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The Haar wavelets and the Haar scaling function

in weighted Lp spaces with Ady,m
p weights
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Abstract. The new class of weights called Ady,m
p weights is introduced. We prove that

a characterization and an unconditional basis of the weighted Lp space Lp(Rn, w(x)dx)

with w ∈ Ady,m
p (1 < p < ∞) are given by the Haar wavelets and the Haar scaling

function. As an application of these results, we establish a greedy basis by using the

Haar wavelets and the Haar scaling function again.
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1. Introduction

The relations between wavelets and weighted Lp spaces

Lp(w) := Lp(Rn, w(x)dx) (1 < p <∞)

have been considered in [ABM], [GK], [Ka] and [L]. In particular, H.A.
Aimar, A.L. Bernardis and F.J. Mart́ın-Reyes proved that some characteri-
zations of Lp(w) with w ∈ Ap and an unconditional basis for it are given by
1-regular wavelets (e.g., the Meyer wavelets, the Daubechies wavelets etc.)
([ABM]). They also proved that the similar results followed for the case of
the Haar wavelets replacing Ap weights by Ady

p weights. On the other hand,
in 1994, P.G. Lemarié-Rieusset considered for the case of Daubechies’. He
proved that a characterization of Lp(w) and an unconditional basis for it
were given by using not only the wavelet but also the scaling function which
constructed the wavelet for the case of w ∈ Aloc

p ([L]). Let us remark that
the class of Aloc

p weights was first defined by V.S. Rychkov in 2001 ([R]).
We don’t explain in detail, however, we shall point out that he gives some
interesting results about Aloc

p weights and weighted function spaces with
them. We prove that the similar results to P.G. Lemarié-Rieusset’s hold for
the case of Haar’s replacing Aloc

p weights by Ady,m
p weights, first defined in
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this article, on the basis of the idea of [ABM].
Let us explain the outline of this article. We describe briefly the basic

concept of wavelets associated with an MRA in Section 2. In Section 3, we
introduce four classes of weights, namely, Ap, A

dy
p , Aloc

p and Ady,m
p . Also

we give some examples of them respectively. Section 4 consists of the main
results and the proof of them. We show that a characterization and an
unconditional basis of the weighted Lp space with Ady,m

p weights are given
by the Haar wavelets and the Haar scaling function. Using these results, we
establish the greedy basis in the weighted Lp space with Ady,m

p weights by
the Haar wavelets and the Haar scaling function again in Section 5. So to
speak, our weighted wavelet (and scaling function) method is valid for the
results of [ABM] and [L], too. We explain them in Section 6.

Lastly, we would like to remark on the studies of greedy bases briefly.
[CDH], [GH], [KT] and [Ky] give the remarkable results respectively. We
shall point out, however, that they consider only for non-weighted cases.
This article studies greedy bases in the weighted Lp space with four kinds
of weights.

2. Wavelets

Definition 2.1 (wavelet set, wavelet basis and wavelet) Let {ψe}2n−1
e=1 be

a sequence of functions belong to L2(dx) := L2(Rn, dx). We define

ψe
j,k(x) := 2jn/2ψe(2jx− k) = 2jn/2ψe(2jx1 − k1, . . . , 2jxn − kn)

(x = (x1, . . . , xn) ∈ Rn)

for each e = 1, 2, . . . , 2n − 1, j ∈ Z and k = (k1, . . . , kn) ∈ Zn. The
sequence {ψe}2n−1

e=1 is called a wavelet set if {ψe
j,k : e = 1, 2, . . . , 2n − 1,

j ∈ Z, k ∈ Zn} is an orthonormal basis in L2(dx). Then we say that
{ψe

j,k : e = 1, 2, . . . , 2n− 1, j ∈ Z, k ∈ Zn} is a wavelet basis in L2(dx) and
that any ψe is a wavelet.

Let f ∈ L2(dx) and {ψe}2n−1
e=1 be a wavelet set. We obtain the wavelet

expansion of f

f =
2n−1∑

e=1

∞∑

j=−∞

∑

k∈Zn

〈f, ψe
j,k〉ψe

j,k in L2(dx)
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and Parseval’s equality

‖f‖L2(dx) =
(2n−1∑

e=1

∞∑

j=−∞

∑

k∈Zn

|〈f, ψe
j,k〉|2

)1/2
.

Here 〈f, ψe
j,k〉 :=

∫
Rn f(x)ψe

j,k(x)dx. By above two equalities, we see that
the L2-norm of f is characterized by the wavelet coefficients 〈f, ψe

j,k〉
(e = 1, 2, . . . , 2n − 1, j ∈ Z, k ∈ Zn).

We can construct wavelets which have various properties by the proper
way of constructions. The remarkable feature of wavelets, which have a
proper smoothness, a proper decay or a compact support, give characteri-
zations and unconditional bases of various function spaces, such as Hardy
spaces, Sobolev spaces etc. ([W], [HW], [M], [G], [GM], [D]).

Additionally, we shall point out that a sequence of closed subspaces of
L2(dx) called MRA gives wavelets.

Definition 2.2 (MRA) An MRA (multiresolution analysis) is a sequence
{Vj}j∈Z of closed subspaces of L2(dx) such that
(a) Vj ⊂ Vj+1 for all j ∈ Z.
(b)

⋃
j∈Z Vj = L2(dx).

(c)
⋂

j∈Z Vj = {0}.
(d) f ∈ Vj holds if and only if f(2−jx) ∈ V0 for all j ∈ Z.
(e) f ∈ V0 holds if and only if f(x− k) ∈ V0 for every k ∈ Zn.
(f ) There exists a function ϕ ∈ V0, called a scaling function of {Vj}j∈Z,

such that the system {ϕ(x−m)}m∈Zn is an orthonormal basis in V0.

Given an MRA {Vj}j∈Z, there exists a wavelet set {ψe}2n−1
e=1 such that

{ψe
j,k : e = 1, 2, . . . , 2n − 1, k ∈ Zn} is an orthonormal basis in Wj for all

j ∈ Z, where Wj means the orthogonal complement of Vj in Vj+1 (cf. [M,
Chapter 3] or [W, Chapter 5]). Taking suitable MRAs enables us to obtain
wavelets which have various properties. Let us introduce the Haar wavelets
and the Haar scaling function which play an important role in this paper.

Definition 2.3 (the Haar wavelet set, the Haar wavelet and the Haar scal-
ing function) Let E := {0, 1}n \ {(0, . . . , 0)}, ψ1 := χ[0, 1/2) − χ[1/2, 1),
ψ0 := χ[0, 1) and

ψe(x) :=
n∏

i=1

ψei(xi)



420 M. Izuki

(e = (e1, . . . , en) ∈ E, x = (x1, . . . , xn) ∈ Rn),

where χF means the characteristic function of a measurable set F . We say
that the sequence {ψe}e∈E is the Haar wavelet set and that any ψe is the
Haar wavelet. Additionally we call the function χ[0, 1)n the Haar scaling
function.

On the other hand, we shall also remark that there are well-known
examples of smooth wavelets such as the Meyer wavelets which belong to
Schwartz class, the Daubechies wavelets which belong to Cr(Rn) for some
r ∈ N and have compact support, and so forth.

3. Weights

A weight on Rn is a function w defined on Rn such that w ≥ 0 a.e. Rn

and w ∈ L1
loc(Rn). Let w be a weight on Rn and 1 < p <∞ without notices

in the following of this paper. We shall explain some notations here in order
to introduce four classes of weights.

Notation 3.1
(a) We define a dyadic cube Qj,k for j ∈ Z and k = (k1, . . . , kn) ∈ Zn by

Qj,k :=
n∏

i=1

[
2−jki, 2−j(ki + 1)

)
.

(b) We write w(E) :=
∫
E w(x)dx for a measurable set E ⊂ Rn. And |E|

means the Lebesgue measure of E.

Definition 3.2 (four classes of weights)
(a) We define the class of weights Ap which consists of all weights w sat-

isfying

Ap(w) := sup
Q:cube

1
|Q|w(Q)

( 1
|Q|

∫

Q
w(y)−1/(p−1)dy

)p−1
<∞,

and say that w ∈ Ap is an Ap weight.
(b) We define the class of weights Ady

p which consists of all weights w
satisfying

Ady
p (w) := sup

Qj,k

1
|Qj,k|w(Qj,k)

( 1
|Qj,k|

∫

Qj,k

w(y)−1/(p−1)dy
)p−1

<∞,
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and say that w ∈ Ady
p is an Ady

p weight.
(c) We define the class of weights Aloc

p which consists of all weights w
satisfying

Aloc
p (w) := sup

|Q|≤1,
Q:cube

1
|Q|w(Q)

( 1
|Q|

∫

Q
w(y)−1/(p−1)dy

)p−1
<∞,

and say that w ∈ Aloc
p is an Aloc

p weight.
(d) Let m ∈ Z. We define the class of weights Ady,m

p which consists of all
weights w satisfying

Ady,m
p (w) := sup

|Qj,k|≤2−mn

1
|Qj,k|w(Qj,k)

×
( 1
|Qj,k|

∫

Qj,k

w(y)−1/(p−1)dy
)p−1

< ∞,

and say that w ∈ Ady,m
p is an Ady,m

p weight.

The class of Aloc
p weights is defined by V.S. Rychkov. This class is

independent of the upper bound for the cube size used in its definitions.
Namely, we can replace |Q| ≤ 1 by |Q| ≤ r in Definition 3.2 (c) for any
0 < r <∞ ([R]). Thus, we obtain the following inclusion relations between
above four classes of weights:
• Ady,m−1

p ⊂ Ady,m
p (m ∈ Z).

• Ap ⊂ Ady
p , Aloc

p .
• Ady

p , Aloc
p ⊂ Ady,m

p (m ∈ Z).
However, notice that the signs of equality are not satisfied for each inclusion
relations, i.e., strictly speaking, above all three ”⊂” mean ”$”. These facts
become clear by giving some examples in the following Example 3.3:

Example 3.3 We consider only in the case of n = 1 for convenience.
(a) Let −1 < α < p− 1. Then, we have |x|α ∈ Ap (cf. [To]).
(b) Let −1 < α, β < p− 1 (α 6= β). We define a function w0 as follows:

w0(x) :=




|x|α (x > 0)
0 (x = 0)
|x|β (x < 0)

Then, it follows that w0 ∈ Ady
p \Ap.

(c) Let r ∈ R \ {0}. Then, we obtain er|x| ∈ Aloc
p \Ap.
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(d) Let m ∈ Z, s > 1 and r ∈ R \ {0}. Then it follows that
∑

k∈Z
erks

χQm,k
(x) ∈ Ady,m

p \Ady,m−1
p .

4. The Haar wavelets and the Haar scaling function in weighted
Lp spaces

To state the main result Theorem 4.2, we shall introduce some nota-
tions.

Notation 4.1
(a) We denote ϕk(x) :=ϕ0,k(x)=ϕ(x−k) and Qk :=Q0,k =

∏n
i=1[ki, ki+1)

for each k ∈ Zn.
(b) We write χj,k := 2(jn)/2χQj,k

for each j ∈ Z and k ∈ Zn.
(c) N means the set of natural numbers. And we denote Z+ := N ∪ {0}.
(d) p′ means the conjugate exponent of p, that is, p′ satisfies p−1+p′−1=1.

Theorem 4.2 (Main Result) Let {ψe}e∈E be the Haar wavelet set, ϕ :=
χ[0.1)n (i.e., the Haar scaling function), µ be a positive Borel measure on
Rn, finite on compact sets, m ∈ Z and 1 < p < ∞. Then, the following
three conditions are equivalent:
(I1) µ is absolutely continuous with regard to the Lebesgue measure. And

there exists a w ∈ Ady,m
p such that dµ(x) = w(x)dx.

(I2) We define

Mp,µ,m(f) :=
( ∑

k∈Zn

∣∣〈f, ϕm,k〉‖ϕm,k‖Lp(dµ)

∣∣p
)1/p

+
∥∥∥∥
(∑

e∈E

∞∑

j=m

∑

k∈Zn

∣∣〈f, ψe
j,k〉χj,k

∣∣2
)1/2

∥∥∥∥
Lp(dµ)

.

Then, there exist two constants 0 < c ≤ C <∞ independent of f such
that c‖f‖Lp(dµ) ≤ Mp,µ,m(f) ≤ C‖f‖Lp(dµ) for all f ∈ Lp(dµ) :=
Lp

(
Rn, dµ(x)

)
. Namely Mp,µ,m( · ) defines the equivalent norm to

‖ · ‖Lp(dµ) on Lp(dµ). And µ(Qj,k) > 0 for all j ≥ m and k ∈ Zn.
(I3) The sequence

{ϕm,k : k ∈ Zn} ∪ {ψe
j,k : e ∈ E, j ≥ m, k ∈ Zn}

forms an unconditional basis for Lp(dµ). And
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{(ϕm,k)∗ : k ∈ Zn} ∪ {(ψe
j,k)

∗ : e ∈ E, j ≥ m, k ∈ Zn} ⊂ Lp(dµ)∗.

Here Lp(dµ)∗ means the dual space of Lp(dµ) and

(ϕm,k)∗(f) :=
∫

Rn

f(x)ϕm,k(x)dx (f ∈ Lp(dµ)).

It is known that there are several equivalent definitions of an uncondi-
tional basis in a Banach space ([KS], [LT]). We shall remark that we adopt
the definition of an unconditional basis by [W, Chapter 7] in this paper.

Definition 4.3 (unconditional convergence, unconditional basis) Let A
be a countable index set, {xm}m∈A be a sequence of elements in a Banach
space X and {x̃k}k∈A be a sequence of elements in X∗, where X∗ is the
dual space of X.
(a) We say that the series

∑
m∈A xm is unconditionally convergent in X

if the series
∑∞

i=1 xσ(i) converges in X for all σ : N→ A, a 1 to 1 and
onto map.

(b) We call {xm, x̃m}m∈A an unconditional basis inX if the following three
conditions are satisfied:
( i ) {xm, x̃m}m∈A is a biorthogonal system, i.e., x̃k(xm) = δm,k. Here

δm,k means Kronecker’s delta, that is, δm,m = 1 and δm,k = 0 if
m 6= k.

( ii ) span{xm}m∈A
X

= X, where span{xm}m∈A means the set of finite
linear combinations of elements in {xm}m∈A.

(iii) There exists a constant 0<C <∞ such that
∥∥∑

m∈B x̃m(x)xm

∥∥
X

≤ C‖x‖X for every x ∈ X and every finite subset B ⊂ A.

Remark 4.4 Let A be a countable index set and {xm, x̃m}m∈A be an
unconditional basis in a Banach space X.
(a) ([W, Theorem 7.7 (i)]) The series

∑
m∈A x̃m(x)xm converges uncondi-

tionally in X to x for every x ∈ X.
(b) ([W, Remark 7.2]) We see that the functionals {x̃k}k∈A ⊂ X∗ are

determined by the vectors {xm}m∈A ⊂ X from two conditions (i) and
(ii) in Definition 4.3 (b). Thus we often say that {xm}m∈A is an
unconditional basis in X.

We will prove the equivalence of three conditions (I1), (I2) and (I3) in
Theorem 4.2 in the rest of this section. Before starting the proof, let us
remark the following facts:
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• ϕm,k(x) = 2(mn)/2ϕk(2mx) for all m ∈ Z and k ∈ Zn.
• Let w be a weight on Rn. Then, w ∈ Ady,m

p if and only if w(2−mx) ∈
Ady,0

p for all m ∈ Z.
• 〈2mn/2f(2m · ), ϕm,k〉 = 〈f, ϕk〉 and 〈2mn/2f(2m · ), ψe

j,k〉 = 〈f, ψe
j−m,k〉

for every e ∈ E, m ∈ Z, k ∈ Zn and j ≥ m.
Thus we see that we have only to prove Theorem 4.2 for the case of

m = 0. We will give the proof referring to the statements of [ABM] and
partly using the results of [V].

4.1. Proof of (I1) ⇒ (I2)
First of all, we assume (I1). It is clear that µ(Qj,k) = w(Qj,k) > 0 for

all j ∈ Z+ and k ∈ Zn.

Lemma 4.5 It follows that
( ∑

k∈Zn

∣∣〈f, ϕk〉‖ϕk‖Lp(w)

∣∣p
)1/p

≤ Ady,0
p (w)1/p‖f‖Lp(w)

for all f ∈ Lp(w).

Proof of Lemma 4.5. By straightforward calculations, Hölder’s inequality
and |Qk| = 1 for all k ∈ Zn, we have

∑

k∈Zn

∣∣〈f, ϕk〉‖ϕk‖Lp(w)

∣∣p

=
∑

k∈Zn

|〈f, ϕk〉|p · ‖ϕk‖p
Lp(w)

=
∑

k∈Zn

∣∣∣
∫

Qk

f(x)w(x)1/p · ϕk(x)w(x)−1/pdx
∣∣∣
p
·
∫

Qk

|ϕk(x)|pw(x)dx

≤
∑

k∈Zn

∫

Qk

|f(x)|pw(x)dx ·
(∫

Qk

w(x)−1/(p−1)dx
)p−1

· w(Qk)

≤ Ady,0
p (w)

∑

k∈Zn

∫

Qk

|f(x)|pw(x)dx

= Ady,0
p (w)‖f‖p

Lp(w).

¤

Lemma 4.6 There exists a constant 0 < C1 < ∞ independent of f such
that for all f ∈ Lp(w),
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∥∥∥∥
(∑

e∈E

∞∑

j=0

∑

k∈Zn

∣∣〈f, ψe
j,k〉χj,k

∣∣2
)1/2

∥∥∥∥
Lp(w)

≤ C1‖f‖Lp(w).

Proof of Lemma 4.6. We shall follow the lines of [M] using Khintchine’s
inequality.

Proposition 4.7 (Khintchine’s inequality, cf. [Z]) Let Ω be the product
set {−1, 1}Λ and dµ(ω) be the Bernoulli probability measure on Ω for ω ={{ω(λ)}λ∈Λ : ω(λ) = ±1

} ∈ Ω, obtained by taking the product of the mea-
sures on each factor which give a mass of 1/2 to each of the points −1 and
1. Then, for all 1 < p <∞, there exist two constants 0 < Cp,1 ≤ Cp,2 <∞
such that for all {α(λ)}λ∈Λ ⊂ C,

Cp,1

(∑

λ∈Λ

|α(λ)|2
)1/2

≤
(∫

Ω

∣∣∣
∑

λ∈Λ

α(λ)ω(λ)
∣∣∣
p
dµ(ω)

)1/p

≤Cp,2

(∑

λ∈Λ

|α(λ)|2
)1/2

.

Now we define

Tεf(x) :=
∑

e∈E

∞∑

j=0

∑

k∈Zn

εej,k〈f, ψe
j,k〉ψe

j,k(x)

for each ε = {εej,k : e ∈ E, j ∈ Z+, k ∈ Zn} ∈ Ω :=
{
ε = {εej,k}e,j,k : εej,k =

±1
}
. Denoting bej,k := 〈f, ψe

j,k〉ψe
j,k, we can express

Tεf(x) =
∑

e∈E

∞∑

j=0

∑

k∈Zn

εej,kb
e
j,k(x).

By Khintchine’s inequality, there exists a constant 0 < a0 <∞ such that

a0

(∑

e∈E

∞∑

j=0

∑

k∈Zn

|bej,k(x)|2
)p/2

≤
∫

Ω

∣∣∣
∑

e∈E

∞∑

j=0

∑

k∈Zn

εej,kb
e
j,k(x)

∣∣∣
p
dν(ε) a.e. x ∈ Rn

for all f ∈ Lp(w), where dν(ε) denotes the Bernoulli probability measure
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on Ω. Since ψe
j,k

2 = χj,k
2, we have

∥∥∥
(∑

e∈E

∞∑

j=0

∑

k∈Zn

∣∣〈f, ψe
j,k〉χj,k

∣∣2
)1/2∥∥∥

p

Lp(w)

=
∫

Rn

(∑

e∈E

∞∑

j=0

∑

k∈Zn

|bej,k(x)|2
)p/2

w(x)dx

≤ a0
−1

∫

Rn

{∫

Ω

∣∣∣
∑

e∈E

∞∑

j=0

∑

k∈Zn

εej,kb
e
j,k(x)

∣∣∣
p
dν(ε)

}
w(x)dx

= a0
−1

∫

Ω

{∫

Rn

|Tεf(x)|pw(x)dx
}
dν(ε)

= a0
−1

∫

Ω
‖Tεf‖p

Lp(w)dν(ε).

On the other hand, suppTε(f ·χQl
) ⊂ ∏n

i=1[li, li+1] for any l ∈ Zn. Besides
there exists a unique l(x) ∈ Zn such that x ∈ Ql(x) for all x ∈ Rn. Hence
we have

|Tεf(x)|p =
∣∣∣
∑

l∈Zn

Tε(f · χQl
)(x)

∣∣∣
p

=
∣∣Tε(f · χQl(x)

)(x)
∣∣p ≤

∑

l∈Zn

∣∣Tε(f · χQl
)(x)

∣∣p.

Thus we obtain

‖Tεf‖p
Lp(w)≤

∫

Rn

∑

l∈Zn

|Tε(f · χQl
)(x)|pw(x)dx

=
∑

l∈Zn

∫

Ql

|Tε(f · χQl
)(x)|pw(x)dx

=
∑

l∈Zn

‖Tε(f · χQl
)‖p

Lp(w).

Now we define wl (l ∈ Zn) to fulfill the following two conditions:
• wl(x) = w(τl1(x1), . . . , τln(xn)) if x ∈ ∏n

i=1[li, li +2), where for ν ∈ Z
and t ∈ [ν, ν + 2),

τν(t) :=
{

t (t ∈ [ν, ν + 1))
2(ν + 1)− t (t ∈ [ν + 1, ν + 2))

• Each wl is a 2Zn-periodic function on Rn.



The Haar wavelets and the Haar scaling function in weighted Lp spaces 427

Then we have Ady
p (wl) ≤ 3npAdy,0

p (w) for all l ∈ Zn ([R, Proof of Lemma 1.1]
or [L, Proof of Proposition 2 (ii)]). To estimate ‖Tε(f ·χQl

)‖Lp(w) we apply
the following theorem:

Theorem 4.8 ([V, Theorem 4.1]) Let v ∈ Ady
p . Then, there exist two

constants 0 < b0 ≤ b1 <∞ depending only on Ady
p (v) and p such that

b0‖g‖Lp(v)≤
∥∥∥
(∑

e∈E

∞∑

j=−∞

∑

k∈Zn

∣∣〈g, ψe
j,k〉Aj,kχj,k

∣∣2
)1/2∥∥∥

Lp(dx)

≤ b1‖g‖Lp(v)

for all g ∈ Lp(v), where Aj,k :=
(
(1/|Qj,k|)v(Qj,k)

)1/p.

Remark 4.9
(a) A. Volberg gives the above result for the case of v ∈ Ap and one-

variable. We can extend it to the case of v ∈ Ady
p and several-variables

by the exactly same arguments in [V].
(b) Applying Theorem 4.8 and Khintchine’s inequality gives another proof

of [ABM, Theorem 6 (H2) ⇒ (H3)] (Theorem 6.3 in this paper).

By Theorem 4.8, there exist two constants 0 < bi = bi(A
dy,0
p (w), p) <

∞ (i = 0, 1) such that

‖Tε(f · χQl
)‖Lp(w) = ‖Tε(f · χQl

)‖Lp(wl)

≤ b0
−1

∥∥∥
(∑

e∈E

∞∑

j=−∞

∑

k∈Zn

∣∣〈Tε(f · χQl
), ψe

j,k〉Aj,kχj,k

∣∣2
)1/2∥∥∥

Lp(dx)

= b0
−1

∥∥∥
(∑

e∈E

∞∑

j=0

∑

k∈Zn

∣∣〈f · χQl
, ψe

j,k〉Aj,kχj,k

∣∣2
)1/2∥∥∥

Lp(dx)

≤ b0
−1

∥∥∥
(∑

e∈E

∞∑

j=−∞

∑

k∈Zn

∣∣〈f · χQl
, ψe

j,k〉Aj,kχj,k

∣∣2
)1/2∥∥∥

Lp(dx)

≤ b0
−1b1‖f · χQl

‖Lp(wl)

= b0
−1b1‖f · χQl

‖Lp(w)

for all l ∈ Zn, where Aj,k :=
(
(1/|Qj,k|)w(Qj,k)

)1/p. Therefore we obtain

∥∥∥
(∑

e∈E

∞∑

j=0

∑

k∈Zn

∣∣〈f, ψe
j,k〉χj,k

∣∣2
)1/2∥∥∥

p

Lp(w)
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≤ a0
−1

∫

Ω

∑

l∈Zn

b0
−pbp1‖f · χQl

‖p
Lp(w)dν(ε)

= a0
−1b0

−pbp1

∫

Ω
dν(ε) ·

∑

l∈Zn

‖f · χQl
‖p

Lp(w)

= a0
−1b0

−pbp1‖f‖p
Lp(w). ¤

Lemma 4.10 There exists a constant 0 < C2 <∞ independent of f such
that for all f ∈ Lp(w),

C2‖f‖Lp(w)≤
( ∑

k∈Zn

∣∣〈f, ϕk〉‖ϕk‖Lp(w)

∣∣p
)1/p

+
∥∥∥
(∑

e∈E

∞∑

j=0

∑

k∈Zn

∣∣〈f, ψe
j,k〉χj,k

∣∣2
)1/2∥∥∥

Lp(w)

≤ (
Ady,0

p (w)1/p + C1

)‖f‖Lp(w).

Proof of Lemma 4.10. The right hand side inequality follows clearly from
Lemma 4.5 and Lemma 4.6. So we have only to prove the left hand side
inequality. By the duality, we have

‖f‖Lp(w) = sup
{
|〈f, g〉| : g ∈ L2(dx) with ‖g‖Lp′ (w−1/(p−1)) ≤ 1

}

for all f ∈ Lp(w) ∩ L2(dx). On the other hand, f can be expanded as
follows:

f =
∑

k∈Zn

〈f, ϕk〉ϕk +
∑

e∈E

∞∑

j=0

∑

k∈Zn

〈f, ψe
j,k〉ψe

j,k in L2(dx)

because {ϕk : k ∈ Zn}∪{ψe
j,k : e ∈ E, j ∈ Z+, k ∈ Zn} forms an orthonormal

basis for L2(dx). Thus, for all g ∈ L2(dx) with ‖g‖Lp′ (w−1/(p−1)) ≤ 1, we
have

|〈f, g〉| ≤
∣∣∣
∑

k∈Zn

〈f, ϕk〉〈ϕk, g〉
∣∣∣ +

∣∣∣
∑

e∈E

∞∑

j=0

∑

k∈Zn

〈f, ψe
j,k〉〈ψe

j,k, g〉
∣∣∣.

To begin with, we consider the first sum in the right hand side. By∫
Rn ϕk(x)2dx = 1 and Hölder’s inequality, we get

∣∣∣
∑

k∈Zn

〈f, ϕk〉〈ϕk, g〉
∣∣∣=

∣∣∣
∑

k∈Zn

〈f, ϕk〉〈g, ϕk〉
∣∣∣ ·

∫

Rn

ϕk(x)2dx
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=
∫

Rn

∣∣∣
∑

k∈Zn

〈f, ϕk〉ϕk(x)w(x)1/p · 〈g, ϕk〉ϕk(x)w(x)−1/p
∣∣∣dx

≤
∥∥∥

∑

k∈Zn

〈f, ϕk〉ϕkw
1/p

∥∥∥
Lp(dx)

·
∥∥∥

∑

k∈Zn

〈g, ϕk〉ϕkw
−1/p

∥∥∥
Lp′ (dx)

≤
( ∑

k∈Zn

‖〈f, ϕk〉ϕkw
1/p‖p

Lp(dx)

)1/p
·
( ∑

k∈Zn

‖〈g, ϕk〉ϕkw
−1/p‖p′

Lp′ (dx)

)1/p′

=
( ∑

k∈Zn

∣∣〈f, ϕk〉‖ϕk‖Lp(w)

∣∣p
)1/p
·
( ∑

k∈Zn

∣∣〈g, ϕk〉‖ϕk‖Lp′ (w−1/(p−1))

∣∣∣
p′)1/p′

.

Now we have w−1/(p−1) ∈ Ady,0
p′ because of w ∈ Ady,0

p . Therefore by the
proof of Lemma 4.5, we obtain

( ∑

k∈Zn

∣∣∣〈g, ϕk〉‖ϕk‖Lp′ (w−1/(p−1))

∣∣∣
p′)1/p′

≤ Ady,0
p′ (w−1/(p−1))1/p′ · ‖g‖Lp′ (w−1/(p−1))

≤ Ady,0
p′ (w−1/(p−1))1/p′ .

Thus we have the estimate
∣∣∣
∑

k∈Zn

〈f, ϕk〉〈ϕk, g〉
∣∣∣

≤ Ady,0
p′ (w−1/(p−1))1/p′

( ∑

k∈Zn

∣∣〈f, ϕk〉‖ϕk‖Lp(w)

∣∣p
)1/p

.

Next we consider the second sum. By Schwarz’s inequality and Hölder’s
inequality, it follows that

∣∣∣
∑

e∈E

∞∑

j=0

∑

k∈Zn

〈f, ψe
j,k〉〈ψe

j,k, g〉
∣∣∣

=
∣∣∣
∑

e∈E

∞∑

j=0

∑

k∈Zn

〈f, ψe
j,k〉〈g, ψe

j,k〉 ·
∫

Rn

χj,k(x)2dx
∣∣∣

≤
∫

Rn

∣∣∣
∑

e∈E

∞∑

j=0

∑

k∈Zn

〈f, ψe
j,k〉χj,k(x) · 〈g, ψe

j,k〉χj,k(x)
∣∣∣dx

≤
∫

Rn

(∑

e∈E

∞∑

j=0

∑

k∈Zn

∣∣〈f, ψe
j,k〉χj,k(x)

∣∣2
)1/2
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×
(∑

e∈E

∞∑

j=0

∑

k∈Zn

∣∣〈g, ψe
j,k〉χj,k(x)

∣∣2
)1/2

dx

≤
∥∥∥
(∑

e∈E

∞∑

j=0

∑

k∈Zn

∣∣〈f, ψe
j,k〉χj,k

∣∣2
)1/2

w1/p
∥∥∥

Lp(dx)

×
∥∥∥
(∑

e∈E

∞∑

j=0

∑

k∈Zn

∣∣〈g, ψe
j,k〉χj,k

∣∣2
)1/2

w−1/p
∥∥∥

Lp′ (dx)

=
∥∥∥
(∑

e∈E

∞∑

j=0

∑

k∈Zn

∣∣〈f, ψe
j,k〉χj,k

∣∣2
)1/2∥∥∥

Lp(w)

×
∥∥∥
(∑

e∈E

∞∑

j=0

∑

k∈Zn

∣∣〈g, ψe
j,k〉χj,k

∣∣2
)1/2∥∥∥

Lp′ (w−1/(p−1))
.

Note that w−1/(p−1) ∈ Ady,0
p′ because of w ∈ Ady,0

p . Hence by Lemma 4.6,
there exists a constant 0 < a1 <∞ independent of f and g such that

∥∥∥
(∑

e∈E

∞∑

j=0

∑

k∈Zn

∣∣〈g, ψe
j,k〉χj,k

∣∣2
)1/2∥∥∥

Lp′ (w−1/(p−1))

≤ a1‖g‖Lp′ (w−1/(p−1)) ≤ a1.

Thus we obtain

∣∣∣
∑

e∈E

∞∑

j=0

∑

k∈Zn

〈f, ψe
j,k〉〈ψe

j,k, g〉
∣∣∣

≤ a1

∥∥∥
(∑

e∈E

∞∑

j=0

∑

k∈Zn

∣∣〈f, ψe
j,k〉χj,k

∣∣2
)1/2∥∥∥

Lp(w)
.

Consequently it follows that

‖f‖Lp(w)≤max{Ady,0
p′ (w−1/(p−1))1/p′ , a1}

×
{( ∑

k∈Zn

∣∣〈f, ϕk〉‖ϕk‖Lp(w)

∣∣p
)1/p

+
∥∥∥
(∑

e∈E

∞∑

j=0

∑

k∈Zn

∣∣〈f, ψe
j,k〉χj,k

∣∣2
)1/2∥∥∥

Lp(w)

}
.

Following the density of Lp(w) ∩ L2(dx) in Lp(w), the above inequality is
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satisfied for all f ∈ Lp(w). ¤

4.2. Proof of (I2) ⇒ (I3)
In this subsection, we give the proof of (I2) ⇒ (I3) of Theorem 4.2.

First of all, we show that (ϕk)∗, (ψe
j,k)

∗ ∈ Lp(dµ)∗ for all e ∈ E, j ∈ Z+

and k ∈ Zn. Following (I2), there exists a constant 0 < C3 < ∞ such
that Mp,µ,0(f) ≤ C3‖f‖Lp(dµ) for all f ∈ Lp(dµ). Besides we see that 0 <
µ(Qk), µ(Qj,k) <∞. Then we have

∣∣(ϕk)∗(f)
∣∣ =

∣∣〈f, ϕk〉‖ϕk‖Lp(dµ)

∣∣ ·
∥∥ϕk

∥∥−1

Lp(dµ)

≤
( ∑

K∈Zn

∣∣〈f, ϕK〉‖ϕK‖Lp(dµ)

∣∣p
)1/p

· µ(Qk)−1/p

≤Mp,µ,0(f) · µ(Qk)−1/p

≤C3µ(Qk)−1/p‖f‖Lp(dµ).

On the other hand, we get
∣∣(ψe

j,k)
∗(f)

∣∣ =
∣∣〈f, ψe

j,k〉‖χj,k‖Lp(dµ)

∣∣ · ‖χj,k‖−1
Lp(dµ)

=
(∫

Rn

∣∣〈f, ψe
j,k〉χj,k(x)

∣∣pdµ(x)
)1/p

· (2jn/2µ(Qj,k)1/p
)−1

≤
(∫

Rn

(∑

λ∈E

∞∑

J=0

∑

k∈Zn

∣∣〈f, ψλ
J,K〉χJ,K(x)

∣∣2
)1/2·p

dµ(x)
)1/p

· 2−jn/2µ(Qj,k)−1/p

=
∥∥∥∥
(∑

λ∈E

∞∑

J=0

∑

k∈Zn

∣∣〈f, ψλ
J,K〉χJ,K

∣∣2
)1/2

∥∥∥∥
Lp(dµ)

· 2−jn/2µ(Qj,k)−1/p

≤Mp,µ,0(f) · 2−jn/2µ(Qj,k)−1/p

≤ C32−jn/2µ(Qj,k)−1/p‖f‖Lp(dµ).

Consequently we have proved (ϕk)∗, (ψe
j,k)

∗ ∈ Lp(dµ)∗.
In order to prove that the sequence {ϕk : k ∈ Zn} ∪ {ψe

j,k : e ∈ E, j ∈
Z+, k ∈ Zn} forms an unconditional basis for Lp(dµ), we shall check the
following two conditions:
( I ) There exists a constant 0 < C4 <∞ independent of f , A and B such

that ‖TA,Bf‖Lp(dµ) ≤ C4‖f‖Lp(dµ) for all f ∈ Lp(dµ) and all finite sub-
sets A ⊂ Zn and B ⊂ E×Z+×Zn, where TA,Bf :=

∑
k∈A〈f, ϕk〉ϕk +∑

(e,j,k)∈B〈f, ψe
j,k〉ψe

j,k.
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(II) Lp(dµ) = span{ϕk : k ∈ Zn} ∪ span{ψe
j,k : e ∈ E, j ∈ Z+, k ∈ Zn}Lp(dµ)

.
We show the condition (I) first. By the assumption (I2), there exists a

constant 0 < C5 <∞ independent of f , A and B such that C5‖TA,Bf‖Lp(dµ)

≤Mp,µ,0(TA,Bf). Since {ϕk : k ∈ Zn}∪{ψe
j,k : e ∈ E, j ∈ Z+, k ∈ Zn} forms

an orthonormal system for L2(dx), we obtain

Mp,µ,0(TA,Bf) =
(∑

k∈A

∣∣〈f, ϕk〉‖ϕk‖Lp(dµ)

∣∣p
)1/p

+
∥∥∥∥
( ∑

(e,j,k)∈B

∣∣〈f, ψe
j,k〉χj,k

∣∣2
)1/2

∥∥∥∥
Lp(dµ)

≤
(∑

k∈A

∣∣〈f, ϕk〉‖ϕk‖Lp(dµ)

∣∣p
)1/p

+
∥∥∥∥
(∑

e∈E

∞∑

j=0

∑

k∈Zn

∣∣〈f, ψe
j,k〉χj,k

∣∣2
)1/2

∥∥∥∥
Lp(dµ)

=Mp,µ,0(f)

≤C3‖f‖Lp(dµ).

Consequently, we have showed ‖TA,Bf‖Lp(dµ) ≤ C5
−1C3‖f‖Lp(dµ).

Lastly we check (II). We shall prove that

lim
A↗Zn, B↗E×Z+×Zn

Mp,µ,0(f − TA,Bf) = 0,

since C5‖f −TA,Bf‖Lp(dµ) ≤Mp,µ,0(f −TA,Bf) for all f ∈ Lp(dµ) from the
hypothesis (I2). Now we define

M1(f) :=
( ∑

k∈Zn

∣∣〈f, ϕk〉‖ϕk‖Lp(dµ)

∣∣p
)1/p

and M2(f) :=
∥∥∥∥
(∑

e∈E

∞∑

j=0

∑

k∈Zn

∣∣〈f, ψe
j,k〉χj,k

∣∣2
)1/2

∥∥∥∥
Lp(dµ)

.

Then we have Mp,µ,0(f − TA,Bf) = M1(f − TA,Bf) + M2(f − TA,Bf).
We omit the detail because it is obvious that the orthonormality of the
system {ϕk : k ∈ Zn} ∪ {ψe

j,k : e ∈ E, j ∈ Z+, k ∈ Zn} with regard to the
L2-product, the boundedness of Mi(f − TA,Bf) (i = 1, 2) and Lebesgue’s
dominated convergence theorem give us the desired result. ¤
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4.3. Proof of (I3) ⇒ (I1)
In the end of this section, we prove (I3) ⇒ (I1) of Theorem 4.2. Since

the hypothesis (I3) states that {ϕk : k ∈ Zn}∪{ψe
j,k : e ∈ E, j ∈ Z+, k ∈ Zn}

forms an unconditional basis for Lp(dµ), we have the following Lemma from
the arguments in [ABM]:

Lemma 4.11 (cf. [ABM, Proof of Theorem 4 (D1) ⇒ (D2), Step a and
Step b]) µ is equivalent to the Lebesgue measure. Namely, µ(E) = 0 if
and only if |E| = 0 for all bounded Borel set E ⊂ Rn.

Using Lemma 4.11 and Radon-Nikodym theorem, there exists a unique
w ∈ L1

loc(dx) such that dµ(x) = w(x)dx.
Finally we prove w ∈ Ady,0

p . We define

Sjf :=
∑

k∈Zn

〈f, ϕk〉ϕk +
∑

e∈E

j−1∑

l=0

∑

k∈Zn

〈f, ψe
l,k〉ψe

l,k (j ∈ N),

Pjf :=
∑

k∈Zn

〈f, ϕj,k〉ϕj,k (j ∈ Z).

Lemma 4.12 It follows that Sjf = Pjf a.e. Rn for all j ∈ N and f ∈
L2(dx).

Proof of Lemma 4.12. We see that for every j ∈ N,

span{ϕk : k ∈ Zn}L2(dx)

⊕ span{ψe
l,k : e ∈ E, l = 0, 1, . . . , j − 1, k ∈ Zn}L2(dx)

= span{ϕj,k : k ∈ Zn}L2(dx)
,

in the sense of subspaces in L2(dx). Hence we have Sjf = Pjf in L2(dx)
for all f ∈ L2(dx). Thus we get |Sjf(x) − Pjf(x)|2 = 0 a.e. x ∈ Rn since∫
Rn |Sjf(x) − Pjf(x)|2dx = 0. Namely we have showed Sjf(x) = Pjf(x)

a.e. x ∈ Rn. ¤

Lemma 4.13 ([HW, Lemma 2.7 in Chapter 5]) Let X be a Banach space
and {xj}j∈N be an unconditional basis for X. Then, there exists a unique
sequence {fj(x)}j∈N ⊂ C for every x ∈ X such that x =

∑
j∈N fj(x)xj con-

verges unconditionally in X. Additionally we define Sβ(x):=
∑

j∈N βjfj(x)xj

for every β = {βj}j∈N ⊂ C with |βj | ≤ 1 (j ∈ N). Then, Sβ(x) converges
unconditionally in X, and {Sβ}β is uniformly bounded on X.
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Now we define

βj
l :=

{
1 (0 ≤ l ≤ j − 1)
0 (l ≥ j)

for each j ∈ N. Then we can denote

Sjf =
∑

k∈Zn

〈f, ϕk〉ϕk +
∑

e∈E

∞∑

l=0

∑

k∈Zn

βj
l 〈f, ψe

l,k〉ψe
l,k (f ∈ Lp(w)).

Hence, using Lemma 4.13, Sj(f) converges unconditionally in Lp(w) for all
f ∈ Lp(w) and j ∈ N. We also obtain that {Sj}j∈N is uniformly bounded
on Lp(w). On the other hand, we have

P0f =
∑

k∈Zn

〈f, ϕk〉ϕk +
∑

e∈E

∞∑

l=0

∑

k∈Zn

0 · 〈f, ψe
l,k〉ψe

l,k (f ∈ Lp(w)).

Thus, it follows that P0(f) converges unconditionally in Lp(w) for all f ∈
Lp(w) and that P0 is bounded on Lp(w) by using Lemma 4.13 similarly.
Consequently we obtain the uniformly weak type (p, p) inequality with re-
spect to w(x)dx for {Pj}j∈Z+ . Namely there exists a constant 0 < C5 <∞
such that

s · w({x ∈ Rn : |Pjf(x)| > s})1/p ≤ C5‖f‖Lp(w)

for all j ∈ Z+, f ∈ Lp(w) ∩ L2(dx) and 0 < s < ∞. We consider a dyadic
cube Q with |Q| = 2−jn for a fixed j ∈ Z+. We define σε(x) :=

(
w(x) +

ε
)−1/(p−1) and σε(Q) :=

∫
Q σε(y)dy for every ε > 0. Then we get

Pj (σεχQ) (x) =
∫

Rn

2jn
∑

k∈Zn

χQj,k
(x)χQj,k

(y) · (σεχQ) (y)dy

= 2jn

∫

Q
σε(y)dy

= |Q|−1σε(Q) a.e. x ∈ Q.
Since σεχI ∈ Lp(w) ∩ L2(dx), we have

s · w({
x ∈ Rn : |Pj(σεχQ)(x)| > s

})1/p ≤ C5‖σεχQ‖Lp(w).

Now notice that

w
({x ∈ Rn : |Pj(σεχQ)(x)| > s}) ≥ w

({x ∈ Q : |Q|−1σε(Q) > s})
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and ‖σεχQ‖Lp(w) =
(∫

Q |σε(y)|pw(y)dy
)1/p. Therefore defining sδ := σε(Q)

×(|Q|+ δ)−1 for any fixed δ > 0, we have |Q|−1σε(Q) > sδ and

w(Q) =w
({x ∈ Q : |Q|−1σε(Q) > sδ}

)

≤ s−p
δ C5

p

∫

Q
|σε(y)|pw(y)dy

= s−p
δ C5

p

∫

Q

(
w(y) + ε

)−p/(p−1)
w(y)dy

≤ s−p
δ C5

p

∫

Q

(
w(y) + ε

)−1/(p−1)
dy

=C5
p(|Q|+ δ)pσε(Q)1−p.

Hence it follows that w(Q) ≤ C5
p|Q|pσε(Q)1−p when δ → 0. Additionally

letting ε → 0, we have w(Q) ≤ C5
p|Q|p(∫Qw(y)−1/(p−1)dy

)1−p, i.e., we
obtain

1
|Q|w(Q)

( 1
|Q|

∫

Q
w(y)−1/(p−1)dy

)p−1
≤ C5

p.

Consequently we have proved w ∈ Ady,0
p . ¤

5. The greedy bases in Lp(w) with w ∈ Ady,m
p

The theory of greedy approximations on several non-weighted function
spaces has been studied so far ([CDH], [GH], [KT], [Ky]). In this section, we
give the greedy basis of Lp(w) with w ∈ Ady,m

p using our result Theorem 4.2.

5.1. Definitions and statement of the result
Let us begin with introducing two kinds of bases.
Let X be a Banach space and {xk}∞k=1 be a Schauder basis in X such

that ‖xk‖X = 1 for all k ∈ N. Then there exists a unique sequence
{ck(x)}∞k=1 ⊂ C such that x =

∑∞
k=1 ck(x)xk in X for all x ∈ X.

Definition 5.1 (greedy basis) We call {xk}∞k=1 a greedy basis for X if
there exists a constant 0 < C <∞ such that for every x ∈ X there exists a
permutation ρ of N which satisfies

|cρ(1)(x)| ≥ |cρ(2)(x)| ≥ · · · ≥ |cρ(N)(x)|
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and
∥∥∥x−

N∑

k=1

cρ(k)(x)xρ(k)

∥∥∥
X
≤ C inf

y∈ΣN

‖x− y‖X ,

for every N ∈ N, where ΣN :=
{∑

i∈Λ αixi : αi ∈ C, ]Λ ≤ N, Λ ⊂ N}
.

Definition 5.2 (democratic basis) We say that {xk}∞k=1 is a democratic
basis for X if there exists a constant 0 < D < ∞ independent of P and Q

such that
∥∥∑

k∈P xk

∥∥
X
≤ D

∥∥∑
k∈Q xk

∥∥
X

for any finite subsets P, Q ⊂ N
with the same cardinality ]P = ]Q.

Theorem 5.3 we describe next is the key to the proof of Theorem 5.5
which is the main result of this section:

Theorem 5.3 ([KT, Theorem 1]) {xk}∞k=1 is a greedy basis if and only if
it is an unconditional and democratic basis.

Remark 5.4 ([KT, Section 3]) S.V. Konyagin and V.N. Temlyakov give
some examples of bases, which are not democratic but unconditional, or
which are not unconditional but democratic.

The following is the conclusion of this section:

Theorem 5.5 Let {ψe}e∈E be the Haar wavelet set, ϕ := χ[0.1)n (i.e., the
Haar scaling function), m ∈ Z, 1 < p <∞ and w ∈ Ady,m

p . We define

ϕ̃m,k :=
ϕm,k

‖ϕm,k‖Lp(w)
= 2−mn/2w(Qm,k)−1/pϕm,k

and ψ̃e
j,k :=

ψe
j,k

‖ψe
j,k‖Lp(w)

= 2−jn/2w(Qj,k)−1/pψe
j,k.

Then, the sequence {ϕ̃m,k : k ∈ Zn} ∪ {ψ̃e
j,k : e ∈ E, j ≥ m, k ∈ Zn} forms

a greedy basis for Lp(w).

5.2. Two lemmas
We prepare the following two Lemmas which we will need in the next

subsection.

Lemma 5.6 Let m ∈ Z, 1 < p <∞ and w ∈ Ady,m
p . Then, w satisfies the

dyadic reverse doubling condition, i.e., there exists a constant 1 < d < ∞
independent of I and I ′ such that dw(I ′) ≤ w(I) for all dyadic cubes I, I ′

satisfying I ′ $ I.
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The proof of Lemma 5.6 is found in [GR, Section II. 1, p. 141] or [Ta, Proof
of Corollary 1.1]. Additionally, we can get the following Lemma by easy
calculations.

Lemma 5.7 Given 0 ≤ a, b < ∞, it follows that 2(1−p)/p(a1/p + b1/p) ≤
(a+b)1/p ≤ a1/p +b1/p. In particular, the right hand side equality sign holds
if and only if a = 0 or b = 0. On the other hand, the left hand side equality
sign holds if and only if a = b.

5.3. Proof of Theorem 5.5
The proof of Theorem 5.5 we give here is based on [CDH, the proof of

Lemma 4.1]. Following Theorem 4.2 (I3) and Theorem 5.3, it is enough to
prove that {ϕ̃m,k : k ∈ Zn} ∪ {ψ̃e

j,k : e ∈ E, j ≥ m, k ∈ Zn} is democratic.
We see that {ϕm,k : k ∈ Zn} ∪ {ψe

j,k : e ∈ E, j ≥ m, k ∈ Zn} forms an
unconditional basis for Lp(w) by Theorem 4.2 (I3). Thus we can write

f =
∑

k∈Zn

am,k(f)ϕ̃m,k +
∑

e∈E

∞∑

j=m

∑

k∈Zn

bej,k(f)ψ̃e
j,k

for all f ∈ Lp(w), where

am,k(f) := 〈f, ϕm,k〉‖ϕm,k‖Lp(w), bej,k(f) := 〈f, ψe
j,k〉‖ψe

j,k‖Lp(w).

Using Theorem 4.2 (I2), we have

c‖f‖Lp(w)≤
( ∑

k∈Zn

∣∣〈f, ϕm,k〉‖ϕm,k‖Lp(w)

∣∣p
)1/p

+
∥∥∥∥
(∑

e∈E

∞∑

j=m

∑

k∈Zn

∣∣〈f, ψe
j,k〉χj,k

∣∣2
)1/2

∥∥∥∥
Lp(w)

=
( ∑

k∈Zn

|am,k(f)|p
)1/p

+
∥∥∥∥
(∑

e∈E

∞∑

j=m

∑

k∈Zn

∣∣w(Qj,k)−1/pbej,k(f)χQj,k

∣∣2
)1/2

∥∥∥∥
Lp(w)

≤C‖f‖Lp(w). (1)

Let us denote ϕ̃Q := ϕ̃j,k and ψ̃e
Q := ψ̃e

j,k for a dyadic cube Q = Qj,k.
Now we take finite subsets Ai ⊂ {Qm,k : k ∈ Zn}, Ei ⊂ E and Bi ⊂
{Qj,k : j ≥ m, k ∈ Zn} (i = 1, 2) satisfying ]A1 + ](E1 × B1) = ]A2 +
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](E2×B2) arbitrarily, and set g :=
∑

I∈A1
ϕ̃I +

∑
e∈E1

∑
J∈B1

ψ̃e
J and h :=∑

I∈A2
ϕ̃I +

∑
e∈E2

∑
J∈B2

ψ̃e
J . Using (1) and 1 ≤ ]E1 ≤ ]E = 2n − 1, we

obtain

c‖g‖Lp(w) ≤ (]A1)1/p +
∥∥∥∥
( ∑

e∈E1

∑

J∈B1

|w(J)−1/pχJ |2
)1/2

∥∥∥∥
Lp(w)

= (]A1)1/p + (]E1)1/2

·
(∫

S
J′∈B1

J ′

( ∑

J∈B1

w(J)−2/pχJ(x)
)p/2

w(x)dx
)1/p

≤ (]A1)1/p + (2n − 1)1/2(]E1)1/p

·
(∫

S
J′∈B1

J ′

( ∑

J∈B1

w(J)−2/pχJ(x)
)p/2

w(x)dx
)1/p

. (2)

For each x ∈ ⋃
J∈B1

J , J1(x) denotes the minimal dyadic cube in B1 with
regard to the inclusion relation that contains x. Then we get

∑

J∈B1

w(J)−2/pχJ(x) ≤
∞∑

r=0

w(Jr)−2/p, (3)

where J0 := J1(x), Jr is a dyadic cube satisfying Jr−1 ⊂ Jr and 2n|Jr−1| =
|Jr| for every r ∈ N. By Lemma 5.6, we obtain

w(Jr) ≥ dw(Jr−1) ≥ · · · ≥ drw(J0) = drw
(
J1(x)

)

for all r ∈ N. Thus we have
∞∑

r=0

w(Jr)−2/p ≤
∞∑

r=0

(
drw

(
J1(x)

))−2/p = C0w
(
J1(x)

)−2/p
, (4)

where C0 :=
(
1− d−2/p

)−1
. Following (3) and (4), we obtain

∫
S

J′∈B1
J ′

( ∑

J∈B1

w(J)−2/pχJ(x)
)p/2

w(x)dx

≤
∫

S
J∈B1

J

(
C0w

(
J1(x)

)−2/p)p/2
w(x)dx

= C0
p/2

∫
S

J∈B1
J
w

(
J1(x)

)−1
w(x)dx. (5)
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Now we set J̃ :=
{
x ∈ ⋃

J∈B1
J : J1(x) = J

}
for each J ∈ B1. Then, since

J̃ ⊂ J and
⋃

J∈B1
J =

⋃
J∈B1

J̃ , it follows that
∫

S
J∈B1

J
w

(
J1(x)

)−1
w(x)dx=

∫
S

J∈B1
J̃
w

(
J1(x)

)−1
w(x)dx

=
∫

S
J∈B1

J̃
w

(
J
)−1

w(x)dx

≤
∑

J∈B1

∫

J
w(J)−1w(x)dx

= ]B1. (6)

Following (2)–(6), we have

c‖g‖Lp(w) ≤ (]A1)1/p + C0
1/2(2n − 1)1/2(]E1)1/p(]B1)1/p.

In addition, using Lemma 5.7, there exists a constant 0 < C1 < ∞ inde-
pendent of g, A1, E1 and B1 such that

‖g‖Lp(w) ≤ C1

{
]A1 + ](E1 ×B1)

}1/p
. (7)

On the other hand, applying (1) to h =
∑

I∈A2
ϕ̃I +

∑
e∈E2

∑
J∈B2

ψ̃e
J

and using 1 ≤ ]E2 ≤ ]E = 2n − 1, we have

C‖h‖Lp(w) ≥ (]A2)1/p +
∥∥∥∥
( ∑

e∈E2

∑

J∈B2

∣∣w(J)−1/pχJ

∣∣2
)1/2

∥∥∥∥
Lp(w)

= (]A2)1/p + (]E2)1/2

·
(∫

S
J′∈B2

J ′

( ∑

J∈B2

w(J)−2/pχJ(y)
)p/2

w(y)dy
)1/p

≥ (]A2)1/p + (2n − 1)−1/p(]E2)1/p

·
(∫

S
J′∈B2

J ′

( ∑

J∈B2

w(J)−2/pχJ(y)
)p/2

w(y)dy
)1/p

. (8)

For each y ∈ ⋃
J∈B2

J , J2(y) denotes the minimal dyadic cube in B2 with
regard to the inclusion relation that contains y. Then we have

( ∑

J∈B2

w(J)−2/pχJ(y)
)p/2

≥ w
(
J2(y)

)−1
. (9)
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Now using the same argument as (3)–(4), replacing ”B1, −2/p and J1(x)”
by ”B2, −1 and J2(y)” respectively, we get

∑

J∈B2

w(J)−1χJ(y) ≤ C ′0w
(
J2(y)

)−1
, (10)

where C ′0 is a constant depending on only p and d. Following (8)–(10), we
obtain

C‖h‖Lp(w) ≥ (]A2)1/p + (2n − 1)−1/p(]E2)1/p

·
(∫

S
J′∈B2

J ′
C ′0

−1
∑

J∈B2

w(J)−1χJ(y)w(y)dy
)1/p

= (]A2)1/p + (2n − 1)−1/p(]E2)1/p

·
(
C ′0

−1
∑

J∈B2

w(J)−1

∫

J
w(y)dy

)1/p

= (]A2)1/p + C ′0
−1/p(2n − 1)−1/p(]E2)1/p(]B2)1/p.

By Lemma 5.7, there exists a constant 0 < C2 < ∞ independent of h, A2,
E2 and B2 such that

C2‖h‖Lp(w) ≥ {]A2 + ](E2 ×B2)}1/p. (11)

Following ]A1 + ](E1 × B1) = ]A2 + ](E2 × B2), (7) and (11), we get
‖g‖Lp(w) ≤ C1C2‖h‖Lp(w). Consequently we have proved that {ϕ̃m,k : k ∈
Zn} ∪ {ψ̃e

j,k : e ∈ E, j ≥ m, k ∈ Zn} is democratic. ¤

6. Further results

As we described in Section 1, H.A. Aimar et al. and P.G. Lemarié-
Rieusset give the important results on characterizations and unconditional
bases of weighted Lp spaces (1 < p < ∞) respectively ([ABM], [L]). We
will introduce their results and state that we can obtain three conclusions
about greedy bases in weighted Lp spaces by applying the same arguments
as Subsection 5.5 to them respectively.

6.1. The greedy bases in Lp(w) with w ∈ Ap or w ∈ Ady
p

Let us begin with the definition of 1-regular functions.

Definition 6.1 (1-regular function) A function f on Rn is 1-regular if for
every m ∈ N there exists a constant 0 < Cm < ∞ such that |∂αf(x)| ≤
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Cm(1 + |x|)−m for all x ∈ Rn and for all α = (α1, . . . , αn) ∈ Z+
n with

|α| ≤ 1. Here ∂α :=
∏n

i=1 ∂
αi/∂xαi

i and |α| := ∑n
i=1 αi.

We shall remark that we can construct a wavelet set which consists of
1-regular wavelets for a given MRA which has a 1-regular scaling function
(cf. [M, Chapter 3] or [W, Chapter 5]).

Now we are ready to describe two results of [ABM]:

Theorem 6.2 ([ABM, Theorem 4]) Let 1 < p <∞, µ be a positive Borel
measure on Rn, finite on compact sets and {ψe}2n−1

e=1 be a wavelet set such
that each ψe is 1-regular. Then, the following conditions are equivalent:
(D1) The sequence {ψe

j,k : e = 1, 2, . . . , 2n − 1, j ∈ Z, k ∈ Zn} forms
an unconditional basis for Lp(dµ), and {(ψe

j,k)
∗ : e = 1, 2, . . . , 2n −

1, j ∈ Z, k ∈ Zn} ⊂ Lp(dµ)∗.
(D2) µ is absolutely continuous with regard to the Lebesgue measure. In

addition, there exists a w ∈ Ap such that dµ(x) = w(x)dx.
(D3) ‖ψe

j,k‖Lp(dµ) > 0 for all e = 1, 2, . . . , 2n − 1, j ∈ Z and k ∈ Zn.
Additionally there exist two constants 0 < c ≤ C < ∞ independent
of f such that for every f ∈ Lp(dµ),

c‖f‖Lp(dµ) ≤
∥∥∥∥
(2n−1∑

e=1

∞∑

j=−∞

∑

k∈Zn

∣∣〈f, ψe
j,k〉ψe

j,k

∣∣2
)1/2

∥∥∥∥
Lp(dµ)

≤ C‖f‖Lp(dµ).

(D4) µ(Qj,k) > 0 for all j ∈ Z and k ∈ Zn. And there exist two constants
0 < c ≤ C <∞ independent of f such that for every f ∈ Lp(dµ),

c‖f‖Lp(dµ) ≤
∥∥∥∥
(2n−1∑

e=1

∞∑

j=−∞

∑

k∈Zn

∣∣〈f, ψe
j,k〉χj,k

∣∣2
)1/2

∥∥∥∥
Lp(dµ)

≤ C‖f‖Lp(dµ).

Theorem 6.3 ([ABM, Theorem 6]) Let 1 < p <∞, µ be a positive Borel
measure on Rn, finite on compact sets and {ψe}e∈E be the Haar wavelet set.
Then, the following conditions are equivalent:
(H1) The sequence {ψe

j,k : e ∈ E, j ∈ Z, k ∈ Zn} forms an unconditional
basis for Lp(dµ). Additionally, {(ψe

j,k)
∗ : e ∈ E, j ∈ Z, k ∈ Zn} ⊂

Lp(dµ)∗.
(H2) µ is absolutely continuous with regard to the Lebesgue measure. In
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addition, there exists a w ∈ Ady
p such that dµ(x) = w(x)dx.

(H3) µ(Qj,k) > 0 for all j ∈ Z and k ∈ Zn. Additionally, there exist two
constants 0 < c ≤ C < ∞ independent of f such that for every f ∈
Lp(dµ),

c‖f‖Lp(dµ)≤
∥∥∥∥
(∑

e∈E

∞∑

j=−∞

∑

k∈Zn

∣∣〈f, ψe
j,k〉χj,k

∣∣2
)1/2

∥∥∥∥
Lp(dµ)

≤C‖f‖Lp(dµ).

Applying the same arguments as Subsection 5.5 to above two theorems
respectively, we can obtain the following two results about greedy bases in
Lp(w). Here let us mention that both of Theorem 6.2 and Theorem 6.3
state that one sequence given by the wavelets, which forms an orthonormal
basis in L2(dx), becomes an unconditional basis for Lp(w). Hence we don’t
need Lemma 5.7 in order to obtain the following two conclusions.

Corollary 6.4 Let 1 < p < ∞, w ∈ Ap and {ψe}2n−1
e=1 be a wavelet set

such that each ψe is 1-regular. Then, the sequence {ψ̃e
j,k : e = 1, 2, . . . , 2n−

1, j ∈ Z, k ∈ Zn} forms a greedy basis for Lp(w).

Corollary 6.5 Let 1 < p <∞, w ∈ Ady
p and {ψe}e∈E be the Haar wavelet

set. Then, the sequence {ψ̃e
j,k : e ∈ E, j ∈ Z, k ∈ Zn} forms a greedy basis

for Lp(w).

6.2. The greedy bases in Lp(w) with w ∈ Aloc
p

P.G. Lemarié-Rieusset gives the next result. He proved it in the case of
one-variable, however, it is true in the case of several-variables with obvious
modifications.

Theorem 6.6 (cf. [L, Proposition 2 (ii)]) Let 1 < p < ∞, w be a weight
on Rn, m ∈ Z, ϕ be the Daubechies scaling function and {ψe}2n−1

e=1 be the
Daubechies wavelet set. Then, the following conditions are equivalent:
(E1) The sequence {ϕm,k : k ∈ Zn} ∪ {ψe

j,k : e = 1, 2, . . . , 2n − 1, j ≥
m, k ∈ Zn} forms an unconditional basis for Lp(w).

(E2) We define

Mp,w,m(f) :=
( ∑

k∈Zn

∣∣〈f, ϕm,k〉‖ϕm,k‖Lp(w)

∣∣p
)1/p
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+
∥∥∥∥
(2n−1∑

e=1

∞∑

j=m

∑

k∈Zn

∣∣〈f, ψe
j,k〉χj,k

∣∣2
)1/2

∥∥∥∥
Lp(w)

.

Then, there exist two constants 0 < c ≤ C <∞ such that c‖f‖Lp(w) ≤
Mp,w,m(f) ≤ C‖f‖Lp(w) for all f ∈ Lp(w).

(E3) w ∈ Aloc
p .

We obtain the following conclusion by applying the arguments in Sub-
section 5.5 to Theorem 6.6 directly:

Corollary 6.7 Let 1 < p < ∞, w ∈ Aloc
p , m ∈ Z, ϕ be the Daubechies

scaling function and {ψe}2n−1
e=1 be the Daubechies wavelet set. Then, the

sequence {ϕ̃m,k : k ∈ Zn} ∪ {ψ̃e
j,k : e = 1, 2, . . . , 2n − 1, j ≥ m, k ∈ Zn}

forms a greedy basis for Lp(w).
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