
difficulties in the higher parameter setting, ∗ and so we adopt the strategy
given in the previous section in the one parameter setting. We recall the
necessary results for the paraproducts in the higher parameter setting, and
then detail the proof of the Theorem above.

Notice that this is not a full extension of Chanillo’s result as we do no
claim that the two norms are comparable. We comment on this in more
detail in Section 3.4 below.

3.1. Higher parameter paraproducts
Let R def= ⊗d

j=1D denote the dyadic rectangles in Rd. When needed, we
will write such a rectangle as R = ⊗d

j=1Rj .

hR(x1, . . . , xd) =
d∏

j=1

hRj (xj). (3.3)

And, by h0
R we mean hR. The other distinguished function of this type is

h1
R = |hR|.

The simplest higher parameter paraproduct, and the only one needed
for this paper, is

B(f1, f2)
def=

∑

R∈R

〈f1, hR〉√
|R| 〈f2, h1

R〉hR. (3.4)

The principal fact about these paraproducts is this.

∗R. Fefferman [15] has found a partial substitute for the sharp function in two param-

eters.
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Theorem 3.5 We have

‖B(b, · )‖p ' ‖b‖BMOd
, 1 < p < ∞. (3.6)

In these inequalities, the BMOd space is the dual to product H1, as
identified by S.-Y. Chang and R. Fefferman. Specifically,

‖b‖BMOd
= sup

[ 1
|U |

∑

R⊂U

|〈f, hR〉|2
]1/2

(3.7)

It is essential that in this definition, the supremum be formed over all open
sets U ⊂ Rd of finite measure.

We caution the reader that the Theorem above does not include the
full range of multiparameters paraproducts. † For more infomation about
this theorem, see Journé [20]. More recently, see Muscalu, Pipher, Tao and
Thiele, [25, 26] for certain extensions of the Theorem above. Also see Lacey
and Metcalfe [21].

Proof. The proof we will give will rely upon the structure of the Hardy
and BMO space, and the interpolation theory for this pair of spaces.

It is efficient to establish appropriate end point estimates for the dual
to this operator. Fix b ∈ BMOd of norm one. We establish that the dual
operator B∗ maps H1 7→ L1 and L∞ 7→ BMOd. An interpolation argument
will complete the proof.

For the H1 estimate, we use the atomic theory, as given in [4]. Recall
that an H1 atom is a function α with Haar support in a set A of finite
measure, that is

α =
∑

R⊂A

〈α, hR〉hR. (3.8)

Moreover, it satisfies the size condition ‖α‖2 ≤ |A|−1/2. Every element f ∈
H1 admits a representation f =

∑
j cjαj where each αj is an atom, cj is a

scalar, and

‖f‖H1 '
∑

j

|cj |. (3.9)

†The presence of the full range of paraproducts is the source of part of the difficulties

in Ferguson and Lacey [18] and Lacey and Terwelleger [22].
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Observe that

‖B∗(b, α)‖1 =
∑

R⊂A

|〈b, hR〉〈α, hR〉|

≤
[∑

R⊂A

|〈b, hR〉|2
∑

R⊂A

|〈α, hR〉|2
]1/2

≤ [|A||A|−1]1/2 = 1.

Thus, by (3.9), it is clear that we have the H1 7→ L1 estimate.
For the other estimate, fix a function f ∈ L∞ of norm one. And take a

set U ⊂ Rd of finite measure. Let us set

FU
def=

∑

R⊂U

〈b, hR〉√
|R| 〈f, hR〉h1

R.

Then, appealing to the definition of BMO, it is the case that

‖FU‖1 ≤
∑

R⊂U

|〈b, hR〉〈f, hR〉|

≤
[ ∑

R⊂U

|〈b, hR〉|2
∑

R⊂U

|〈f, hR〉|2
]1/2

≤ |U |.
As this estimate is uniform over all choices of U , it is a reflection of the
John Nirenberg estimate in the multiparameter setting [5] that this implies
that

‖FU‖2 . |U |1/2.

Let us observe that for rectangles R ⊂ U and S 6⊂ U , we necessarily
have 〈hR, h1

S〉 = 0. Therefore, we have
∑

R⊂U

|〈B∗(b, f), hR〉|2 =
∑

R⊂U

|〈FU , hR〉|2

≤ ‖FU‖2
2

. |U |.
This proves the L∞ 7→ BMOd bound. ¤
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3.2. A secondary result on paraproducts
For the proof of our main theorem, an estimate on certain paraproducts

is needed. These paraproducts are of a secondary nature. In particular, we
can give an upper bound on their norm that is strictly smaller, in general,
than the BMOd norm. The paraproducts are easiest to define in terms of
tensor products of operators. Let B and D be a partition of the coordinates
{1, . . . , d}, and define

EB(b, · ) def= ⊗
j∈B

Bj(b, · ) ⊗
j∈D

Dv(j),j(b, · ) (3.10)

Here, v(j) is a non negative integer, and Dv(j),j is the operator Dv(j) as
defined in (2.10) acting in the jth coordinate.

Proposition 3.11 The paraproducts EB admit the bound

‖EB(b, · )‖p→p .
{
‖b‖BMOd,B 1 < p ≤ 2

‖b‖2/p
BMOd,B

‖b‖1−2/p
BMOd

2 < p < ∞.
(3.12)

In this Proposition, the norm ‖ · ‖BMOd,B is defined in terms of collec-
tions of rectangles S which are restricted in the following way. Say that S
is of type B if the rectangles in S have a union with finite measure, and
for all R, R′ ∈ S, and coordinates j 6∈ B we have Rj = R′

j . Thus, only the
coordinates in B are permitted to vary. Then define

‖b‖BMOd,B
def= sup

S

[∣∣ ⋃

R∈S
R

∣∣−1
∑

R∈S
|〈f, hR〉|2

]1/2
(3.13)

where the supremum is over all collections of rectangles of type B. Clearly,
this norm is strictly smaller than that of BMOd. And an example of Car-
leson [3], and published in [15], shows that these norms are essentially
smaller than the BMO norm. (The use of norms of these types are il-
lustrated in [22] and [2].)

Proof. We proceed to the proof. The case of the cardinality of B is full,
that is equal to d, is contained in Theorem 3.5.

Now assume that the cardinality of B is not full. The L2 case of (3.12)
follows immediately, as we are forming the tensor product of operators Dv

that act on a family of orthogonal spaces.
We should take care to consider the form of the operator EB(b, f). For

a dyadic rectangle R, and coordinate j, let R̃j = Rj if j 6∈ D, and otherwise



Commutators and Reisz potentials 187

take this to be the dyadic interval that contains Rj and has length 2v(j)|Rj |.
Let R̃ = ⊗R̃j . Then, the operator in question is

EB(b, f) =
∑

R

εR
〈b, hR〉√
|R̃|

〈f, hε
eR〉h

ε
eR

Here, ε ∈ {0, 1}d is equal to 1 for those coordinates in B, and is zero
otherwise, and

hε
eR =

d∏

j=1

h
εj

eRj
.

The coefficient εR is a choice of sign. (To be specific, the value of εR is the
product of the signs sgnh eRj

(Rj) over those j ∈ D such that v(j) > 0.)
It is natural to exploit the availible L2 estimate by establishing the

boundedness of EB as a map from H1 7→ H1. Recall the definition of an H1

atom in (3.8) and (3.9)
Since R ⊂ R̃, it is clear that EB applied to an atom has the same Haar

support. And by the L2 bound,

‖EBα‖2 . ‖b‖BMOd,B |A|−1/2

This proves the bound at H1. And by interpolation, we deduce the result
for 1 < p < 2.

At the other endpoint, we prove that

‖EB(b, · )‖L∞ 7→BMOd
. ‖b‖BMOd

Indeed, take f ∈ L∞ of norm one, and a set U ⊂ Rd of finite measure.
Then,

∑

eR⊂U

|〈b, hR〉|2
|〈f, hε

eR〉|
2

|R̃|
≤ ‖f‖2

∞
∑

eR⊂U

|〈b, hR〉|2 ≤ ‖f‖2
∞‖b‖2

BMOd

This proves the inequality at L∞, and interpolation will prove the bound
for 2 < p < ∞. ¤

3.3. The proof of Theorem 3.1
The same proof strategy as in one dimension is used. We expand the

commutator as a double sum over Haar functions. In so doing, we use
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(2.19). Observe that for two rectangles R and S, we have

[. . . [MhR
, Iα,1], . . . , Iα,d]hS =

d∏

j=1

[MhRj
, Iαj ]hSj

= 0

if for any coordinate j we have Sj ( Rj . Assuming that this is not the case,
we see that one of two terms can arise in each coordinate, depending upon
Sj = Rj or Rj ( Sj , as described in (2.19). In this way, we expand the
commutator as sum of paraproduct operators.

These operators are as in (3.10):

2−v(1−α)EB(b, · )◦⊗d
j=1Iαj ,j , 2−v(1−α)⊗d

j=1Iαj ,j◦EB(b, · ). (3.14)

We permit the subset B ⊂ {1, . . . , d} to vary over all possible subsets.
Associated to the complementary set D = {1, . . . , d} − B is a vector v =
{v(j)} ∈ ND, and we set v =

∑
j∈D v(j).

According to Proposition 3.11 and the obvious bound on the Reisz po-
tential, each of these terms has Lp 7→ Lq norm of at most 2−v(1−α)‖b‖BMOd

.
And these estimates are summable over all choices of B, D, and choices of
integers {v(j) : j ∈ D}. This completes the proof of the upper bound.

3.4. Concerning lower bounds on the commutator norm
In the one parameter case, to provide a lower bound on the norm of

the paraproduct B(b, · ), as defined in (2.5), it suffices to test it against an
indicator of a dyadic interval. Moreover, one trivially has

‖B(b, Iα1J)‖q & cα|J |1−α‖B(b, 1J)‖q.

In higher parameters, the situation is far less obvious. We can establish

Proposition 3.15 We have the inequality

‖[. . . [Mb, Iα,1], . . . , Iα,d]‖p→q & sup
S

[
|S|−1

∑

R⊂S

|〈b, hR〉|2
]1/2

.

Here, the supremum is formed over all dyadic rectangles S.

We omit the proof, which depends upon an iteration of the argument
that lead to (2.20).

This norm sometimes referred to as “rectangular BMO,” denoted as
‖ · ‖BMO(rec). But as is well known, this norm is essentially smaller than the
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BMO norm, and so this proposition is not enough to prove the complete
analog of Chanillo’s theorem.

Continuing this line of thought, in two dimensions (and only two di-
mensions), it is easy to see that we have

‖b‖BMO(rec) = sup
B={1},{2}

‖b‖BMO2,B

From this, our expansion of the commutator, and Proposition 3.11, we see
that we have the estimate

‖[[Mb, Iα1,1], Iα2,2]‖p→q &
max(‖b‖ε(α,p)

BMO(rec), ‖B(b, · )◦Iα1,1⊗Iα2,2+Iα1,1⊗Iα2,2◦B(b, · )‖p→q)

Here, ε(α, p) is a positive exponent. It is natural to then assume that the
rectangular norm is small, and argue that the other norm is big, but there
is a problem with continuing this line of thought.

To provide a lower bound on the norms of the paraproducts B(b, · ) as
defined in (3.4), we need to apply this operator to 1U , for arbitrary sets
U ⊂ Rd of finite measure. We would then like for an inequality of this form
to be true:

‖Iα1,1◦· · ·◦Iαd,d1U‖q & |U |1/p, U ⊂ Rd.

This holds for U a rectangle, but not in general. Indeed, consider U =⋃n
n=1 Rn, where Rn are rectangles that are of the same dimension, but very

widely seperated. So seperated that we can estimate

‖Iα1,1 ◦ · · · ◦ Iαd,d1U‖q '
[ N∑

n=1

‖Iα1,1 ◦ · · · ◦ Iαd,d1Rn‖q
q

]1/q

' N1/q|R|1/p

' N1/q−1/p|U |1/p.

Since 1 < p < q < ∞, this last term is substantially smaller than |U |1/p for
N large.
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multilinéaires. Ann. Inst. Fourier (Grenoble), (3) 28 (1978), 177–202 (French, with

English summary).

[ 9 ] Coifman R.R. and Meyer Y., Au delà des opérateurs pseudo-différentiels. Astérisque
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