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Semi-implicit schemes with multilevel wavelet-like

incremental unknowns for solving reaction diffusion equation
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Abstract. Our aim in this paper is to present two types of semi-implicit schemes based

on multilevel wavelet-like incremental unknowns (WIU) for solving a one-dimension-

al reaction-diffusion equation with a polynomial growth nonlinearity. The stability of

schemes is proved which also shows the advantage over explicit and implicit schemes in

the same conceptual framework of multilevel WIU. Numerical examples are provided to

test the efficiency of the new schemes.
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1. Introduction

A method with incremental unknowns has been developed as a means to
approximate inertial manifolds when finite differences are used. They play
evidently an important role in the study of the long time behavior of the
solutions of partial differential equations and in fact they produce a new
and different efficient concept in finite differences which are fundamental
and useful in the field of numerical solution of partial differential equations
(see e.g. [5,10,12]).

Much effort about the method with incremental unknowns has been
devoted in the past to the approximation of the linear elliptic equations
and also some nonlinear differential equations or even dissipative evolu-
tion equations, among them are Navier-Stokes equations in dimension two,
Kuramoto-Sivashinsky equations and convection-diffusion equations etc.
(See also [2,6,7,9,13] and the references therein.)

Wavelet-like incremental unknowns deserve special stress because they
enjoy the L2 orthogonality property between different levels of unknowns.
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This makes the method with multilevel wavelet-like incremental unknowns
particularly appropriate for the approximation of evolution equation (see
e.g. [3,4]). The purpose of this paper is to establish two semi-implicit
schemes with multilevel WIU methods for some one-dimensional reaction
diffusion equation, especially for an equation with a polynomial growth
nonlinearity of arbitrary order.

The article is organized as follows. In Section 2 we present the reaction-
diffusion equation and its finite difference discretization. Then in Section 3
we recall the definition of the WIU and the multilevel discretization in
space. Two types of new semi-implicit schemes based on multilevel WIU
are established and some numerical results are shown in Section 4. Finally
in Section 5 we develop the stability study of the schemes.

2. Equation and discretization

In general case, we denote by Ω an open bounded set of Rn with bound-
ary Γ = ∂Ω. Consider the following initial-boundary value problem involv-
ing a scalar function u = u(x, t); u satisfies⎧⎨⎩

∂u

∂t
− ν�u + g(x, u) = 0, in Ω,

u(x, 0) = u0(x), in Ω.
(2.1)

together with one of the following boundary conditions.
(i) Dirichlet type boundary condition

u|Γ = 0. (2.2a)

(ii) Neumann type boundary condition

∂u

∂n

∣∣∣∣
Γ

= 0. (2.2b)

(iii) Periodic type boundary condition

Ω = (0, 1)n, u is Ω-periodic. (2.2c)

Here the function g : Ω ×R → R is measurable in x and of class C1 in
s satisfying{

There exists q > 2 and γi > 0 (i = 0, 1, 2, 3) such that
γ1|s|q − γ0 ≤ g(x, s)s ≤ γ2|s|q + γ3, ∀s ∈ R+, a.e. x ∈ Ω.

(2.3)
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and {
There exists γ4 > 0 such that
g′s(x, s) ≥ −γ4, ∀s ∈ R+, a.e. x ∈ Ω.

(2.4)

Remark 1 The Chafee-Infante equation which reads

∂u

∂t
−�u + αu3 − βu = 0, (α, β > 0) (2.5)

is a simple example of (2.1).

Our attention should be paid to a special one-dimensional example
which is a reaction-diffusion equation with initial-boundary value condi-
tions ⎧⎪⎨⎪⎩

∂u

∂t
− ν�u + g(u) = 0, in Ω = (0, 1),

u(x, 0) = u0(x), in Ω,

u|Γ = 0.

(2.6)

where g(s) =
∑2q−1

j=0 bjs
j , b2q−1 > 0. (See, e.g., [4,8].)

Under suitable condition, we know there exist two constants c1, c2 > 0
such that

g(s)s ≥ 1
2
b2q−1s

2q − c1, (2.7)

g(s)2 ≤ 2b2q−1s
4q−2 + c2. (2.8)

If the spatial variable x of the equation is discretized by finite difference
with mesh size hd = 1/(2dN+1), where N ∈ N, N denoting positive integer,
we have

∂Ud

∂t
+ νAdUd + g(Ud) = 0, (2.9)

where Ud is the vector of approximate values of u at the grid points,
Ud ∈ R2dN , and Ad is a regular matrix of order 2dN . Denoting by ud

i

the discretized step function with nodal values: ud
i = Ud(i) ≈ u(ihd),

i = 1, 2, . . . , 2dN , we have for the convection term with central difference
scheme the equality

Adu
d
i =

−1
h2

d

(ud
i+1 − 2ud

i + ud
i−1).
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Ordering ud
i , i = 1, 2, . . . , 2dN in its natural way, we see that Ad is tri-

diagonal.

3. Multilevel wavelet-like incremental unknowns

Recalling [3,4], we introduce the wavelet-like incremental unknowns into
equation (2.9).

We separate evenly the unknowns into two parts according to the grid
(ud

2i corresponding to coarse grid, or ud
2i−1 to complementary grid), and the

first separation of new variables is obtained by defining⎧⎪⎪⎨⎪⎪⎩
yd
2i =

ud
2i−1 + ud

2i

2
,

zd
2i−1 =

ud
2i−1 − ud

2i

2
,

i = 1, 2, . . . , 2d−1N.

Inversely, we have{
ud

2i = yd
2i − zd

2i−1,

ud
2i−1 = zd

2i−1 + yd
2i,

i = 1, 2, . . . , 2d−1N. (3.1)

We reorder Ud into Ũd by letting Ũd = (ud
2, ud

4, . . . , ud
2dN

, ud
1, ud

3, . . . ,

ud
2dN−1

)T and denote

Ud =
(

Yd

Zd

)
= (yd

2 , yd
4 , . . . , yd

2dN , zd
1 , zd

3 , . . . , zd
2dN−1)

T .

We see that Ud = PdŨd, Ũd = SdUd. Here we know that Pd is a permutation
matrix of order 2dN , and that Sd is a transfer matrix of order 2dN with the
following form

Sd =
(

Id−1 −Id−1

Id−1 Id−1

)
.

where Id−1 is the identity matrix of order 2d−1N . We can easily see that
S−1

d = (1/2)ST . Substituting Ud = PdSdUd into the finite difference equa-
tion (2.9) and multiplying the equation by (PdSd)T , we have

∂(PdSd)T PdSdUd

∂t
+ ν(PdSd)T AdPdSdUd + (PdSd)T g(PdSdUd) = 0.

Thanks to the observations that P T
d Pd = Id, ST

d Sd = 2Id, P T
d and g
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commute, we obtain

2
∂Ud

∂t
+ ν(PdSd)T AdPdSdUd + (PdSd)T g(PdSdUd) = 0, (3.2)

which expresses the finite difference scheme obtained when 2-level wavelet-
like incremental unknowns are used.

The next level of wavelet-like incremental unknowns on Yd can be in-
troduced by repeating the same procedure. We now separate Yd into two
parts and denote that

Y d =
(

Yd−1

Zd−1

)
= (yd−1

4 , yd−1
8 , . . . , yd−1

2dN
, zd−1

2 , zd−1
4 , . . . , zd−1

2dN−2
)T .

Similar to (3.1) we define{
yd
2i = yd−1

4i − zd−1
4i−2,

yd
4i−2 = zd−1

4i−2 + yd−1
4i ,

i = 1, 2, . . . , 2d−2N. (3.3)

Therefore, we obtain the equality Yd = Pd−1Sd−1Y d, where Pd−1 is a per-
mutation matrix of order 2d−1N and

Sd−1 =
(

Id−2 −Id−2

Id−2 Id−2

)
.

As usual, we should set

Ud−1 =

⎛⎜⎜⎝
Yd−1

Zd−1,
1√
2
Zd

⎞⎟⎟⎠ , P̃d−1 =
(

Pd−1 0
0 Id−1

)
,

S̃d−1 =
(

Sd−1 0
0

√
2Id−1

)
,

such that P̃ T
d−1P̃d−1 = Id, S̃T

d−1S̃d−1 = 2Id and Ud = P̃d−1S̃d−1Ud−1. Sub-
stituting Ud = P̃d−1S̃d−1Ud−1 into (3.2) and multiplying the equation by
(P̃d−1S̃d−1)T , we can also obtain

22 ∂Ud−1

∂t
+ νST AdSUd−1 + ST g(SUd−1) = 0,

here S = PdSdP̃d−1S̃d−1.
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Repeating the same procedure d times, we obtain finally the finite dif-
ference scheme when (d + 1)-level wavelet-like incremental unknowns are
used.

2d ∂U0

∂t
+ νST AdSU0 + ST g(SU0) = 0, (3.4)

where S = P̃dS̃d · · · P̃1S̃1. Pl are permutation matrices with similar struc-
ture but different order, Sl are transfer matrixes with similar structure but
different order, and

U0 =
(

Y0

Z

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y0

Z0
1√
2
Z1

...
1√
2

d
Zd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, P̃l =

(
Pl 0
0 Ik

)
,

S̃l =
(

Sl 0
0

√
2Ik

)
=

⎛⎝Il−1 −Il−1 0
Il−1 Il−1 0
0 0

√
2Ik

⎞⎠ ,

where k = (2d − 2l)N , l = d, d − 1, . . . , 1.

4. Schemes and numerical computation

We now propose some schemes based on the utilization of the incre-
mental unknowns introduced above.

The equation (3.4) with d = 1 has the form

2
∂Ud

∂t
+ νST

d P T
d AdPdSdUd + ST

d g(SdUd) = 0.

According to simple computation we can find

ST
d g(SdUd) =

(
2g(Yd) + O(|Zd|2)

O(|Zd|)
)

. (4.1)

By neglecting the terms O(|Zd|2) and O(|Zd|), we obtain

2
∂Ud

∂t
+ νST

d P T
d AdPdSdUd + 2

(
g(Yd)

0

)
= 0.
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The form of the equation (3.4) with d = 2 is

22 ∂Ud−1

∂t
+ νST AdSUd−1 + S̃T

d−1P̃
T
d−1S

T
d g(SdUd) = 0.

Using the same approximation as in (4.1), we can set the approximate equa-
tion to be

22 ∂Ud−1

∂t
+ νST AdSUd−1 + 22

(
g(Yd−1)

0

)
= 0.

This technique is called a nonlinear Galerkin method [4,12].
Finally, with the use of the nonlinear Galerkin method, the (d+1)-level

incremental unknowns equation (3.4) is approximated by

2d ∂

∂t

(
Y0

Z

)
+ νST AdSU0 + 2d

(
g(Y0)

0

)
= 0. (4.2)

As for time discretization of (4.2), we now propose two new schemes
which are based on fully discretized explicit and implicit schemes when
forward differences and backward differences in time are used. The results
are two kinds of semi-implicit schemes.

Scheme I Semi-implicit scheme with Y-implicit and Z-explicit compo-
nents

2d

τ

(
Y n+1

0 − Y n
0

Zn+1 − Zn

)
+ νST AdS

(
Y n+1

0

Zn

)
+ 2d

(
g(Y n

0 )
0

)
= 0.

Scheme II Semi-implicit scheme with Y-explicit and Z-implicit compo-
nents

2d

τ

(
Y n+1

0 − Y n
0

Zn+1 − Zn

)
+ νST AdS

(
Y n

0

Zn+1

)
+ 2d

(
g(Y n

0 )
0

)
= 0.

New schemes generalize obviously the schemes presented in [4]. Stability
conditions for the new schemes will be given in the next section. The
effective implementation of the semi-implicit schemes requires about half
computation of that of the implicit scheme. Especially, the product of
ST AdS with a vector can be obtained without giving the explicit form of S.

Now let us show some numerical results in numerical experiments which
even include the ones for certain two-dimensional problems.
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Table 1. (τ = 1/8 · 2d/(2 + 2d) · h2)
k (t = kτ) Exact Sol. Explicit Implicit Semi-Implicit(II)

1 0.0355 0.0354 0.0354 0.0354
5 0.1690 0.1690 0.1689 0.1690
10 0.3602 0.3603 0.3603 0.3603
15 0.5827 0.5852 0.5852 0.5852
20 0.8416 0.8493 0.8493 0.8493
25 1.1429 1.1525 1.1524 1.1524
30 1.4935 1.5012 1.5010 1.5010

Table 2. (τ = 1/3000)
k (t = kτ) Exact Sol. Explicit Implicit Semi-Implicit(II)

1 0.0481 0.0842 0.0479 0.0482
5 0.1690 0.1690 0.1689 0.1690
10 0.3602 0.3603 0.3603 0.3603
15 0.5827 0.5852 0.5852 0.5852
20 0.8416 0.8493 0.8493 0.8493
25 1.1429 1.1525 1.1524 1.1524
30 1.4935 1.5012 1.5010 1.5010

For one-dimensional problem, the test equation is given below⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂u

∂t
− 2

∂2u

∂x2
+ 1 + u = 0 0 < x < 1,

u = et − 1 x = 0,

u = e1+t − 1 x = 1,

u = ex − 1 t = 0.

It is easy to check that the exact solution is u = ex+t − 1. The numerical
experiment is carried out by taking N = 4, d = 3, and h = 1/33. (See
Table 1.)

The second experiment is carried out by taking τ = 1/3000. (Note that
the approximate values obtained by the explicit schemes are multiplied by
10−8 in order to compare with the other values.) (See Table 2.)

Remark 2 We can give also some examples for the semi-implicit schemes
to solve two-dimensional equations. The nonlinear equation gives g(u) =
−u + u3 with a right-hand side function f(x, y, t) = (sin(πx) sin(πy)e−t)3.
Here we show two figures of the approximate computation of the solutions
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Table 3. Comparison of CPU Time and Error
Scheme (d = 2) CPU Time Error (d = 3) CPU Time Error
Explicit 402 2.3E-3 403 1.05E-2
Scheme I 302 2.5E-3 319 1.03E-2
Implicit 65 4.3E-3 76 1.21E-2

Scheme II 68 2.3E-3 80 1.07E-2

Fig. 1. Case d = 2 τ = 0.01 for approx sol.
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Fig. 2. Case d = 3 τ = 0.01 for approx sol.
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(see Fig. 1 and Fig. 2) and two figures of error curves (see Fig. 3 and Fig. 4).
Table 3 gives comparison of the CPU time (in second) and the maximum
error for the 4 schemes. More details will be given elsewhere.

5. Stability analysis

Let Vhd
be the function space spanned by the basis functions whd, ihd

,
i = 1, 2, . . . , 2dN , and
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whd,ihd
=

{
1, ihd ≤ x < (i + 1)hd,

0, otherwise.

uhd
(x) be a step function in Vhd

, and uhd
(x) =

∑2dN
i=1 uhd

(ihd)whd, ihd
, x ∈

Ω. We introduce the finite difference operator

∇hd
φ(x) =

1
hd

(φ(x + hd) − φ(x)),

and endow Vhd
with the scalar product ((uhd

, vhd
))hd

= (∇hd
uhd

, ∇hd
vhd

),
where ( · , · ) is the scalar product in L2(Ω). We set ‖ · ‖hd

= {(( · , · ))hd
}1/2

and observe that ‖ · ‖hd
and | · | are Hilbert norms on Vhd

. Using the
space Vhd

, we can write the finite difference discretization schemes (2.9) in
variational form as(∂uhd

∂t
, ũ

)
+ ν((uhd

, ũ))hd
+ (g(uhd

), ũ) = 0, ∀ũ ∈ Vhd
.

If we choose ũ = whd, ihd
, we can recover (2.9). We now separate space

Vhd
into two spaces Yhd

and Zhd
according to the definition of wavelet-like

incremental unknowns.
Let Yhd

be the function space spanned by the basis functions ψ2hd, 2ihd
,

i = 1, 2, . . . , 2d−1N , and

ψ2hd, 2ihd
=

{
1, (2i − 1)hd ≤ x < (2i + 1)hd,

0, otherwise.

yhd
(x) =

2d−1N∑
i=1

yhd
(2ihd)ψ2hd,2ihd

, x ∈ Ω, ∀yhd
∈ Yhd

.

Let Zhd
be the function space spanned by the basis functions χ2hd, (2i−1)hd

,
i = 1, 2, . . . , 2d−1N , and

χ2hd, (2i−1)hd
= whd, (2i−1)hd

− whd, 2ihd

=
{

1, (2i − 1)hd ≤ x < 2ihd,

−1, 2ihd ≤ x < (2i + 1)hd.

zhd
(x) =

2d−1N∑
i=1

zhd
((2i − 1)hd)χ2hd,(2i−1)hd

, x ∈ Ω, ∀zhd
∈ Zhd

.

By decomposition, we have

Vhd
= Yhd

⊕Zhd
. (5.1)
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So, the approximate solution uhd
∈ Vhd

is separated into two parts

uhd
= yhd

+ zhd
, yhd

∈ Yhd
, zhd

∈ Zhd
.

We can easily recover (3.1) by above decomposition.
With (5.1), we see that (3.2) is identical to(∂yhd

∂t
, ỹ

)
+ ν((yhd

+ zhd
, ỹ))hd

+ (g(yhd
+ zhd

), ỹ) = 0, ∀ ỹ ∈Yhd
,(∂zhd

∂t
, z̃

)
+ ν((yhd

+ zhd
, z̃))hd

+ (g(yhd
+ zhd

), z̃) = 0, ∀ z̃ ∈Zhd
.

The method with multilevel incremental unknowns can be recovered in a
similar fashion. We decompose Yhl

into Yhl
= Yhl−1

⊕ Zhl−1
, l = d, d −

1, . . . , 1. Therefore, for any function uhd
∈ Vhd

, we can write it as uhd
=

yh0 + z, with yh0 ∈ Yh0 , and z ∈ Z = Zh0 ⊕ Zh1 ⊕ · · · ⊕ Zhd
. The function

space Yh0 is of course spanned by the step functions with step size h0 =
2dhd, and the orthogonality between Yh0 and Z holds true

(y, z) = 0, ∀ y ∈ Yh0 , ∀ z ∈ Z.

Therefore, equation (4.2) is identical to(∂yh0

∂t
, ỹ

)
+ ν((yh0 + z, ỹ))hd

+ (g(yh0), ỹ) = 0, ∀ ỹ ∈ Yh0 ,(∂z

∂t
, z̃

)
+ ν((yh0 + z, z̃))hd

= 0, ∀ z̃ ∈ Z.

Before presenting the stability theory, let us introduce some lemmas.
(See, e.g., [3,4,11])

Lemma 1 For every function uh ∈ Vh,
√

2|uh| ≤ ‖uh‖h ≤ 1
S1(h)

|uh|, with S1(h) =
h

2
.

Lemma 2 For every function yh0 ∈ Yh0,

S2(h0)|yh0 |2∞ ≤ |yh0 |2, with S2(h0) = h0,

S̄1(h0, hd)‖yh0‖hd
≤ |yh0 |, with S̄1(h0, hd) =

1
2

√
h0hd,

where |yh0 |∞ is the maximum (L∞) norm of yh0.
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Lemma 3 For given time step τ , let us define a q-mesh ratio by

r(q) = max
{ τ

h2
d

,
τ

hq−1
d

}
,

then we have r(q) = τ/hq−1
d (q < 3) or τ/h2

d (q ≥ 3).

Thus, we have the stability theorem for Scheme I.

Theorem 1 Assuming that τ ≤ K0 for some K0 fixed, we set

B0 = |u0
hd
|2 +

1
2ν

(2c1 + c2K0)|Ω|.

If the q-mesh ratio r(q) satisfies

r(q) ≤ min
{ 1

4ν
,

2d(q−1)

2b2q−1B
q−1
0

}
,

then we have the following estimate for any n ≥ 0: |un
hd
|2 = |yn

h0
|2 + |zn|2 ≤

B0.

Proof. We write the semi-implicit scheme in its variational form{
(yn+1

h0
− yn

h0
, ỹ) + τν((yn+1

h0
+ zn, ỹ))hd

+ τ(g(yn
h0

), ỹ) = 0,

(zn+1 − zn, z̃) + τν((yn+1
h0

+ zn, z̃))hd
= 0.

(5.2)

Let ỹ = 2yn+1
h0

, z̃ = 2zn+1, we have

2(yn+1
h0

− yn
h0

, yn+1
h0

) + 2τν((yn+1
h0

+ zn, yn+1
h0

))hd

+ 2τ(g(yn
h0

), yn+1
h0

) = 0,

2(zn+1 − zn, zn+1) + 2τν((yn+1
h0

+ zn, zn+1))hd
= 0.

Adding these two relations, since 2(a−b, a) = |a|2−|b|2 + |a−b|2 we obtain

|yn+1
h0

|2 − |yn
h0
|2 + |yn+1

h0
− yn

h0
|2 + |zn+1|2 − |zn|2 + |zn+1 − zn|2

+2τν((yn+1
h0

+ zn, yn+1
h0

+ zn+1))hd
+ 2τ(g(yn

h0
), yn+1

h0
) = 0,

Denoting A = |yn+1
h0

|2 − |yn
h0
|2 + |zn+1|2 − |zn|2 for simplicity, we have

A + |yn+1
h0

− yn
h0
|2 + |zn+1 − zn|2

+ 2τν((yn+1
h0

+ zn+1, yn+1
h0

+ zn+1))hd

− 2τν((zn+1 − zn, yn+1
h0

+ zn+1))hd
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+ 2τ(g(yn
h0

), yn+1
h0

− yn
h0

) + 2τ(g(yn
h0

), yn
h0

) = 0.

Since

2τν((zn+1 − zn, yn+1
h0

+ zn+1))hd

≤ 2τν‖yn+1
h0

+ zn+1‖hd
‖zn+1 − zn‖hd

≤ 2τv

S1(hd)
‖yn+1

h0
+ zn+1‖hd

|zn+1 − zn|

≤ τ2ν2

S1(hd)2
‖yn+1

h0
+ zn+1‖2

hd
+ |zn+1 − zn|2,

2τ(g(yn
h0

), yn+1
h0

− yn
h0

) ≤ 2τ |g(yn
h0

)| |yn+1
h0

− yn
h0
|

≤ τ2|g(yn
h0

)|2 + |yn+1
h0

− yn
h0
|2.

Hence

A + 2τν
(
1 − 2τv

h2
d

)
‖yn+1

h0
+ zn+1‖2

hd

+ 2τ(g(yn
h0

), yn
h0

) − τ2|g(yn
h0

)|2 ≤ 0.

Using Lemmas 1 and 3, the condition satisfied by r(q) implies

A + 2τν|yn+1
h0

+ zn+1|2 + 2τ(g(yn
h0

), yn
h0

) − τ2|g(yn
h0

)|2 ≤ 0.

Using inequalities (2.7), (2.8) and Lemma 2, we have

(g(yn
h0

), yn
h0

) =
∫

Ω
g(yn

h0
)yn

h0
dx ≥ 1

2
b2q−1

∫
Ω
(yn

h0
)2pdx − c1|Ω|. (5.3)

and

τ2|g(yn
h0

)|2 ≤ 2τ2b2
2q−1

∫
Ω
(yn

h0
)4q−2dx + τ2c1|Ω|

≤ 2τ2b2
2q−1|yn

h0
|2q−2
∞

∫
Ω
(yn

h0
)2qdx + τ2c2|Ω|

≤ 2τ2b2
2q−1

2d(q−1)hq−1
d

|yn
h0
|2p−2

∫
Ω
(yn

h0
)2pdx + τ2c2|Ω|. (5.4)

Therefore, we have

A+2τν|yn+1
h0

+zn+1|2

+τb2q−1

(
1− 2τb2q−1

2d(q−1)hq−1
d

|yn
h0
|2q−2

)∫
Ω
(yn

h0
)2qdx≤2τc1|Ω|+ τ2c2|Ω|.
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We are now ready to prove the Theorem by induction:
• k = 0 is obvious since |y0

h0
|2 + |z0|2 ≤ B0.

• Assuming the conclusion is correct up to k = n, we then have |yn
h0
|2 +

|zn|2 ≤ B0.
• For k = n + 1, using the inequality satisfied by r(q), we obtain

|yn+1
h0

|2 + |zn+1|2 − |yn
h0
|2 − |zn|2 + 2τν|yn+1

h0
+ zn+1|2
≤ (2c1τ + c2τ

2)|Ω|.
That is

|yn+1
h0

|2 + |zn+1|2

≤ 1
1 + 2τν

(|yn
h0
|2 + |zn|2) +

1
1 + 2τν

(2c1τ + c2τ
2)|Ω|

≤
( 1

1 + 2τν

)n+1
(|y0

h0
|2 + |z0|2) +

1
1 + 2τν

(
1 +

1
1 + 2τν

+
1

(1 + 2τν)2
+ · · · + 1

(1 + 2τν)n

)
(2c1τ + c2τ

2)|Ω|

≤
( 1

1 + 2τν

)n+1
(|y0

h0
|2 + |z0|2)

+
1

1 + 2τν

1
1 − 1/(1 + 2τν)

(2c1 + c2K0)|Ω|

≤ |y0
h0
|2 + |z0|2 +

1
2ν

(2c1 + c2K0)|Ω|.

Therefore, we obtain the estimate

|un
hd
|2 = |yn

h0
|2 + |zn|2 ≤ B0.

�

As for the stability condition of Scheme II, we have

Theorem 2 Assuming that k ≤ K0 for some K0 fixed, we set

B1 = |u0
hd
|2 +

1
ν

(c1 + c2K0)|Ω|.

If the q-mesh ratio r(q) satisfies

r(q) ≤ min
{ 2d

8ν
,

2d(q−1)

4b2q−1B
q−1
1

}
,
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then we have the following estimate for any n ≥ 0: |un
hd
|2 = |yn

h0
|2 + |zn|2 ≤

B1.

Proof. We write the semi-implicit scheme in its variational form{
(yn+1

h0
− yn

h0
, ỹ) + τν((yn

h0
+ zn+1, ỹ))hd

+ τ(g(yn
h0

), ỹ) = 0,

(zn+1 − zn, z̃) + τν((yn
h0

+ zn+1, z̃))hd
= 0.

(5.5)

Let ỹ = 2yn+1
h0

, z̃ = 2zn+1, we have

2(yn+1
h0

− yn
h0

, yn+1
h0

) + 2τν((yn
h0

+ zn+1, yn+1
h0

))hd

+ 2τ(g(yn
h0

), yn+1
h0

) = 0.

2(zn+1 − zn, zn+1) + 2τν((yn
h0

+ zn+1, zn+1))hd
= 0.

Adding these relations, we have

|yn+1
h0

|2 − |yn
h0
|2 + |yn+1

h0
− yn

h0
|2 + |zn+1|2 − |zn|2 + |zn+1 − zn|2

+ 2τν((yn
h0

+ zn+1, yn+1
h0

+ zn+1))hd
+ 2τ(g(yn

h0
), yn+1

h0
) = 0.

Denoting also A = |yn+1
h0

|2 − |yn
h0
|2 + |zn+1|2 − |zn|2, we have

A + |yn+1
h0

− yn
h0
|2 + |zn+1 − zn|2

+ 2τν((yn+1
h0

+ zn+1, yn+1
h0

+ zn+1))hd

− 2τν((yn+1
h0

− yn
h0

, yn+1
h0

+ zn+1))hd

+ 2τ(g(yn
h0

), yn+1
h0

− yn
h0

) + 2τ(g(yn
h0

), yn
h0

) = 0.

Since

2τν((yn+1
h0

− yn
h0

, yn+1
h0

+ zn+1))hd

≤ 2τν‖yn+1
h0

+ zn+1‖hd
‖yn+1

h0
− yn

h0
‖hd

≤ 2τv

S̄1(h0, hd)
‖yn+1

h0
+ zn+1‖hd

|yn+1
h0

− yn
h0
|

≤ 2τ2v2

S̄1(h0, hd)2
‖yn+1

h0
+ zn+1‖2

hd
+

1
2
|yn+1

h0
− yn

h0
|2,

2τ(g(yn
h0

), yn+1
h0

− yn
h0

) ≤ 2τ |g(yn
h0

)| |yn+1
h0

− yn
h0
|

≤ 2τ2|g(yn
h0

)|2 +
1
2
|yn+1

h0
− yn

h0
|2.
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Hence

A + 2τν
(
1 − 4τν

2dh2
d

)
‖yn+1

h0
+ zn+1‖2

hd

+ 2τ(g(yn
h0

), yn
h0

) − 2τ2|g(yn
h0

)|2 ≤ 0.

Using Lemma 1 and the inequality satisfied by q-mesh ratio, we obtain

A + 2τν|yn+1
h0

+ zn+1|2 + 2τ(g(yn
h0

), yn
h0

) − 2τ2|g(yn
h0

)|2 ≤ 0.

According to (5.3) and (5.4), we have

A+2τν|yn+1
h0

+zn+1|2

+τb2p−1

(
1− 4τb2p−1

2d(q−1)hq−1
d

|yn
h0
|2q−2

)∫
Ω
(yn

h0
)2qdx≤2τc1|Ω|+2τ2c2|Ω|.

We are now also by induction to prove the theorem:
• k = 0 is obvious since |y0

h0
|2 + |z0|2 ≤ B1.

• Assuming the conclusion is correct up to k = n, we then have |yn
h0
|2 +

|zn|2 ≤ B1.
• For k = n + 1, using the condition satisfied by r(q), we see that

|yn+1
h0

|2 + |zn+1|2 − |yn
h0
|2 − |zn|2

+ 2τν|yn+1
h0

+ zn+1|2 ≤ (2c1τ + 2c2τ
2)|Ω|.

That is

|yn+1
h0

|2 + |zn+1|2

≤ 1
1 + 2τν

(|yn
h0
|2 + |zn|2) +

1
1 + 2τv

(2c1τ + 2c2τ
2)|Ω|

≤
( 1

1 + 2τν

)n+1
(|y0

h0
|2 + |z0|2) +

1
1 + 2τν

(
1 +

1
1 + 2τν

+
1

(1 + 2τν)2
+ · · · + 1

(1 + 2τν)n

)
(2c1τ + 2c2τ

2)|Ω|

≤
( 1

1 + 2τν

)n+1
(|y0

h0
|2 + |z0|2) +

1
2v

(2c1 + 2c2K0)|Ω|

≤ |y0
h0
|2 + |z0|2 +

1
ν

(c1 + c2K0)|Ω|.
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Therefore, we obtain the estimate

|un
hd
|2 = |yn

h0
|2 + |zn|2 ≤ B1.

�

Concluding Remarks We can compare our schemes with two ordinary
schemes with WIU; namely,
Explicit Scheme:

2d

τ

(
Y n+1

0 − Y n
0

Zn+1 − Zn

)
+ νST AdS

(
Y n

0

Zn

)
+ 2d

(
g(Y n

0 )
0

)
= 0.

Implicit Scheme:

2d

τ

(
Y n+1

0 − Y n
0

Zn+1 − Zn

)
+ νST AdS

(
Y n+1

0

Zn+1

)
+ 2d

(
g(Y n

0 )
0

)
= 0.

1. Since we have 2d/(2 + 2d) < 1 and B0 < M0 (see, e.g., in [4]), the
bound of q-mesh ratio r(q) satisfied for Scheme I in Theorem 1 is
greater than that for Explicit Scheme. Therefore, Scheme I has an
improved stability comparing with Explicit Scheme.

2. Even B1 and M0 are essentially identical, the bound of q-mesh ratio
r(q) satisfied for Scheme II in Theorem 2 is possibly greater than that
for Explicit Scheme. The stability condition of Scheme II is at least
the same better as that of Explicit Scheme.

3. When nonlinear effect is strong, i.e., the dominant conditions satisfied
by q-mesh ratio r(q) for Schemes I and II are r(q)≤2d(q−1)/2b2q−1B

2q−1
0

and r(q) ≤ 2d(q−1)/4b2q−1B
q−1
1 respectively, these conditions are com-

parable when compared with Implicit Scheme. However, the compu-
tational process of our two semi-implicit schemes is evidently not so
complex than that of Implicit Scheme.

4. The numerical results confirm our theoretical conclusion.
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