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On the local solvability
for a quasilinear cubic wave equation

J. E. Azzouz and S. IBRAHIM
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Abstract. This article is concerned with local solvability of the Cauchy problem for
a quasilinear cubic wave equation in dimension d = 3. Here, we improve the index of
regularity of the initial data compared to the one given by classical energy methods.
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1. Introduction

This paper is devoted to the construction of local (in time) solutions of
the Cauchy problem for a d-dimensional quasilinear wave equation of the

type
O*u — Au — G(du) - V?u =0, (1.1)
where we set Vu = (01u, dau, ..., dqu), Ou = (Vu, dyu) and
G-Viu= Y G*9;0u.
1<j, k<d

Quasilinear wave equations appear frequently in general relativity such as
Einstein equations or relativistic elasticity, hydrodynamics, minimal sur-
faces etc. We consider the particular case where the d X d symmetric matrix
G satisfies the following elliptic equation

~AGH* = Qx(9u, Ou) (1.2)

where the (Qjr);r are quadratic forms on R*4. This is known as the
quasilinear cubic wave equation (see [3]). We assume that the initial data

(u, Opu)jp=0 = (uo, u1), (1.3)

is in the standard Sobolev space H*® x H*™1.
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Recall that using the energy method, one can prove the local well-
posedness for the system (1.1)—(1.3) when s > d/2 4+ 1/2. The crucial fact
is to estimate the first derivatives of the metric G in LL(L*®). In fact,
assuming that du € L¥P(H*1) with d/2 +1/2 < s < d/2 + 1, then the
classical law for product shows that A~'(du)? € H?~%2  and thanks to
the Sobolev embedding we get G € L:.(L°°). More precisely, we have the
following result.

Theorem 1.1 Letd >3, s> d/2+1/2 and (ug, u1) € H® x H57L.
Assume that ||(Vuo, u1)||ja/2-1 is small enough. Then, there exists a
positive time T and a unique solution u of the system (1.1)—(1.3) satisfying

u e C([0, T); HY/*T1/2y nct([o, T); HY/?71/2).

Moreover, a constant C' exists (depending only on the initial data) such

that T > C||(Vug, )| 2, -

Here, H* denotes the homogeneous Sobolev space endowed with the
semi-norm

a2 = [ 16 Fule)Pde.

To improve upon the above existence result, one can use the smoothing
properties of equation (1.1). Notice that (1.1) is invariant with respect to
the dimensionless scaling u(t, x) — wu(At, Az). This scaling preserves the
Sobolev space of exponent s, = d/2, which is then (heuristically) a lower
bound for the range of permissible s. Hence, the above theorem seems to
require an extra 1/2 derivative. The goal of this paper is to try to go as
close as possible to the scaling invariant regularity.

Some results in this direction were obtained, in particular, for the equations
of the form

02— Au — g(u) - V2u = F(u)Q(Vu, Vu), (1.4)
where

g- V2u = Z gjkajaku.

1<j, k<d

Q is a quadratic form on R%, F € D(R) and g is a given smooth function,
vanishing at 0 and with values in K such that Id + K is a convex subset of
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positive symmetric matrices.

Recall that in the case of equation (1.4), the energy method allows us
to prove the local well-posedness for initial data in H*® x H*~! with s >
(d+1)/2 4+ 1/2. We point out that all improvement results are based on
Strichartz-type estimates for the wave operator with variable coefficients
(as well as on bilinear estimates). When the coefficients are rough, these
estimates present a loss of derivative compared to those obtained for the flat
wave operator. The first result in this direction was by H. Bahouri-J. Y-
Chemin [1] giving the well-posedness for s > (d+1)/2+1/4. Independently,
D. Tataru obtained in [14] the same result. Shortly afterward, other im-
provements were obtained in [2] and in [15]. Later, D. Tataru provided in
[16] and [17] a precise relationship between the smoothness of the metric
and the corresponding loss in the Strichartz estimates. He pushed down the
loss to (1/6)%. Moreover, in [12], H. Smith-D. Tataru showed that the 1/6
loss (in Strichartz estimates) is sharp in d = 3. In the case when the metric
g itself solves an equation of the type (1.4), an important improvement (on
the local well-posedness) over the 1/6 result was proved by S. Klainerman-
I. Rodnianski (see [9]).

Recently, in regards to equations of the form (1.4), S. Klainerman-I. Rod-
nianski proved local existence for s > 2 for the Einstein vacuum equation
in d = 3 (see [10]). Moreover, in [13], H. Smith-D. Tataru proved local
existence for general equations of the form (1.4) for s > 7/4 if d = 2, and
s> (d+1)/2ifd =3, 4, 5.

In the case of equation (1.1), H. Bahouri-J. Y-Chemin proved in [3] the
following Theorem.

Theorem 1.2 Let d > 4 and denote by sq4 = d/2 + 1/6. Assume that
(ug, u1) € HSx H~YR?) with s > sq and ||(Vuo, u1)l|q/2—1 s small enough.
Then, there exist a positive time T and a unique solution u of (1.1)—(1.3)
such that, for any small positive real number o we have

T1/6+a > CO!H(VUO? u1)||(;/12_5/6+aa
ey g2 pd/A-1/2y
Ou € C([Ov T]a H ) N LT(B4,2 )7 Zfd > 57
and

du e C((0, T); H )N LA(Bgly), and 8G € LL(L®) ifd=4.

ZS";’q denotes the homogeneous Besov space (see Definition 2.1).
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Note that the proof of Theorem 1.2 strongly depends on the space
dimension; if d > 5 then, by proving the Strichartz inequalities for solutions
of the “linearized equation”, the authors succeed in exhibiting a Banach
space B containing the solution u and having the property that, if a € L%(B)
then 0A™1(a?) € LL(L>). In particular, this is crucial to get an energy
estimate. However, if d = 4 the use of Strichartz estimates is not sufficient.
To overcome this difficulty, they followed an idea of S. Klainerman and
D. Tataru, [11]. They proved microlocal bilinear estimates in the variable
coefficients case. Our goal is to show that, using an L(L") version of the
Strichartz inequalities, we can extend the Bahouri-Chemin result to the
case d = 3, obtaining a better index than that given by the energy method.
Before stating the result, we introduce the following notation. For all ¢ > 2,
we define the loss of derivative p by

1 2
_-_Z 1.5
pla) =5 30 (1.5)
We also set
d
sala) = 5 +p(a) (1.6)
and for all real number r < d satisfying
2 1 1
- =(d-1){=— = 1 1.
S=-D(5-) <1 (L.7)
we define
d 1
== 1.
g r o 2 ( 8)

Our main result is the following.

Theorem 1.3 Let s > s3(6) = 3/2+ 7/18. There exists ¢ > 6, r and
or given by (1.7)—(1.8) such that: if the initial data (ug, ui) € H*(R3) x
H5 Y (R?) and ||(Vuo, u1)l|3/2—1 is small enough, then a non trivial time T
and a unique solution u of (1.1)—(1.3) exist and they satisfy

ou € C([0, T]; H*~'(R?)) N LL(BI5(R?)).

Remark 1.4 In higher dimensions d > 5, following the same proof given
here, we can show the local well-posedness for initial data (ug, u1) € H® x
H* 1 (R?) with s > 54(2) = d/2+1/6 and ||(Vuo, u1)||4/2—1 is small enough.
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This turns out to be the result of [3]. Meanwhile, if d = 4 then we obtain a
minimal loss of derivative p = 1/4 (which corresponds to the choice (g, 7) =
(8/3, 4). This is of course not better than the Bahouri-Chemin result given
by Theorem 1.2. To get a better result, they proved and used bilinear
estimates in [3].

Remark 1.5 From the proof of Theorem 1.3 we can derive a lower bound
of the time T'; writing s, := s3(6) + @ = 3/2 + p(qa) + /2 (with a small
positive real number «), then a constant C,, exists such that

T1/18+a/4 > CCVH’YH_I

Sa—1°

To prove Theorem 1.3, we follow the method used in [3] based on a
construction of an inductive scheme. The crucial fact is the use of an L(L")
version of the microlocal Strichartz estimates for the linearized equation.
(Note that by microlocal estimates we mean estimates satisfied on time
intervals which depend on the size of the spatial frequency).

This paper is organized as follows. In Section 2, first we give a brief
review of the Littlewood-Paley theory and we introduce some notation.
Next, we explain the main idea of the result and point out the difficulty
we observe to control ||0G]|| L1 (L) even if u is the solution of the free wave
equation. Finally, we state the microlocal Strichartz inequalities we will
use (Theorem 2.7). Section 3 is devoted to study some of the properties of
the operator VA~!(a - b). Then using paradifferential calculus, we localize
the equation at frequencies fixed in a ring and we derive good estimates
of the remainder terms. In Section 4 we prove Theorem 1.3. First, we
establish an a priori energy estimate for the solutions of (1.1). Then using
Tataru counting method, we deduce the local Strichartz estimates. These
estimates and the smallness of the interval [0, T] can be used to close the
energy estimate. In Section 5, we outline the proof of Theorem 2.7.

2. Notations and preliminary results

2.1. Some basic facts in Littlewood-Paley theory

In the following, we give a brief review of the Littlewood-Paley theory.
We refer the reader to [4] for a thorough treatment. Denote by Cy the ring
defined by

3 8
Co = {§ e R? such that 1< €] < 5},
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and choose two non-negative radially symmetric functions x € D(B(0, 4/3))
and ¢ € D(Cp) such that for all £ € R?

p(27F)p(27ME) =0 when |k—k|>2
X(©)p(27¢) =0,
and
xX(©) +)_ w2 =1.
keN
Let C = B(0, 2/3) + Co, then C is a ring satisfying
*CN2¥C =0 when |k—#k|>5.
Denote by
h=Fly and h=F'y,
and define the operator Ay, by, for all u € S'(R?),
Apu = o(27*D)u = 2% /Rd h(2Fy)u(x — y)dy

Sa= Y Aju=x(2 Dju=2" [ hy)u(e - )y
j<h1 R

2.2. Notations

The Littlewood-Paley decomposition can be used to define the Besov
spaces.

Definition 2.1 Let o be a real number, and (p, q) in [1, co[%. Let us state

1/q
lullsy gey = (D2 I Apul,) .
’ kcz

If o < d/p then the closure in &’ of the compactly supported and smooth
functions with respect to this norm is a Banach space. Note that B, is the
homogeneous Sobolev space H?. The above definition can be extended to

7 oo 1s nothing but the homogeneous Hélder

the case p = ¢ = oo where BOO’OO

space C? with the semi-norm

fuler = ullge__ = sup 27| Agull .
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In all what follows, C' denotes a universal constant which may change
from line to line. We also make the convention that (cx(t))r denotes a
sequence which satisfies

> o) <1

kEZ

Typically, we take ci(t) = (25| Agu(t, )| 2)/||lu(t, .)|s. In the sequel, we
set

7 1= dujs—o = (Vuo, w1).

For any real number 0 < o < 2/9, there exists g, > 6 such that p(g,) =
7/18 4+ /2. We define

3 o
Sa 1= 53(6) + o= 5T p(qa) + bY

T9(y) i= TG Ha/2) gy 0 = TVIBF/ A y|| a1
and
N§(7) := T'"2/9 TG ().

If B is a Banach space then we set [lul|zs 5 = [[ullza(o,7),5)- In the

special case ¢ = oo and B = H®, we simply denote

lullz,s := [lull oo g0, 7, £r5)-

Definition 2.2 Let 0 € R. Denote by i}%(B,‘? p(]Rd)) the set of distribu-
tions defined on ]0, T[xR% such that

el g ey = 1| 2*7 1 ARl g 1) kez ]l
is finite.

Remark 2.3 The spaces quT(Bg » (R9)) are adapted to the method we use.
First, we localize in frequency by applying the projector Ax on the equation
and then we take the time norm before summing with respect to k.

In particular, in the case p = ¢ = 2 and r = oo, we simply denote by
||uﬂT7U = Hu||i%o(352). Note that we have

70 < |[ull7o

[l
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and

”UHL‘IT(Bg,p) < HUHL‘IT(B,{p)'

Fix a cut-off function § € D(] — 1, 1[) whose value is 1 near 0. For any
sufficiently smooth function v, we denote by G, 7 the truncated metric

given by Gy r(t, x) = 0(t/T)G(0v)(t, x).

2.3. Main idea of the result

Here we want to explain the choice of the parameters p, o and ¢ in any
space dimension. The basic fact in the proof of Theorem 1.3 is the energy
estimate. This requires the control of

T
| 16, = 2.9)

First, we recall the following law of product in B;q (R9).

Proposition 2.4 Let r > 2 and d/(2r) < o < d/r, then for all a €
'gz(Rd), we have a® € ij_d/T(Rd).
In the particular case where ¢ = d/r —1/2 and r < d, the above
proposition implies that if du € B'Z/Qrflp(Rd), then VA~(0u)? € L°°.
Usually, the space B;{/;—U ? is determined using Strichartz inequalities.
In the constant coefficients case, they are given by the following proposition
(see [6]).

Proposition 2.5 Let C; be an ring in R and u(t, ) be a function such
that, for a positive real number X\, the function Fyu(t) is supported in the
ring ACq.

Then, for any two positive real numbers q and r satisfying (1.7) we have the
following estimate

10" ull g vy < N ([10ujp=ollz2 + CllDull Ly (12)), (2.10)
with p=d(1/2—1/r) —1/q and O = 97 — A.

Let us first explain the idea how one can have a control of
u)||71 (700 in the simple case where u is the solution of the free wave
0G(0 LT(L). the simpl h is the soluti f the f
equation. We want to estimate

T
/ 10A (D - Bu)(t, . )| dt.
0
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We have to estimate an expression of the type

T
/ 1A~ (0% - Du)(t, .|| oo d.
0

Recall the Bony’s decomposition (see [5]).
a-b="T,(b)+ Ty(a) + R(a, b),

where

Ta(0) = Sj-1(a)Asb
j

and the remainder term is

R(a, b)) = Y Ajal;_b.
JEZ
—1<I<1

Using Hoélder inequality and Bernstein’s Lemma, we have

HA—l zk: Sk,l(aQu)Akau‘ .

< CTVHaN "R AT2|S (0%w)| ooy | AROU a1 -
k
On the other hand, applying Bernstein’s Lemma and estimate (2.10) to the
first factor in the above sum, we have
1Sko1 (020 s 1y SC 57 2D AL Dl 1 1)
k' <k—2
<C Z 2k’(d/r+1)2k’(d/2—d/r—1/q) ”Ak"VHLQ-
K <k—2

Setting po(q) = 1/2 — 1/q and applying Young’s inequality we obtain
HSkfI@ZU)HLqT(Loo) < CQ(SkW”’YHd/szpo(q)‘

Therefore ||A‘_1Ta2u8u”L%(Loo) < C’TQ’)O(Q)||7||?l/271+p0(q). .
The symmetric term can be treated exactly along the same lines. For the
remainder term we have, for all » > 2

HA,,A—l 3 Ak(azu)Ak,jau‘

—1<5<1
k>p—No

L. (L)
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< CT%0() Z 22p(d/T_1)||Ak82u|\LqT(Lr)HAk—jaUHLqT(Lr)'
k—p>—No

Thanks to Strichartz inequalities (2.10) we can rewrite the above inequality
as,

HAPA_l S Ak(aQU)Ak_jau‘

—1<5<1 Lp(12)
k>p—Ng
< CT?r0 Z 92(p—k)(d/r—1)92k(d/24po(q)—1) HAWH%%

k—p>—No
Applying Young’s inequality (since moreover r < d), we obtain
1A R(@%u, 0u) 11 1) < CT* DN 135 14 poa)-
Therefore,
10G@u)(t, 112y < CT* DN (11514 o 0)-

Remark 2.6 Observe that in the above setting, a loss of derivative py =
0 corresponds to the choice ¢ = 2. If d = 3, the pair (¢, r) = (2, o0) is
not admissible and therefore it seems hard to reduce the regularity index
to that given by scaling arguments using only Strichartz estimates. In our
work, we prove an L9(L") version of local Strichartz estimates. The loss of
derivative p(q) that we obtain is p(q) = po(q) + 1/3¢, where 1/3¢ is the loss
due to the summation of the microlocal Strichartz estimates.

2.4. Strichartz inequalities
Let G = (GA)a>A,>0 be a family of smooth, matrix-valued functions
defined on Iy x R% where I, is a time interval containing 0. Denote by

1G][o := Sup 1OG ALy (Loe) + \IA\HV2GAHL}A(Loc) (2.11)
430
and

G111 == sup [IA[A'|[V'*2Gall gy (poey for 121, (2.12)
AZAO A

and assume that |G ||z is small enough. Let Pp be the operator

Pyvi=0fv— A= GRloow. (2.13)
k,l
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The Strichartz estimates that we will use are the following

Theorem 2.7 Let g9 be a positive real number and C be a fixed ring in
Re. Fiz (g, r) € [2, 0o[? such that 2/q = (d — 1)(1/2 — 1/r) with q # 2 if
d = 3, and consider a family G as above and such that for any l, ||G||; is
finite and ||G||o is small enough i.e. ||G|lo < 8. Then, for any positive real
number € < gg, a constant C' exists such that if vp is the solution of

on an interval 15 satisfying
|IA| S A2_€7

and where f € L'(Ix, L?) and v € L? are two functions for which the
Fourier transform is included in C then vy satisfies the following estimate

10vAllLacry, Lry < CUIVIz2 + 1y, £2y)- (2.14)

This estimate is established by Bahouri-Chemin in [1]. The proof is

based on a dispersive estimate satisfied by an approximate solution to (1.1).
We shall outline the proof of Theorem 2.7 in Section 5.

3. Paradifferential calculus

In all what follows, we take d = 3. Along this work, we shall deal with
quantities of the form A~!(a.b). In the sequel, we summarize some of their
properties.

Lemma 3.1 Assume o > 3/2, then a constant C' exists such that
1A (@ B)ll o1 < C
X (llall o1 [1Bllg=1r2 + 1Bl fro—s lallg-1/2)-  (3.15)
Moreover, if o > 3/2 — 3/r with r > 1 then,
IA™ @ 0) || frosrse < C
X (llall g1 101 gorr-172 + 101 pro— llall gosr-172) - (3.16)
A constant C exists such that

(A CE D)l gsr2 = Cllall grasa—1[1bll r3/2-1- (3.17)
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Moreover, if 1 <r < 3, then a constant C' exists such that
-1
||VA (CL . b)HBi/lr < CHCL”Bi/Qrfl/Q||bHBi,’/2r71/2. (3.18)

Proof. The proof of this lemma is an easy application of the paradifferential
calculus. We refer the reader to [4] for the proof of (3.15) and (3.17). For
the sake of completeness we shall prove (3.18) and (3.16).

We apply Bony’s decomposition

a-b=T,(b)+ Ty(a) + R(a,b).
We begin by proving the following
: b 53/r— < C 53/7— b 53/r— 3
bl goge-1 < Clallgyy 172 bl

which clearly proves (3.18). Using Bernstein’s lemma and the fact that
R(a, b) has a Fourier transform supported in a ball, an integer Ny € N
exists such that for all k£ € Z,

IAKR(@b) [ < > (1A allze | Aj-ibl|zr

i>k—Ng
Si<i<i

< D0 YOMAzal | Ay e

jzk—No
~1<i<1

Hence,

2FG/m =V AL R(a.b)]| -
< Z Q(k_j)(3/T_1)2j(3/T_1/2)||Aja||Lr2j(3/T_1/2)||AijL7-.
Jj=k—No
Using Young’s inequality for sequences and the fact that r < 3, we obtain
> 2 AL(R(a.b)) ][ < Cllall g/r=1/216ll g/-1/2-
keZ ’ "

To conclude the proof of (3.18), it suffices to estimate the term ||AgT ()| -
and do the same for the symmetric term Tj(a).

Note that the Fourier transform of the function Sj_i(a)A;b is included in
a ring of the type 2/C. So

ZAk(Sj—l(a)Ajb): Z Ak(Sj_laAjb).

JEZ lk—j|<5
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Moreover, applying Bernstein’s Lemma and Young’s inequality, there exists
a sequence (d;) satisfying ) d? = 1 and such that

> Al < 27djllall g2
1<j—2 "

Therefore,

2| AT (b) |2
< ”CLHBS/;%/? Z Q(kfj)(3/r71)(djgj(S/rfl/Z)HAjb”LT)
T k—dlss
Taking the sum in ['(Z), we deduce (3.18).

To prove (3.16), we choose § > 1 such that 1/8 = 1/2 + 1/r. Applying
Bernstein’s lemma and Holder inequality we obtain

D ARR (e b)llpe < Y 2T Ajal b s

j=k—No
~1<i<1

< Z o(k—j)(e=3/2+3/r)9j(3/r—1/2)
Jj=k—No
% [1AzallLr 2D Ay bl o
The fact that o > 3/2 — 3/r completes the proof. O

To establish an H*® energy estimate for the solutions of (1.1) and for non
integer values of s, we also use the paradifferential calculus. The problem
is then to study the commutator between a multiplication and the pseudo-
differential operator Ay.

3.1. Paralinearization of the equation

Lemma 3.2 Lets>3/2—3/r. A constant C exists such that, if u, v and
F are three functions satisfying:
du and dv are in L%O(HS*I)HL%(B%T_UQ), Gy € LL(L*™®), F € LL(H*™1)
and

8t2u —Au—-Gyr- Viu=F,

then, ug := Apu is the solution of

6t2uk — Auy, — Skfl(GuT) . Vzuk =F + Rk(Vu, 81)),
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where F, = A F and the remainder term Ry (Vu, Ov) satisfies the following
estimate
[ Rk (Vu, Ov)(t, ')”L2
< Cop()2 M VG, 1 (t, ) l|Leo [ Vult, )51
+CCk(t)2_ 5= DH@U( , -)Hs_lHﬁv( 5 .)”83/r—1/2Hau(t, .)HBS/T—I/Q-
r,2 7,2

Proof. The proof goes along the same lines as that of Theorem 2.1 in [3].
We split the product GU’TVQU into the two following terms.

GU7TV2’UJ = Z Si—1(Gyr) - Vzuj + Z Sj+2(V2u)Aij7T
J J
=Ri + Rs.

As previously done, the first term

R1 = Z Sj_l (G%T)VQUJ'
JEZ

is easy to estimate since the Fourier transform of Sj,l(GmT)VQuj is sup-
ported in the ring 2/C. Hence, we have

ARy = Sk-1(Gyr) - Vi,
+ Z (Sj=1(Go,r) = Sk-1(Gur)) - Ap(V?uy)
J

+ Z [Ak, Sj_l(GuT)]vQUj.

|k—3|<5

Using the following estimate on the commutator (for more details see [4] or
Lemma 8.2 in [9]),

[[Ak, alb]| . < C27%|Val| e ]| 2,
we get

> Ak S5-1(Gor)] V| 1

lk—j|<5

<C Y 27MIVS1(Gor) e VPl 2
|k—31<5
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< O|IVGyrllps | Vullsm 276D 3™ ok=d=le, )
[k—j]1<5

< Cex(t)|[ VG| 1o || V|| s— 2770,
Hence,

2 Ak 8i-1(Gon)] Vus]] 1

k<5
< Cep(t)27 MV VG, | 1< | V]| 51

Similarly, applying Cauchy-Schwartz’s inequality and using Bernstein’s
lemma we have

| (Sj-1(Gor) = Sk—1(Gu,1)) - V5|,

< D) 27NVG 2|V 2.
le[j—2,k—2)

Therefore,

H Z (Sj-1(Gur) = Sk-1(Gur)) - V2Uj’
lk—j|<5

L2

< HVGU,THLOOHV’U,HS_I Z 2j—12—j(s—1)cj‘

|[k—3j|<5
le[j—2,k—2]

Note that since the number of [, [ € [j — 2, k — 2] such that |k — j| < 5 is
finite, then

H Z (Sj—l(Gv,T) - Sk—l(Gv,T)) ~ VQ’U,]"
lk—31<5

L2

< CVGurll=llVullomr Y 2796 ;.
lk—j|<5
Using Young’s inequality, we get

H > (Sj—l(GU,T)—Sk_l(G%T))_v2uj’

Jv‘k_]lég)

L2
< CIVGy izl Vullso127 56 Ve (t).

Now we estimate the term Ry. The Fourier transform of Sj+2(v2u)AijyT
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is included in a ball of the form B(0,C?27) then

ARy = > Ap(Sjy2(VPu)A;Gor).

JjZk—Ny

Moreover, the following estimate

18541 (V2u) [0 < 27O | Vul|poa o,
together with the fact that the space Bfg—l/ ? i continuously embedded in
c1/2 give

1541 (V2u) || < 2j(3/2)\\Vu”z;3/2T‘1/2'
The above estimate and Lemma 3.1 show that

14 (Gor) (8] 2 < CCj(t)Tj(S“/Q)||3v(t)||53/2r—1/2!\3v(t)\|s—1-
Using Young’s inequality for sequences, the proof of Lemma 3.2 is complete.

O

In the proof of Theorem 2.7, we need to localize equation (1.1) in a
way that the frequencies of the metric are much smaller than those of the
solution. In fact, the pseudo-differential operator defined above does not
have any symbolic calculus and therefore they do not allow the construction
of a parametrix for the operator (2.13) in the spirit of Hadamard’s method.
In the following corollary, we prove a precise paralinearization.

Corollary 3.3 Let s >3/2—3/r. A constant C exists such that, if u, v
and F' are three functions satisfying:

Ju and Jv are in LOTO(HS_l)ﬂLqT(Bi/;_l/Q), Gyr € LL(L®), F € LL(H*™1)
and such that

Ofu—Au—Gyr-Vu=F,
then for any 6 € [0, 1] , we have

Otuy, — Auy, — S2(Gor) - Vi, = Fy + RY(Vu, v),
where

Spb = Sks—(1-5)Iny T— N D
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and
HRi(VU, 81})(t7 : )”L%(L2)
< O 27 =0 (1  (287)1-9) [HVGU,THLlT(L“’) IVl

T,s—1

+T'72/9)|ov|

T,s—lﬂaUHLqT(Bg’g)|’3U||Lgr(g;g) :
Proof. Using Lemma 3.2 we can write
R)(Vu, 0v) = Ry(Vu, 0v) + (S§ — Sk—1)(Go1) - Vuy.

Hence it suffices to handle (S,‘z — Sk-1)Gu,1 - V2uy.
Note that

(SR = Sk—1) G - Vukll 1 12)
<|(s3 - Sk—l)Gv,THLlT(Loo)||V2uk||L§9(L2)-
On the other hand, thanks to Bernstein’s lemma we have

1652 = Sk-) Gt 20y

<C > 2P Ap(VGor)l L1 (Lo
p>kd—(1—9) Ino T— Ng
< CIVGur)ll ooy > 27P

p>ké—(1-6) In T—No
< Co7RI=IT GG, 1 11 (e

Noticing that 2~ *0+(1=0)in2T — 9=k (9kT")1=0 \e obtain the desired estimate
on the reminder term. (]

4. Proof of the main result

Recall that

3 o
Sa = 83(6) + o = B + p(ga) + bY

T(y) = TV g foas and N (y) := T'72/7T5(7). (4.19)

To solve (1.1) with initial data (ug, u1) € H® x H%~! with a small a > 0,
we define the following iterative scheme. First, let u(®) be the solution of
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the free wave equation

afu“)) —Aul® =9
(u®, 9ul) ;g = (Souo, Sour),

and inductively for n =0, 1, 2, ... define (™Y by
8t2u(n+1) o Au(n—i—l) . Gu(n) T v2u(n+1) -0
(ut, ulm ) = (Spyiuo, Sniaur).

For simplicity, we shall define Gy, 1 := G,,n) - Then, all we need is to show

that if 7" is small enough, the sequence (u(™) is bounded and is a Cauchy
sequence in the space C([0, T]; H*~!). To do so, we introduce the following
assertions which we prove by induction.

||(9u(")HLqT(Bg3) < CoI'F(7)
10u™ |[7,5-1 < €3[|y]|s—1 (Pn)

¢ c 3 3 3 (g) ]
I an Pl -4 + «af.
or any s 5 a,2 P\qa o

To prove Theorem 1.3 we show that if ||v||/2—1 + Ng(7).I'F(v) is small
enough, then (P;) is satisfied and (P,,) implies (Pp41). First, we point out
that under the inductive hypothesis, we have the following a priori control
of the metric.

Lemma 4.1 Assume that (Py) holds, then we have
G 7L < ClVl3/0-1 (4.20)
and
« 2
109Gl s (1) < ClABjms + Co(T 50yl )2 (421)

Proof. This result is an immediate consequence of Lemma 3.1. In fact,
(3.17) and (3.18) together with (P,) imply (4.20) and (4.21) in the case
where 0 is a space derivative. However, the proof of (4.21) with 0 = 0, is
quite different. In fact, noticing that

G = %(ate) () G@u™) + 0 ()G (),

and using the equation satisfied by u(™, the term 9;G(du(™) could be
developed as a sum of terms of the type A~ (Au("=Y . 9u(*~1) and



On the local solvability for a quasilinear cubic wave equation 401

A G, V2D - gu=D). Obviously, A~ (Au™=Y . gu»~) can be
estimated as in (3.18). On the other hand, using the following law of product

Ha . ngig—l/Q S CHaHB;{fHb”léig_lm’ (4.22)
we deduce that G,_10u™ ¢ B‘f’/;*l/ 2, and again applying (3.18), we get
4.21). The proof of Lemma 4.1 is then complete. O
( p p

4.1. Energy estimate
The energy estimate satisfied by w1 is the following.

Proposition 4.2  Assume that (Py) is satisfied then, for all real number
s €]3/2 =3/r,3/2 + p(qa) + ], a constant C' exists such that for all t €
[0, T'], we have

106" |71 < €[l7ls-1

x (1 + CCONE (N[ syeryo ) (4.23)
LT (BT,Q )
Proof. Recall that according to Lemma 3.2, the sequence u,in+1)::Aku("+l)

satisfies the equation

8t2u,(€n+1) - Au,(vnﬂ) = Sk-1(Gym 1) - VQUI(:’H)
= Ri(Vu"™V, ou™),  (4.24)
with the following estimate
“Rk(vu(n+l)7 8u(n))(t7 : )HL2
< Cop()2 M VNVE oy gl [ Vul™ D ()51
+ Cep(t)27FED0u™ (1t ) ||5-1
10 8, g 17210u D (8, )l oo
r,2 r,2

Multiplying (4.24) by Otu,(gnﬂ) and integrating on R3, we obtain

lay
2 dt
= (51 (00Gnr) - V™, Vuf V) a(0) + (Ri ™) 12 (1)
= D0 (S-a(@G ) - " ) 1a(0).

1<ji<d

10 V132 (1) + (Sk-1(Gr) - Vu™™, V™) 2] (1)
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The above estimate on Ry (Va1 gu™) yields,

5 S [10u I + (S a(Gr) - Vel ™, Tl ) 12 (1]
< COGr(t, e 0ul TV (E, )12
+ 027 D ()0l (¢, L) 12

X [V (Gnr) (s )z [ Va2, )51
+ C27F e ()| oul™ (¢, ) |s-alou™ (¢, )| g3/r-1/2
7,2

X 0u™ Dt o298 llze.

Multiplying by 22*(=1 summing and using (P,) we obtain

5 110U, + ha()] (1)

< ClO(Gn)(t, )z lou™ V()2
+ ClYls=1ll0u™ (t, )l g-1/2
< ou™ I, gy [Out" T (E, )]st
where we set

ha(t) = 37 22561 (Gr) - V™, Tl ) 2 (8).
keZ

Now, choosing [|7[|q/2—1 small enough such that for a constant 0 < ¢ < 1,

the following holds
OuT Dt 2y + hat) < ¢ HIOuT I, I3,

Therefore, using Gronwall’s lemma and the embedding B;’ 5 (R?)—C~1/2(R?)

we deduce that

t
Jou D¢, ) < exp(C [ 1OGu . Dl ) Il

[L+ COONE N0 Dy )| e gorr1/2y] - (4:25)
LT (Br,Z )

The choice CH'yHg/Q_l + CCONL(Y)|V]lsa—1 < 2 completes the proof.

The following result enables us to obtain an a priori control of the

remainder term for the precise paralinearization.
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Lemma 4.3 A constant C' exists such that under the hypothesis (P,,) we
have for any ¢ in the interval [0, 1]

{ ORI — Auptt — SY(Gy ) VT = Ry (n)

aukln-q—l = ’}/IZL+1
t=0

with Sgb = Sk(g_(l_(g) Ino T—Nob and

IRY(m)l 13,12y < Cep2 HIm 10 (2FT) =180/ ()
< (L4 @)1+ CON) 00 e )
Proof. Applying Corollary (3.3) with du = du"tD, v = 9v(™ and s =
Sa, We have
IR ()l (r2) < Cer2 ¥ (1 4 (267)177)
X (IVGall g ooy | V"D

+ 7120 g ™) 780 -1 |ou™ ”LqTa (B75) |Qum ) HLqTa (B;g)).

T,Sa—1

Using (Py,), (4.20), (4.21) together with the energy estimate (4.23) we obtain

1B ()l 3 (2) < Ceg2™FI71/ae) (M) =1/ (o) =e /2D, ()

X (1+ (T)' ) (14 COONF) O™ V] g ).

Thanks to (4.19), the proof is complete. O

n+1) H

Now, we are going to estimate ||8u( We split this

Lo 81y
study into the two cases of low and high frequencies. The following result
deals with the low frequencies.

Corollary 4.4 Assume that (2FT)2/G12)=2/2) < O then, there exists a
constant C' such that under the hypothesis (Py), we have

19 g sy < CTH =T ()
X (14 CONF0u™ V| o gore-172))-
Proof. Using Bernstein’s inequality, we have

Or n+1 o) —Q n
22 | gu{" T (8, - ) |2, < C22KR/Baa) =0/ | gy (D (¢ |12
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Moreover, thanks to the energy estimate (4.23), we have

92kor I au;(;Hl) H%QTO‘ ) < T4/ 9~ (QkT)Q(Z/(&Ia)*a/?) I'%(v)?

)

03 n 2
X (14 CCONFIOU N g a7r-172,)"

Choosing « small enough, summing and noticing that 2/(3¢,) —/2 = 1/9—
« the proof of the corollary is complete. O

4.2. Strichartz estimates and the end of the proof of Theorem 1.3
From the microlocal result (2.14) given in Theorem 2.7, we deduce the
following local statement.

Lemma 4.5 Let ¢ be a positive real number and G be a metric such that
for a sufficiently small constant ¢y, we have

10G | L1, (L) < co-

Fix ¢ > 2 and r such that 1/q=1/2—1/r. A constant C; exists such that

if we set Gy, 1= SE/SG and assume that the Fourier transform of v, fx(t, -)
and uy(t, -) are supported in the ring 2°C, then the solution uy of

a?uk — Auk — C?kv%k = fk on ]0, T[XR3
(Ex)
Q=0 = Yk

satisfies
90l gy < Co2HBA/21-l b/ v

X (|0uk| e 22y + °T) 72 fill Ly 22))- - (4.26)

Proof. Fix k big enough (this corresponds to the high frequencies case).
Suppose that we can construct a finite partition of the interval [0, T7;

[0, T] = U;iév(k)fk,z

where I; = [tgy, tki+1] and assume that, for every | = 0,1, ..., N(k)
(except probably for I = N(k)), the following property holds

[Tk | fellLr(ry,22)
T(2FT)~13=  (2RT) 13| fll £ (12

Iy -
+ ’T|(2kT)2/3HVGkHLl(IWLm) =0, (4.27)
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Recall that § is small enough and it is given by Theorem 2.7. Then we have
the following consequences:

e A constant Cj exists such that the number N (k) of the sub-intervals
I, is estimated by

N(k) < C5(2FT) /3%, (4.28)

In fact, denote by o) (k) the set of all the I’s such that the j** term in
(4.27) is the biggest, and decompose N (k) = Ni(k)+ Na(k)+ N3(k), where
N;(k) counts all the I’s in o\)(k). For every I € o) (k), the j*" term in
(4.27) has to be greater than or equal to §/3. Therefore we have

| Ije.1] §

W > 3 forall [¢€ 0(1)(/€), (4.29)
(2kl{lﬁ|1’f;|(|?]:"‘f;(L2) § g ol teomn) Y
and
M(sz)W?’”VG_ ™ >0 forall le o® (k). (4.31)
T RIL (10 L) 2 3
Now after [ summation in (4.29) and (4.30), we obtain

3(2kT 1/3+e
Ni(k) < (Tv)ézlgo—(l)(k)|lk,l
3(2kT)1/3+£
< s

(4.32)

and
okT)1/3
Ng(k) < M
1 fell Ly (z2)0
k\1/3
_ 3(2"7)
- 0
respectively. On the other hand, from (4.31), we deduce that

Elea(2>(’€) ”fk ||L1(Ik,l7L2)
(4.33)

3 X 5 2
(%(2kT)1/3’T‘ n (2kT)l/3\|VG,§||L1(,M,LOO)) > 1. (4.34)

Taking the square root of the above inequality and summing over the set
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o) (k) we obtain
3 _
Ns(k) < %(2’%1/3 + (25T) V3|V Gl s (1)- (4.35)

From (4.32), (4.33), (4.35) together with the hypothesis on the metric G,
we deduce the desired estimate (4.28) on N (k).

e On cach sub-interval I} ;, the solution u; satisfies the following mi-
crolocal estimate

< 9kl3(1/2-1/m)-1/d]

X ([10uk(te) e + W fellLr(y,,02))- - (4-36)

||8uk ”Lq(lkYZ,LT)

In fact, rescaling ug(t, x) = vy (2¥t, 2Fx), it is clear that vy, satisfies
81521% - Avk - Hkvz’uk = Gk

where Hy(t, ) = Gp(27%t, 27%2) and gi(t, x) = 22% f.(2%¢, 2Fx). Let us
verify that the hypothesis of Theorem 2.7 are satisfied by v on the mi-
crolocal interval J; := Qkfk,l-

First note that choosing A = (2¥7)1/3, we have

‘Jk,l‘ < (2kT)2/375 < A2735.
Second, it is clear that

2k1 141

||aHkHL1(Jk’l7Loo) — Qk/ ”8@]?(27]6@ . )HLoo

2kt 4
= ||8GkHL1(I}€,l7L°°)
<0G L1 ([0, 17, L)- (4.37)

In the last inequality we used the fact that Gj := SZ/ G and the bound-

edness of 52/3 in L°°. The smallness of [|0G||11(jo, 7], L) implies then the
smallness of the left hand side of (4.37). Similarly we have

2Rt 141

IV2Hill 1 gy, 1oy =272 / VG2, )|

k1

= 2_k\|v2@k||L1(1k,l,Loo)-
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Applying Bernstein’s lemma we obtain

(QkT)2/3
T

Integrating with respect to time we deduce that

- (2FT)%/3
\|V2Gk”L1(1k,l,Loo) < CTHVGkv 2110, 2o0)-

V2G|~ < C VG| Lo~

Therefore,

| TeallIV Hll 21y, 200y =1 Tkl V2 Gl 1 1, 10

ok 2/3
SC\IM(T)

<C6. (4.38)

HVG_]?‘|L1(I]€7Z,LOO)

For the last estimate, we have used (4.27). This shows the smallness of
|(Hk)|lo- Applying Theorem 2.7 and using the fact that

_ ok(3/r+1/a=1)|

||5Uk||Lq(Jk,l,Lr) |auk||Lq([k7l,LT)

and

gl (., L2y = 2k(3/2_1)ka:”Ll(Ik’l,L?)’
we obtain

10k pacr, ,, 1y < 22DV (| Qug (b ) 22 + | fell 21, 22))
as desired.

e Estimate (4.26) is deduced from (4.36) by summation. Precisely,

N(k)

q _ q

Le(L) = ||8UkHLq(1k)l7Lr)
=1

< N(k)qu[i”(l/%l/T)*l/q]
X ([|0ul Lo (12) + (2kT)_1/3||fk||L1T(L2))q'

Using the estimate (4.28) on the number of the sub-intervals we obtain

[Ou|

HaukHLq (L7) < 02]‘3[3(1/2_1/7")_1/41} (2kT)1/3q+e
4 =

X (HaukHL%O(B) + (QkT)fl/SkaHLlT(L?))-
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Now to achieve the proof of Lemma 4.5, it remains to show that such
a finite decomposition exists. This is done by induction.
Assume that there exists an increasing sequence (t;)o<;<p of points of [0, 1]
such that t, < T and, forany 0 <j<p—-1

tj+1 — tj (sz)l/B /tj+l
TEET)=5 | fell Ly (2

1/t )l L2dt

tj

tiv1 —tj b
+]+1TJ(2’“T)2/3/ IVGr(t, )| e dt = 6.
t

J

As the function

t—tp (k)13 ot
T P
t—t b
+ T”(sz)W?’/ IVGr(T)|| poedr
tP

is increasing on the interval [t,, T'| then, either the interval [t,, T] satisfies
the condition (4.27) (but with an inequality < ¢ instead), then t,,; does
not exist. Note that this does not affect the order of the number N (k). Or,
a unique ¢4 exists in the interval |¢,, T such that F},(t,41) = 0. This is a
finite procedure because of the compactness of [0, T7. O

As a consequence of Theorem 2.7, we have the following corollary

Corollary 4.6 If T7/'8+||y|,._, is small and the constant Cy is large
enough then, assertion (Py,) implies assertion (Ppy1)-

Proof. For 2T > C, we use the Strichartz estimates (4.26). We have

2k(3/r71/2)||8ul(€n+1)H ) < Ca2k(171/qa)(sz)l/(Sqa)Jrs

Lo (Lr
% [10ul" o2y + @) V3 RE ()] 3 1))

Observe that taking 6 = 2/3 in Lemma 4.3, we have the following estimate
on the remainder term

HRZ/?)(n)HLlT(L?) < CQ_k(l_l/th)(QkT)—l/(3qa)—a/2F%(7)
X (1 + (QkT)1/3)(1 + CCONT(,Y)”aun+1”L%a(BZg))

Now, combining the energy estimate (4.23) and the inductive hypothesis
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(Pn) to the above estimate we obtain

2K/ =YD g | e ) < C-(25T)77 2T ()

X (1 + CCON%(’Y)H&'U/(”JFI) (t7 : )”an(83/r71/2))'
T r,2

On the other hand if 2T < C, then Corollary 4.4 claims that

k(3/r—1/2 (n+1)
o 250200 e g
k€Z:2kT<C

< CT§ () (1 + CCNFIOU (1, ) o s

Finally, observe that T2(7/18+°‘)H’yHgoﬁ1 =TI'%(y)N&(v) and if
T7/18+||y||,. 1 is small enough then

and
106" 751 < €[|7lls—1(1 + CTF(7)NE (7).

This completes the proof of (Pp,41). O

5. Sketch of the proof of Theorem 2.7

Let’s recall the following fundamental result due to H. Bahouri-J-Y.
Chemin (see [3] and [1]).

Theorem 5.1 Let Py be the operator given by (2.13) and denote by
(vA)A>A, the family of solutions of

Pyvpa =0
(v, QvA) =0 = (7%, 7).

For any integer N, there exist two functions I/jf('y) defined on Iy x R® with
[Ia| < A%,

and satisfying

10(va = ZX (V) = Ty ()llzge z2) < CA Y|l 2 (5.39)
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and

IZEG) e < Dl (5.40)

Remark 5.2 The above result stays true if vy solves the wave equation
with “conservative Laplacian” i.e.

Ppup i= 02vp — @(éﬂkakv/\) =0. (5.41)

where, we set GIF = Gf\k +9,i. Therefore, in the sequel we assume that
vp solves (5.41).

Proof. Note that since the Fourier transform of v, is included in C, then
Bernstein lemma together with (5.39) and (5.40) show the dispersive esti-
mate

C
loa(r, iz < — 7l

Interpolating the above inequality with the energy estimate we obtain,

C
loa(Dllzr < —751vllzr (5.42)
T’Y( )
where ¢, r €]2, oo[ such that 1/¢ =1/2 —1/r and
1 1 1 1

The proof of Theorem 2.7 can be achieved using a variation of the so called
TT* method (described in [6]), for non autonomous equations. In the sequel,
we follow the idea of Klainerman [8] and Klainerman-Rodnianski [9].

Let P denotes the projection onto functions whose Fourier transform is
supported in C. Let H := H' x L?, X = LL(L"), X' = LL(L"). For two
real valued vector functions u := (ug, u1) and v := (vg, v1) in H we define

(u, v) = / wv + GIF(t = 0)d;u08vo,
R

where we set GIF = Gf\k + 9.
For a space-time function ¥(t, z), we denote by W[0] := (¥(0), 0,¥(0)).
Given u € ‘H, t and s two real numbers, denote by

(I)(tv S, @) = (d)v 8t¢)7
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where the function ¢ (uniquely) solves (5.41) with (¢(s, s, w), 0:¢(s, s, u))
First we prove (2.14) for dyvp. Set ¢ = v, and define the operator A by

Au= —P0;®(t, 0, u).

The goal is to show that A: H — X is bounded operator with an operator
norm |[A|ly—x = M. It is clear that (2.14) can be derived from (5.42)
with a large constant depending on A. Using this as a bootstrap assumption
we have to establish a uniform bound with respect to A. To do so, it is
sufficient to exhibit the expression of AA*, prove that

AA* X — X

is bounded and establish the relation between the norm operations
JAA* x_x = M?.

By definition of A* we have

T
<A*f> Q> = (f> AAQ)L2 == _/0 s at(bpf

Let W solve P\W = Pf with (¥, 9, %),y = 0. Integrating by parts (in
time), we obtain

(A"f, w) = (u, ¥[0] + R(f)),

with R(f): X' — H given by
T
(w, R(f)) = — / b PrOybddt.
0o Jrs

Therefor,

AA* f = AY[0] + AR(f).
Using the definition of A and Duhamel’s formula, we can write

T
AV[0] = P/ 0®(t, s, (0, Pf(s)))ds,
0

with F(s) = (0, Pf(s)). Applying the dispersive inequality (5.42), we ob-
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tain

|1PO@(t, s, (0, Pf(s))llLr < s IPF(s) L

Tt —sp® |
The Hardy-Littlewood-Sobolev inequality implies that
[AV[O]l| La(rry = [[POD(E, 5, F(s))llLacrry < Cllfl[Lary  (5.43)

as desired. Note that C' is A independent constant.
Now we estimate the term AR(f). According to the bootstrap assumption,
we have

AR La(rry < MIR(S) 2
On th other hand, using the definition of (u, R(f)), we have
IR(f)llr 2= sup (u, R(f))

lulln <1

T
= sup / Y PAOrpdxdt.
0 R3

lull7<1

Now observe that PA@(b = 8t]5A¢ +0; (8,:@%“8;6@, and since ¢ solves (5.41)
then

Py = 9;(8,G2Okb).

Therefore, after (a space) integration by part

IROI= s [ [ awacio

llull+ <1
< ||atG 2122y 109 || oo (£2) 10D || oo L2y -

Thanks to the energy estimate applied to ¢, the L!'(L>) bound on the
metric G and the fact that ||u|lx < 1, we deduce that

M
IAR( ) pacry < 109 Lo (22)- (5.44)
The following Lemma enables us to estimate [|0%|| o (r2)-

Lemma 5.3 Let 1) be the solution to Pxvp = Pf with (T) = dph(T) =
Then,

109 oo L2y < 2M || flLaczr-
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Note that the above Lemma together with (5.43) and (5.44) imply the

following bound
M?
M = A" x < C+ o

and therefore, M? < 2C? as desired.

To prove Lemma 5.3, we consider a time ¢ € [0, T') and define ¢ to be the
solution to Py¢ = 0 with initial data ¢(t) = ug, dr(t) = w1, and ||ulj3 <
1. Recall that ¢ solves Pyip = Pf with zero initial data at time ¢t = T.
Multiplying Py¢ by dy1p and Pyt by ;¢ and we integrate in [t, T] x R3 to
get the identity

LLJ@¢@¢+G%@¢@¢MWM

T .
o Jrs
Hence,
109 oo L2y < 1PODl Lacry |l fll Laczry
+ C||aéka”Ll(Loo)||8¢||L°°(L2)\|3¢||L00(L2)-

From the bootstrap assumption, we know that || POid|| (i, 1) < M ||ull#
< M. Moreover, using the energy estimate ||0@||r(z2) < 2||ully < 2, and
therefore,

109 | oo (z2) < M| f | Lacery + CIOGY | azoo) 09 oo 22)-
Since H(‘)Gf\kH L1(L>) is small enough, then

109 oo (r2y < 2M || flLa(zr)

as desired.
Now we use the above result to prove (2.14) for a space derivative 0j¢. Let
f be a function in LI(L"). As before, we estimate

T
z:/ PO,¢ fdzdt
0 R3

by introducing the function 1 solution to Py¢p = Pf with data ¢(T) =
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0p(T) = 0. Hence integrating by parts,

T
7-— / POyt + / D16(0)(0) + Ab(0)8,(0) .
0 R3 R3

Commuting P, and 9 as before we obtain

T .
[ ] wPrdwededt| < 106 I inum) 001 09 0.

Also,

/R3 A$(0)0pp(0) + 0 (0)0rp(0)dx < [[06(0)[| 12 [|0% || oo (1.2)-
Applying the energy estimate we obtain
100 Lo (z2) < 2[106(0)||2-

Moreover, Lemma 5.3 implies

109 oo 2y < 2M || fll Laczry

with the bound M obtained in the previous step. In particular M does not
depend on A. Therefore, thanks to the bound HBG’%“H L1(L>), we deduce

Z < CM|0¢(0)| 2l fll pacrr)
which proves that
[PO19 || Loy < CM|0¢(0)] L2

as desired. The case of inhomogeneous equation can be deduced from the
above result by a standard technique. We refer to [8] for more details. 0
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